Computer Science Department

Final Report- Spring 2024

Title of the project: “Web-based Video Editor”
Nurtau Toganbay

Team Members: Ayazhan Abdirakhym
Rakhat Myrzakhan

Project Advisor/Co-Adyvisors Askar Boranbayev

Executive Summary

The project's goal is to produce a web-based video editor that runs only on the client side. The project's primary
characteristics are:

The video player displays real-time editing results and has player controls for pause, play, and seek
functionalities.

Video frame changers: altering opacity, color, saturation, brightness, and applying blur effects to video frames.
Uploading several videos to edit.

Video manipulations include trimming and removing video tracks.

Caching client-side files which allow offline mode operation.

Exporting films of various ratios and resolutions.

Simple user interface with easy navigation and controls.

The link to the project codebase: https:/github.com/Nurtau/video-editor

Introduction

Problem definition and motivation:

The problem this project aims to solve is the need for a fully functional web-based video editor that operates
without the need for server-side processing. Many existing web-based video editors rely on server-based
processing, which can be resource-intensive, slow, and costly due to the large size of video files. By creating a
serverless video editor, this project addresses the following motivations:

- Reduced bandwidth and cost: eliminating the need for server-side processing reduces the demand for
network bandwidth, making it more cost-effective for both users and the application provider.

- High performance: handling video processing on the client side can boost the performance several
times. This approach not only accelerates processing times but also ensures that users with slower
internet connections are not adversely affected.

- Enhanced privacy and security: processing video on the client side improves user privacy and data
security since video files don't need to be uploaded to external servers.

- Offline access: enabling offline access through the Service Worker API ensures that users can edit
their videos even when they are not connected to the internet, increasing the utility of the application.

https://github.com/Nurtau/video-editor

The solution:

Our serverless web-based video editor uses browser technologies like the WebCodecs API for video processing and
the Service Worker API for offline editing. These technologies will address the issues stated above by decreasing
resource usage and thus enhancing efficiency, strengthening user privacy and security, and providing offline access
for ongoing editing.

The report will be organized as follows:

1. The executive summary: provides a brief description of the project's key components.
The introduction: describes the problem, motivation, and proposed solutions.

3. Background and related work: examines the development of web-based video editing tools, prospective
technologies for application and provides relevant works by emphasizing key technologies and
methodologies.

4. Project approach: provides a full explanation of the project's implementation using diagrams.

Project execution: depicts adjustments made throughout implementation, what went wrong and how these

issues were overcome, as well as the project's initial and improved current designs.

6. Evaluation: describes how we evaluate the project and whether it solved the challenge outlined in the
introduction or not.

7. Conclusion: summarizes the project report and offers ideas for further work.

8. References: includes the list of used material.

9]

Background and Related Work

The introduction of the WebCodecs API into web browsers like Chrome and Safari allowed developers to create
powerful video editing tools which run directly within the browser environment (W3C, 2023).

This technology uses the hardware capabilities of the user's device which allows to reach fast performance of video
frame decoding and encoding processes as in the native desktop applications.

Before the existence of the WebCodecs API, web-based video editing faced significant challenges. Developers were
often constrained by the limitations of web technologies and had to rely on WebAssembly to process video. However,
these solutions mainly use the CPU for decoding and encoding tasks and as a result, provide slow video editing
experiences for users relative to hardware solutions in native applications.

Another alternative is server-side processing. This approach involves sending video data to remote servers for
processing, which introduces several drawbacks. Since video files can be quite large, they require substantial network
bandwidth to transmit them to the server. As a consequence, the process is time-consuming, leading to significant
delays in video editing workflows.

Since WebCodecs API is pretty new, there's a lack of comprehensive articles and documentation. Instead, we found
two GitHub repositories that have emerged as invaluable resources for our project. The first one is
vjeux/mp4-h264-re-encode (https://github.com/vjeux/mp4-h264-re-encode), which provides information about the
entire process of video re-encoding. This repository is particularly useful in understanding how to effectively use the
WebCodecs API with muxing libraries which are needed to extract information and video samples from a video file.
The second repository, MattiasBuelens/baby-video (https://github.com/MattiasBuelens/baby-video), is beneficial

https://github.com/vjeux/mp4-h264-re-encode
https://github.com/vjeux/mp4-h264-re-encode
https://github.com/vjeux/mp4-h264-re-encode
https://github.com/MattiasBuelens/baby-video
https://github.com/MattiasBuelens/baby-video

in demonstrating how to construct a video player using the WebCodecs API. Since building a video player is a
complex process, this repository is used as a reference.

In addition to the WebCodecs API, an understanding of video codecs, frame types, and video container formats is
needed for the development of a video editor application. Lee, J. B., and Kalva, H. provide valuable information
about video codecs, particularly illustrating how these codecs achieve significant video compression [4]. Meanwhile,
Krishna Rao Vijayanagar introduces video frame types (I, P, and B-frames) and explains their differences and
interdependencies [2, 3]. On the topic of video containers, Avaro, O. et al offer an in-depth exploration of MPEG-4
structure by pointing to the importance of each field [1].

Project Approach

Video editor flow mainly consists of three main parts:
1. Video uploading
2. Playback and manipulation of video
3. Video exporting

To start with video uploading, Figure 1 illustrates how different components interact with each other when a user
uploads a video through PlayerUI. FileReader parses an array of bytes from an uploaded video file and then passes
this raw data to VideoDemuxer and Big Storage. In the next step, by using the mp4box library VideoDemuxer
extracts chunks of video and audio tracks, video and audio decoding configs. These data are then bundled into the
VideoBox class, which has a convenient API to work with. Meanwhile, Big Storage saves an array of bytes in
browser memory by leveraging IndexDB API. IndexDB API efficiently handles huge files and has bigger memory
limits compared to other storage features, like localStorage. The purpose of Big Storage will be explained at the end
of the Project Approach.

In the above-mentioned video uploading flow, it is essential to correctly parse a video file and extract needed fields
for future uses.

PlayerUI user uploads o FileReader
(using React library) avideo g (using File API)
A / \

VideoBoxes array of bytes array of bytes

to illustrate / \

VideoBox demuxes a video and extracts info -

) Lel h " from file: chunks of video track & _J VideoDemuxer Big Storage
(internal class that stores a & audio track, video decoding config (using mp4box library) (using IndexDB API)
data about one video) and etc.

Figure 1. Video upload flow diagram

The logic behind the second part “Playback and manipulation of video” is quite big and complex. Figure 2 depicts
what happens when a user manipulates a video. VideoController is a core of logic that orchestrates many other

classes, like VideoDecoder, AudioDecoder, VideoFrameChanger and others, to play and manipulate a video. To play
a video, video and audio chunks need to be decoded by VideoDecoder and AudioDecoder respectively. To note,
VideoDecoder and AudioDecoder are thin wrappers around WebCodecs API. Then decoded video frames and audio
data are pushed to their corresponding queue. Since decoded frames and data are big in memory, the size of the queue
should be kept to a minimum to optimize memory usage. Therefore, the sizes of these queues are not bigger than the
specified threshold.

Mini Storage
(using Web Storage API)

P4
changed VideoBox

moves VideoBox to timeline metadata

\

. VideoController . AudioDecod
Playerul | changesofVideoBox:apply ___3 1 (internal class that manages audio chunks _ _ AudioBecoder
(using React library) color effects, trim or delete video video) to decode (using WebCodecs API)
T Kplay, pause and seek a video l I
video chunks to decode decoded audio data
draw on canvas l 1
-) current time VideoDecoder .
V]deoRenderer of video (using WebCodecs APT) current time Audio queue
(using Canvas API) | of video
T decoded video frames decoded audio at current time

changed video frame l l

VideoFrameChanger decoded video frame ideo f AudioRenderer
(using WebGL API) at current time Video frames queue (using Web Audio API)

Figure 2. Video playback and manipulation diagram

Additionally, there is quite an interesting fact about video chunks. Video chunks might be dependent on future
chunks, in other words, a chunk that should be presented at 1:00 cannot be decoded without first decoding a chunk at
1:01. These moments are carefully managed and handled by the VideoBox class, which exposes
getVideoChunksDependencies, getNextVideoChunks, getAudioChunksDependencies and getNextAudioChunks
methods.

To correctly update video frames on canvas and play the needed part of audio, VideoController calls
advanceCurrentTime on video play. This method is recursive and calls itself on each browser paint, so if a computer
has a 60 Hz monitor, then advanceCurrentTime will be called 60 times per second. The implementation of this
function is shown below:

JavaScript

private advanceCurrentTime(now: number)
this.currentTimeInS = this.getCurrentVideoTime (now) ;
this.lastAdvanceTimeInMs = now;
let reachedEnd = false;

if (this.currentTimeInS >= this.totalDurationInS) {
reachedEnd = true;
this.currentTimeInS = this.totalDurationInS;

}

eventsBus.dispatch("currentTime", this.currentTimeInS);
this.decodeVideoFrames();

this.decodeAudio();

this.renderAudio();

this.renderVideoFrame();

if (reachedEnd) {
this.pause();

} else {
this.advancelLoopId = requestAnimationFrame((now) =>

this.advanceCurrentTime (now),

Ik

}

}

On advanceCurrentTime, “currentTime” event is dispatched to update ui components. After that decoding methods
are called. If the sizes of video frame queue and audio queue are already bigger than specified threshold, then nothing
will be decoded, otherwise some chunks will be decoded to fill these queues until threshold. On this.renderAudio(),
specific decoded audio data, which playing time lies in the current time of video, is extracted from the audio queue
and passed to the AudioRenderer class, which in turn plays audio by using Web Audio API. Meanwhile, on
this.renderVideoFrame() a found decoded video frame from the video frame queue is processed by
VideoFrameChanger before rendering it on canvas by VideoRenderer. VideoFrameChanger changes a frame in two
steps:

JavaScript

processFrame = (frame: VideoFrame, effects: VideoBoxEffects) => {
const init = {
codedHeight: frame.codedHeight,
codedWidth: frame.codedWidth,
displayWidth: frame.displayWidth,
displayHeight: frame.codedHeight,
duration: frame.duration ?? undefined,
timestamp: frame.timestamp,
format: frame.format!,

b

const processedByPixelCanvas = this.perPixelProcessor.processTexture(
frame,
effects,

)

const processedCanvas = this.spatialConvolutionProcessor.processTexture(
processedByPixelCanvas,
effects,

)i

return new VideoFrame(processedCanvas, init);

b

Firstly, frames are passed through a pixel changer, where effects, like brightness, and saturation, are applied.
Secondly, it applies spatial effects, like blur. To note, on spatial effects, the resulting color values of pixels depend on
themselves and their neighbors. This two-step approach helps to reduce the number of calculations, thus to boost
performance.

To store changed VideoBox metadata, like the range of video and applied video effects, Web Storage API, specifically
localStorage is used. The component is called “Mini Storage” because localStorage is good at storing little data
compared to IndexDB. The purpose of Mini Storage will be explained at the end of the Project Approach.

Thirdly, the logic of the video exporting part is quite similar to the previous part. But, as Figure 3 shows during video
export there is no need to track video and audio queue because each decoded video frame is instantly processed. After
processing each frame by VideoFrameChanger, VideoEncoder encodes video frames and outputs video chunks. These
video chunks along with audio chunks are passed to VideoMuxer, where an mp4 file is created and filled with video
and audio tracks. It is worth noting that audio chunks have not been decoded. Since their data are not changed
compared to video frames, there is no need to decode audio chunks.

start to export a video =———_, .
PlayerUl VideoExporter
(using React library) < (internal class)

update with current progress
‘P /
loops over all video chunks

all audio chunks

a mp4 file to be downloaded

¥

VideoDecoder
(using WehCodecs API)

VideoMuxer
(using mp4box library)

N

encoded video chunks decoded video frames
VideoEncoder VideoFrameChanger

€ changed video frames

(using WebCodecs API) (using WebGL API)

Figure 3. Video export flow diagram

As previously mentioned, the purposes of Big Storage and Mini Storage are going to be explained. The system caches
almost everything from big video files to small video metadata. This cached data is used on visiting the video editor
to recreate the previous state of the editor, in other words, on page refresh nothing will be deleted and changed. This
greatly improves the user experience. Figure 4 illustrates a high-level overview of how VideoBoxes are populated
from storage during the visit and subsequent refreshes of the page.

f VideoDemuxer
Big Storage f bytes ———> B)
(using IndexDB API) array of bytes (using mp4box library)

demuxed video file

|

Mini Storage VideoBox
tadata =———3p
(using Web Storage API) metadata (internal class)

populated video boxes

PlayerUI
(using React library)

Figure 4. VideoBox population from storage

Since the project does not need a server to process video files, then it is possible to implement a cache layer to allow
offline mode access. The cache layer will be built using Service Worker API to intercept each request of the browser
and cache responses in memory. Cached responses can be used in the case of an offline network.

Figure 5 illustrates how client-side files (HTML, CSS, JS) could be fetched when there is no internet connection.
Firstly, the user visits a website, then the browser requests needed client-side files. The request is intercepted by the
cache layer and redirected to the server that serves these files. When a request cannot reach that server, which is a
usual case caused by oftline internet access, the cache layer returns cached files, that have been saved during previous
successful visits, to the browser. Thus, the project could support offline mode access which, in turn, enhances user
experiences.

fetch files (HTML, CSS, JS
| — ()

Cache layer
Browser (using Service Worker API)
S ——— cturn cached ﬁles"""’ﬂ | T
fetch files fetch failed
as browser requested because of no
l internet connection

Server that serves
client-side files

Figure 5. Offline mode diagram

Project Execution

The video editor logic is complex, therefore we have encountered some unexpected problems and made wrong design
decisions during project execution.

Firstly, on the first-semester logic flow, there was a tight coupling between components of all parts: video uploading,
playback, manipulation and export. It was hard to debug and add new features because of tight coupling. Therefore,
in the second semester, it was decided to rewrite components to remove coupling at all. As it is visible in Figures 1-3,
we successfully completed this big refactoring task.

Secondly, we thought that we would use WebAssembly libraries to apply effects on video frames because
WebAssembly is fast and can easily parallelize work by leveraging Web Workers API. However, we have
encountered a huge performance issue. Decoded video frames were stored in GPU memory. So, to apply effects by
WebAssembly we need to copy video frame data from GPU to CPU. Then process video frames by WebAssembly
(CPU), and finally copy processed video frame data from the CPU to the GPU. Firstly, the video frame data size is
big, therefore transferring this data from CPU to GPU and vice versa is slow, about 5 ms per video frame. In addition
to this, processing video frames by CPU is also slow, 8 ms per video frame. So, in total processing one video frame
by WebAssembly takes 18ms (two copies and one processing). 18 ms is slow and laggy. For comparison, to support
60 FPS video each video frame should be decoded and processed in 16 ms. Therefore, we analyzed alternatives and
found that we can avoid copying fully by processing video frames on GPU. In addition to this, GPU is well suited to
process hundreds of pixels at the same time. After migrating from WebAssembly (CPU) to WebGL (GPU)
processing, we found that processing time takes only 1 ms per video frame (0 copies and one processing). To note, all
the above measurements are taken in MacBook Pro 16.2 M1 Pro.

Finally, we improved the initial UI/UX design of the editor from the last semester:

« |I* »

Figure 6. Initial design of the Video Editor

There were several problems with the initial design, which is why we needed to upgrade the UI/UX of the video

editor:
1.

In the first design, you can really spot that the elements are fighting for attention rather than leading the user's
eye to the key areas. There is really no pinpoint of focus.

It is not clear with respect to the functionality that every part of the interface may have, and hence, a little bit
of confusion here and there may be inevitable. For example, there is a lack of clarity in the function of the
'Upload' button—will it make a new upload or just finalize the existing selection?

The only controls for navigation are slim, and it is entirely unclear how one might shuttle back and forth
between these different planes of the editing process. There is no visual cue, much less a label, to guide the
user.

The first impression reveals a not-too-good use of space, particularly in the aspect of the timeline. It is really
squeezed quite tight, meaning that accurate editing may be somewhat difficult.

The use of different styles of buttons for 'Upload' and the play controls is almost jarring to the eye, causing
disharmony across the interface and inconsistency in the UL

It appears that the design has not been proportional, thus it may bring about a problem for those using
different screens with different resolutions.

To tackle these issues, the following improvements were implemented:

1.

The layout was changed to be more focused and clean, and a timeline was added to allow the users to be more
precise during editing. Also, we enabled thumbnails for the uploaded videos in our left-top panel that will help
users identify their videos at a glance.

Our Ul was enhanced by exploiting the explanatory power of usability heuristics. By enabling direct
manipulation in the canvas, the editor shows the results immediately to the user who has visible access to all
the objects (Nielsen, 1994).

We applied some changes to this sidebar on the left side by adding larger icons with more space between
them. Thanks to this, we could add new sections and tools, and ease the navigation between them since the
icons reduce the visual cognitive load, and UX should be improved (McGuffin & Balakrishnan, 2005).

A visual hierarchy was built through contrasts and spacing in the area around the main video preview window.
This naturally draws users’ attention to the most important part of the application - the video they are editing.
(Vlasenko, 2022)

Consistency in design elements, like color and typography was needed for our design. We could achieve it
using dark tones and a sans serif font, thereby helping the eyes of the user not to strain, especially for those
spending long hours editing videos.

We added zooming in and out buttons to the timeline to increase preciseness and editing speed for users, thus
we can reach a wider audience covering users that work with long-form and/or short-form content.

As a result, we could achieve this upgraded UI with better, more user-friendly UX (more interfaces can be found in an
appendix of this report):

Uploaded videos

41,695

I ¢

Figure 7. Upgraded UI/UX design of the video editor

Evaluation

The problem description:

e The problem this project aims to solve is the need for a fully functional web-based video editor that operates
without the need for server-side processing. Many existing web-based video editors rely on server-based
processing, which can be resource-intensive, slow, and costly due to the large size of video files.

Our solution solves these issues by including the following critical features:

e C(Client-side processing considerably improves performance, resulting in quicker processing times.
e Offline editing enables users with slow internet connections to have a pleasant editing experience.

Experiments:

We evaluated our solution by comparing it to other enterprise level web-based video editors. The experiment involves
importing and exporting the same video file across three platforms: our app (serverless), a server-side video editor,
and a client-side video editor. The video file used was in MP4 format, 38.3 MB in size, and with a resolution of
1080p. We focused on two metrics: export time (the time it takes to export a video file) and output video size.

According to Table 1, our video editor greatly outperformed the server-side one in export time, 7.25 sec compared to
23.68 sec. Such a great difference is due to the fact that in server-side video editor video files should be downloaded
from the server, which takes some time and highly depends on internet speed. However, the server-side video editor

produced a lesser export file size of 5.6 MB than our project's 9.2 MB file size. This suggests that server-side
processing can be more efficient in terms of file size optimization, possibly due to better compression algorithms and
optimization techniques performed on the server-side.

In contrast, another client-side video editor completed the export in 6.21 seconds and with a file size of 32.7 MB. Our
project has a little longer export time of 7.25 seconds, but a much smaller file size of 9.2 MB. These results show that
our video-editor is performant and produces video files in an optimized way.

To summarize, the experiment evaluates export performance and associated file sizes across three video editors,
confirming the project's efficiency in terms of both speed and file size optimization during video export.

Name Input size (1080p) Export time Export size (720p)
Our project 7.25 sec 9.2 MB
Another ser\(er-51de video 383 MB 23.68 sec 5.6 MB
editor
Another client-side video editor 6.21 sec 32.7 MB

Table 1. Experiment results

Conclusion and possible future work

While developing a web-based, client-sided video editor, our team significantly advanced in video processing
technologies that optimally utilize the capabilities of client-sided systems. Thanks to using modern APIs like
WebCodecs and Service Worker, we could solve the problems that arise while working with web-based video editors
such as costly and slowed performance, privacy and accessibility.

Our project's goal was to address the initial problem description provided in the introductory section, and we believe
that we succeeded. However, by including the following future work items, the web-based video editor might evolve
into a comprehensive and feature-rich platform for video production and editing, addressing a wide range of user
requests while increasing overall functionality and usability.

Future work include:

e Separate audio addition and manipulation:
o Implement the ability to add and change audio tracks separately from video, allowing users to enhance
their videos with background music, voiceovers, or sound effects.
o Include features like volume adjusting, audio track cutting, and multi-track mixing.
e Animations:
o Use animation capabilities to add dynamic elements to videos, including transitions, text, and motion
graphics.

e Al integration:
o Auto-Captions: Integrate Al algorithms to automatically generate and synchronize video
captions/subtitles, hence boosting accessibility and user experience.
e Text addition:
o Allow users to put text overlays on their videos, including titles, subtitles, captions, and notes.
o Users should be able to adjust the font, size, alignment and color of the text.

Presentation at Conference [05.09.2023]:

We also had a chance to present our “Web-based Video Editor” project in the international scientific and practical
conference “Industrial development: technologies for people and services in the era of innovation”, dedicated to the
memory of the founder of the university, academician Zulharnay Aldamzhar. More about the conference can be found
here: https://drive.google.com/file/d/11t0mDhZ2urRICKN6SGIGQTS-FelxhSPA/view?usp=sharin

References

[1] Avaro, O., Eleftheriadis, A., Herpel, C., Rajan, G., & Ward, L. (2000). MPEG-4 systems: overview. Signal
Processing: Image Communication, 15(4-5), 281-298. Available:
https://www.sciencedirect.com/science/article/pii/S0923596599000508

[2] Krishna Rao Vijayanagar. "Closed GOP and Open GOP — Simplified Explanation." Ottverse, December 17, 2020.
Available: https://ottverse.com/closed-gop-open-gop-idr/

[3] Krishna Rao Vijayanagar. "I, P, and B-Frames — Differences and Use Cases Made Easy." Ottverse, December 14,
2020. Available: https://ottverse.com/i-p-b-frames-idr-keyframes-differences-usecases/

[4] Lee, J. B., & Kalva, H. (2006, July). An efficient algorithm for VC-1 to H. 264 video transcoding in progressive
compression. In 2006 IEEE International Conference on Multimedia and Expo (pp. 53-56). IEEE. Available:

https://ieeexplore.ieee.org/abstract/document/4036534

[5] McGuffin, M. J., & Balakrishnan, R. (2005). Fitts' law and expanding targets: Experimental studies and designs
for user interfaces. ACM Transactions on Computer-Human Interaction (TOCHI), 12(4), 388-422. Available:
https://dl.acm.org/doi/pdf/10.1145/1121112.1121115

[6] Nielsen, J. (1994, April). Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems (pp. 152-158). Available:
https://dl.acm.org/doi/pdf/10.1145/191666.191729

[7] Vlasenko, K. V., Lovianova, 1. V., Volkov, S. V., Sitak, I. V., Chumak, O. O., Krasnoshchok, A. V., ... &
Semerikov, S. O. (2022, March). UI/UX design of educational on-line courses. In CTE Workshop Proceedings
(Vol. 9, pp. 184-199). https://acnsci.org/journal/index.php/cte/article/view/114

[8] W3C. (2023). WebCodecs API. World Wide Web Consortium (W3C). Available:
https://www.w3.org/TR/webcodecs/

https://drive.google.com/file/d/11t0mDhZ2urRlcKN6SG9GQT5-Felxh5PA/view?usp=sharing
https://www.sciencedirect.com/science/article/pii/S0923596599000508
https://ottverse.com/closed-gop-open-gop-idr/
https://ottverse.com/closed-gop-open-gop-idr/
https://ottverse.com/i-p-b-frames-idr-keyframes-differences-usecases/
https://ieeexplore.ieee.org/abstract/document/4036534
https://dl.acm.org/doi/pdf/10.1145/1121112.1121115
https://dl.acm.org/doi/pdf/10.1145/191666.191729
https://acnsci.org/journal/index.php/cte/article/view/114
https://www.w3.org/TR/webcodecs/

Video settings

IO

===

Dashboard

Resolution

P 00:06.03/02:33.99

P 00:0603/02:33.99

Figure 9. UI of Video Effects panel (video was blurred to show the effect of blur)

Video export

Exported video will be in 16:9 If youwant to

change them, please go to video settings section

P 00:0603/02:33.99

Figure 10. UI of Video export panel that shows the settings chosen by user

-\

18%

Exporting a video...

Cancel

Figure 11. Ul of video exporting

Video export

Exported video will be in 16:9, If youwant to

change them, please go to video settings section.

P 00:0603/02:33.99

Figure 12. Maximum zoomed timeline for higher precision

Video export

Exported video will be in 16:9. . If youwant to

change them, please go to video settings section

P 00:23.00/02:33.99

Figure 13. Maximum zoomed-out timeline for higher coverage

