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Abstract
sec:app

The engineering design of complex free-form surfaces such as turbine blades and ship

hulls presents significant challenges due to the intricate geometries involved. This

study investigates the application of dimensionality reduction techniques to optimize

the design process of such surfaces, with a focus on enhancing computational efficiency

and maintaining high design quality. We propose a novel approach that integrates geometric

moments with Karhunen-Loeve Expansion (KLE) to form a reduced-dimensional design

space that retains essential shape characteristics while reducing computational demands.

Our methodology leverages the collection of geometric moments to enrich the latent space

representation, which is crucial for capturing the physical and geometric nuances of the

designs. By employing this approach, we aim to address the curse of dimensionality often

encountered in engineering optimization tasks. The findings suggest that incorporating

geometric moments noticeably improves the quality of the resultant design space

by maintaining variance and enhancing the validity of the designs without extensive

computational resources. This research not only contributes to the academic field by

providing a feasible solution to a common problem in engineering design but also suggests

practical applications in optimizing design processes across various industries.
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Chapter 1

Introduction
chap:

introduction
This chapter provides background of the study, its objectives, rationale, and application;

a brief description of the approach; the outline of the report and workload distribution

among group members.

1.1 Background and significance

A great deal of engineering products rely heavily on free-form functional surfaces,

including turbine blades, ship hulls, wings, etc. The quality of such surfaces plays

a significant part in defining the product performance, including its energy efficiency,

structural integrity, durability, safety, and financial feasibility, while their complexity goes

far beyond simple shapes. They usually possess complicated geometries, the modeling

of which requires advanced techniques like parametric modeling to allow an efficient

representation and grasping of their free-form essence. Modeling of geometric objects

has been under perpetual advancement through the collective effort of mathematicians,

engineers, and computer scientists, which significantly enhanced the possibilities offered

by parametric modeling. This modern technique deals effectively with the intricacy of

the forms encountered in a wide range of fields, including - but not limited to – turbo-

machinery, aeronautic engineering, and automotive design [1, 2].

Meeting the demand for avant-garde designs requires global optimization over wide

design spaces with more design variables. However, this task faces the curse of

dimensionality, which hinders optimization performance with the increase in the design

space dimension number [3, 4]. Initially, methods for reducing the design space
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dimensionality aim to recognize significant factors and variables, while eliminating

the less important ones by making their values constant [5]. However, this approach

oversimplifies the problem and may not yield optimal results because it disregards

variables’ interdependencies and their impact on optimization. Variance-based sensitivity

analysis, utilizing Sobol indices, provides a more refined understanding of variable

significance but demands a large number of samples and substantial computational power

with increasing dimensionality [6]. To tackle these challenges, different techniques for

reducing dimensionality have been used. These techniques include unsupervised learning,

principal component analysis, and feature extraction, etc. They aim to capture the main

directions in the design space while keeping important features intact [1]. The latter set of

methods helps in optimizing efficiently and gaining knowledge by revealing the underlying

structures.

Using upfront methods to reduce the design space’s dimensionality can be beneficial

for tackling complex simulation-driven optimization problems in designing functional

surfaces. These modern methods evaluate the variability within the design space and then

shrink it accordingly. This allows for effective dimensionality reduction before starting

the optimization process. For instance, a method applying the Karhunen-Loeve expansion

(KLE) was introduced by [7, 2]. KLE is a technique based on providing an approximation

of a stochastic or unpredictable process with a finite number of dimensions. It is used

to assess variability in shape modification and creates a lower dimension latent feature

space for the shape adjustment vector. Although this method is effective, it still has some

downsides, one of which is its inability to fully capture the complexity of shapes and their

geometric structure. Consequently, the resulting latent spaces may not efficiently produce

a wide range of valid shapes of sufficient diversity. This lack of the validity of shapes

can hamper the optimizing process by spending too many resources analyzing shapes that

are not feasible or valid. Additionally, these methods mainly focus only on the features

associated with the geometry of the shape and do not consider performance criteria and the

physics involved in evaluating the design. Therefore, using more advanced representations
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that include information about the structure and physical features of the shape is crucial.

Briefly restating it, the advancement of parametric modeling techniques has significantly

improved the representation of complex geometric objects crucial in engineering design.

However, challenges such as the curse of dimensionality persist in optimizing design

spaces, requiring the utilization of various dimensionality reduction methods.

1.2 Proposed approach

This work proposes a methodology aimed at solving the issues presented above. A

set of moments is exploited to gain the maximum level of variance of physical and

geometric features accumulated in the latent space by breaking down the wing body

geometry into numerous sets of shapes in this approach. Following that, Gauss’s divergence

theorem is applied for the evaluation of the specific order geometric moments of shape

sets, which provide vital insights into their potential performance attributes and volume

distribution. The geometric moments are collected before creating the design space

of lower dimensionality. They are used to improve the quality of the data stored in

the latent space by integrating physical characteristics into the shape characteristics of

the design. Despite geometric moments being less informative compared to analyzing

actual performance criteria of wings through computational simulation, the latter tends

to be extremely demanding of resources, both computational and time. Thus, combining

geometric features with moments in creating the latent space results in a diverse and robust

design space containing the description of wings of a physics-informed nature, which has

the potential to have a high convergence rate in design optimization applications without

being computationally intensive.

Coming back to the brief overview of the procedure, after acquiring geometric moments

of shapes, they are applied, in combination with the modification function, to create a

Shape Signature Vector (SSV) function. This function plays the role of a descriptor that

represents each variant in the latent space. Then, the Karhunen-Loeve Expansion of
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the shape signature vector is calculated, and the features resulting from this variational

problem are expressed in the form of eigenfunctions. The recognition of each feature as

active or inactive is allowed by their KL-values, active features acting as a new foundation

for the expansion of the subspace while retaining maximum geometry variance. Finally,

a variety of instruments are applied to evaluate the quality of created subspaces, which

will “filter” created designs, thus, partially negating the effect of the absence of actual

performance characteristics in the design space.

The main purposes of this research are to examine the feasibility of shape- and physics-

informed dimensionality reduction in the optimization process and to evaluate the required

number of dimensions that allow to retain the required level of variance, diversity, and

validity. This research was motivated by the work of Masood et al (2023) [1] and Khan et

al. (2022) [2], which will be covered in the “Literature review” section.

This study addresses the critical need for effective optimization of engineering products

with complex free-form surfaces, such as turbine blades and ship hulls. The curse

of dimensionality poses significant challenges in optimizing these surfaces, negatively

impacting the development of product performance and competitiveness. By exploring

dimensionality reduction techniques, this research aims to potentially provide means

for the enhancement of optimization efficiency. Through this study, we seek to provide

valuable insights into the practical application of dimensionality reduction methods in

engineering design, contributing to advancements in the field and addressing industry

needs for innovative designing techniques.

The application of the outcome of this study is not limited to designing and optimizing

3D wings, which we are focusing on, but can include the development of any engineering

products ranging from turbine blades to ship hulls, i.e., structures relying on free-form

surfaces.
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1.3 Report structure

The remainder of the report is organized as follows and each chapter has a brief description

of the content in the beginning.

Chapter 1 Introduction - This chapter provides background of the study, its objectives,

rationale, and application; a brief description of the approach; the outline of the

report and workload distribution among group members.

Chapter 2 Literature review - The literature review chapter covers previous works related

to the topic of this study - their outcomes and gaps; and provides a theoretical basis

that briefly covers subjects required in the Methodology section.

Chapter 3 Methodology - This part of the report includes a brief formulation of the

problem, and covers the procedure, software used, variables, and parameters used in

the study.

Chapter 4 Implementation - This chapter covers the implementation of the proposed

approach through MATLAB. All source codes are provided in Appendix A.

Chapter 5 Results and Discussion - This section covers the results, including the

efficiency of dimension reduction, latent space quality, and how these two are

impacted by the method of point distribution along the curve and the inclusion of

geometric moments.

Chapter 6 Conclusions

Appendix A
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1.4 Workload distribution among group members

• Wing DB collection - Aisultan

• Discretization of the wing profile - Yernur

• Dimensionality Reduction - Yernur, Aisultan

• Calculation of moments - Sanzhar, Suienish

• Parametric modeling - Suienish, Sanzhar

• Preparing the report - Suienish, Sanzhar, Aisultan
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Chapter 2

Literature review
chap:

literature

review
The literature review chapter covers previous works related to the topic of this study - their

outcomes and gaps; and provides a theoretical basis that briefly covers subjects required in

the Methodology section.

2.1 Related works

One of the well-known dimensionality reduction methods is Locality Preserving Projection

(LPP), which is an unsupervised technique based on feature extraction [2]. It is a variance

of the method called Laplacian Eigenmaps (LE) with a linear approximation [8]. LPP

aims to reduce the number of dimensions of the space by applying linear transformation

while projecting the initial high-dimensional data space onto the new space with a lower

number of dimensions and preserving the links between the nearest neighboring points.

Put simply, LPP strives to keep the local relationships and neighborhood arrangement

intact as it reduces the dimensionality of the data.

One of the main limitations of this method in dimensionality reduction, despite its

effectiveness in some of the datasets, was its high sensitivity to outliers and the use

coordinate system for data nodes due to the use of the L2-norm as a distance criterion.

One of the variants of LPP called Improved Locality Preserving Projection (ILLP-L1)

was aimed at negating or minimizing the effect of those limitations by applying L1-norm

instead [9], and it succeeded in achieving a more robust data point translation. However,

this fundamental limitation of the LPP method expressed in its lack of invariance to

translation is a substantial drawback in our study.
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Another framework used in relevant literature is Generative Adversarial Networks

(GANs), which is a deep learning architecture that puts a pair of neural networks in a

training competition to acquire more authentic data from the feed data set [10]. However,

the adoption of standard GANs for dimensionality reduction of aerodynamic designs such

as airfoils or wings is impossible, as this method is specialized in generating discrete

features like images and fails at retaining continuity properties that are critical for the

designing of free-form surfaces. Therefore, [10] tried to augment GANs and proposed a

Bezier-GANs generative model, which incorporated Bezier curves by limiting the shapes

generated by standard GANs to shapes that conform to Bezier curves [10]. This allowed

them to achieve a higher quality of optimization compared to earlier techniques. [11] tried

to achieve similar objectives by augmenting GANs with the more complex parametric

curve – B-spline curves. The main difference between Bezier and B-spline curves is

that the former does not possess internal knots, which makes it a less flexible and less

generalized version of the latter. There is no direct comparison between the results of

these two methods due to their being accomplished at around the same time. Despite their

success in testing with a limited data set, both BSplineGAN and Bezier-GANs were prone

to criticism in the same vein – optimization of shapes using the spaces reduced through

these frameworks tend to return appropriate results only if a sufficient quantity of modes is

integrated [1, 12], whereas incorporating too many modes requires additional computation

resources, thus, nullifying the benefits of dimensionality reduction. Moreover, the optimal

number of modes is not priorly known [12], and creating datasets for training GANs can

be challenging [2].

Furthermore, all aforementioned methods lacked the incorporation of physics-associated

features. This issue could be handled by supervised Karhunen-Loeve Expansion, as was

demonstrated by [13], who combined KLE of the shape modification vector with low-

fidelity physical variables, such as pressure distribution, wave elevation, ship resistance, in

the form of distributed and lumped physical parameter vectors. However, the necessity of

direct evaluation of physics quantities and their gradients resulted in a computationally
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demanding model [2].

Another study related to our topic applied a conditional variational autoencoder (CVAE)

for designing an airfoil [14]. Their initial hypothesis was that this method would enable

them to evaluate the relationship between the geometry of aerodynamic shapes and their

aerodynamic performance. A conditional variational autoencoder (CVAE) is an extension

of the standard variational autoencoder (VAE) that incorporates additional conditional

information into the model. It allows for the generation of data samples conditioned on

specific attributes or labels. By integrating this conditional information into both the

encoder and decoder, the CVAE can learn a richer latent representation that captures both

the variability of the data and the conditioning factors. Aerodynamic part’s shapes were

fed as an input, while their respective performance data like a lift coefficient were fed as

a label of a continuous character. The model was generated after specifying the latent

vector and label [14]. The model was trained to minimize the latent and reconstruction

loss, however, the results of this study demonstrated that the networks considered optimal

in terms of CVAE’s model did not always coincide with networks reproducing the optimal

aerodynamic performance.

One more variation of GANs was applied by [15] which was named Performance

Augmented Diverse Generative Adversarial Network (PaDGAN), which the authors

claimed to be able to produce samples with 28% higher mean quality score with higher

diversity compared to ordinary GANs. The quality score was evaluated based on the

correlation of this model’s lift-and-drag ratio with the ratios acquired from XFOIL for

the same airfoils. Despite the positive results, the limitation of this method was its being

supervised [2], which implies that the performance labels required to be evaluated over a

large dataset of shapes. In case of the dataset’s unavailability, its generation tends to be a

computationally intense procedure.

It was mentioned in the previous section that this study was motivated by the works

of Khan et al. (2022) [2] and Masood et al. (2023) [1]. The methodology proposed by

the present study mainly follows the procedure described in those research with slight
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variations, which will be discussed further.

The approach proposed by [2] exploits KLE which was first introduced in the

supervised model of [13]. However, while the latter tried to combine low-fidelity

physical characteristics of shapes with shape geometry to create latent space, the former

used geometric moments instead of physical data. The rationale for this decision was

that, although geometric moments may not be as accurate in predicting aerodynamic

characteristics of shapes as other more specific properties of the design, they are less

resource-demanding and can significantly improve the latent space by making it physics-

informed. Also, the negative effects of reducing the dimensionality of the data space can

be minimized by applying “filters” including the required level of diversity, variance, and

validity.

Testing of the model was conducted on 3D wing and ship hull models. The results of

the former will be discussed further. The authors based their wing model on NACA 2410

airfoil [2], which was defined by 12 profile parameters, such as thickness, chord length,

root/tip angles, etc. The wing parameters were kept fixed with a span length of 1.2 meters

and a sweep angle of 4.29°. The surface of the wing was discretized with 90×25 nodes.

The subspace dimensionality required for the percentage of variance preserved by each

subspace to reach the 95% threshold for the physics-informed case was approximately

10 regardless of the degree of geometric moments. Whereas, for only shape-informed

cases this value was about 14. While the average diversity did not differ between these

cases, the contrast in the average number of invalid designs was impressive: for physics-

and shape-informed subspaces this value ranged between 10-12%; for shape-informed

subspaces, it reached 43%.

Although the approach proposed by [2] demonstrated the effect of incorporating

geometric moments into the creation of the reduced dimensionality latent space well,

the study examined a very limited database of wing models, which might be one of the

reasons for such a drastic divergence between the percentage of invalid designs.

The methodology proposed by [1] is very similar to the previously discussed. The main
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differences from the previously discussed approach are, firstly, it focuses on the airfoil

profile instead of a wing model, secondly, the database includes a vast number of existing

profiles and was enriched by slightly differentiating them. Although the methodology

underlying both approaches was almost identical, their results substantially diverged. The

diversity levels in [1] did not experience any significant change, while the percentage of

self-intersecting designs, i.e., invalid designs, differed according to the type of the latent

space and method of discretization (point distribution). Also, the dimensionality of latent

space required for surpassing the 95% variance threshold decreased from 10-14 in the

previous study to 3-5 in this one, with physics-informed spaces with uniform spacing of

points being on the lower side of the range.

The main limitation of this study is that the authors analyzed purely airfoils and airfoil

profile parameters. Although the results of this approach are applicable in the development

of airfoils, the absence of wing analysis significantly limits the range of its application.

2.2 Theoretical basis

Parametric modeling is a fundamental concept in computer-aided design (CAD) and

engineering, which provides a systematic approach to representing and manipulating

geometric shapes using mathematical parameters. At its core, parametric modeling

involves defining geometric entities, such as points, lines, curves, and surfaces in terms of

mathematical equations or functions. These equations are parameterized, meaning they

contain variables that can be adjusted to control the shape, size, and orientation of the

modeled object [16, 17].

One of the key advantages of parametric modeling is its ability to capture design intent

and facilitate design exploration by using parameters and constraints. Parameters, such as

dimensions or angles, act as adjustable variables that govern the geometry of the model.

By modifying these parameters, designers can quickly iterate through different design

alternatives and evaluate their performance against specified criteria. Constraints are
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mathematical relationships that enforce design requirements and relationships between

geometric elements. For example, a constraint may specify that two lines must remain

parallel or that a certain distance must be maintained between two points. Parametric

modeling also supports parametric dependencies, where the value of one parameter is

dependent on another. This enables the creation of dynamic relationships within the model,

allowing changes made to one parameter to propagate and affect other related parameters

accordingly. As a result, parametric models are inherently flexible and responsive to design

changes, facilitating rapid prototyping and design iteration [16].

In addition to design experimentation, parametric modeling enhances design automation

and documentation. By capturing design intent through parameters and constraints,

parametric models can be easily modified and updated, reducing the time and effort

required to make design revisions. Furthermore, parametric models can generate accurate

and consistent engineering drawings and documentation automatically, ensuring that design

changes are reflected accurately throughout the design process [18].

Geometric moments are mathematical descriptors used to characterize the shape and

spatial distribution of objects in an image or geometric space. They are computed

by integrating the product of image intensity values (or geometric coordinates) with

specific polynomial functions over the entire image or region of interest. Geometric

moments provide valuable information about the centroid, area, orientation, and higher-

order shape characteristics of objects [19]. They are widely used in image processing,

computer vision, pattern recognition, and shape analysis tasks. By analyzing the geometric

moments of objects, researchers can quantify and compare their shapes, enabling tasks

such as object classification, shape matching, and object recognition. Although geometric

moments offer less insight compared to evaluating the actual performance of wings via

computational simulation, the latter often requires significant computational resources and

time. Therefore, integrating geometric features with moments to construct the latent space

produces a varied and robust design space that contains physics-associated descriptions of

wings.
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Chapter 3

Methodology
chap:

methodology This part of the report includes a brief formulation of the problem, and covers the procedure,

software used, variables, and parameters used in the study.

3.1 Problem formulation

For applying the proposed method of dimensionality reduction, a rich design space of

airfoil profiles {C} is assumed, which can be modified or represented through a design

vector v ∈ V . The design space V is defined by a set of limits that constrain it to physically

and geometrically valid airfoil profiles, i.e., V = {v ∈ Rn : gi(v) ≤ 0, i = 1, . . . , m},

where gi(v), i = 1, . . . , m corresponds to the functional limits of the requirements for the

design. Furthermore, if optimizing the design is an objective, we make an assumption of

at least one performance characteristic, e.g., f : V → R, that determines the performance

f(v) of the respective design encoded by v. Thus, we can state the simplified design

optimization problem that aims at maximizing the performance characteristic as:

Find v∗ ∈ V : f(v∗) = max
v∈V

f(v). (1)

The cost of computational resources required for solving even the simple shape

optimization problem provided above rises exponentially with each dimension of V and

increases even quicker in case the calculation of the performance characteristic f(v) is

complex and demanding in time [1]. In this study, we create a space {C} initially rich with

airfoil profile designs collected from public databases. The process of creating the data

space is further discussed along with the required discretization instruments used in the
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determination of v and its augmentation with geometric moments. Then, we will unfold

the proposed technique for dimensionality reduction.

3.2 Procedure

3.2.1 Data set

Our approach to the collection of airfoil profile database was based on publicly available

airfoil designs available at [20], the total number of which proved to be moderately

sufficient for our study and included many popular families of foils. This method was

considered more rational than creating an arbitrary database using one of the families as

the baseline and enriching it by modifying it. This way we acquired a database consisting

of more than 1200 foil profiles arranged in the form of sets of points. However, the varying

cardinality of sets of points posed a new issue related to the absence of standardization,

i.e., the lack of a common number of points describing each foil profile. This problem was

tackled by applying parametric modeling, which allows a generation of each airfoil profile’s

continuous high-accuracy approximation in the form of the NURBS curve. Following

this, the NURBS curve can be discretized into any necessary number of points. Then, we

created a database of 3D wings consisting of 4 identical airfoil profiles, i.e., consisting of

3 sections, with some fixed parameters, including a sweep angle of 5°, wing span of 10 m,

chord length of 1 m equal at both root and tip.

3.2.1.1 Parametric modelling

In this study, we used the parametric model that was first introduced by [21] and later

extended by [17] for generating original design space. Various techniques of airfoil

parametrization were covered in the Literature Review chapter, where we reviewed and

discussed their strengths and shortcomings. Nevertheless, the use of the parametric

modeling developed by [17] was justified by the specific needs of this research, namely,

the future perspective of applying the findings in design optimization, where such features
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Figure 3.1: Sample wing.

of that method like the relatively short list of parameters that represent the profile shapes

with a high accuracy might be pivotal.

The method that was chosen uses a baseline parametric model that includes 11

parameters, which, despite being relatively small in number, accurately describe

approximately 70% of the airfoil profiles from the UIUC database [17].

Each airfoil instance generated by the parametric model is described by the following

k-order NURBS curve [1]:

C(t; v) = (x(t; v), y(t; v)) :=
n∑

i=0
bi(v)Ri,k(t), t ∈ [tk−1, tn+1], (2)

Here, {Ri,k(u)}n
i=0 is the rational B-spline basis set of degree = k − 1 that is defined

over the sequence of knots {t0, t1, . . . , tn+k}, and that possesses weights of {wi}, i =

0, 1, 2, . . . , n, whereas bi(v) are the respective control points, which are determined by the

v parameter vector. In the present study, cubic representation is used, and k = 4. There

are 17 airfoil profile parameters along with 13 control points.

Design discretization As it was mentioned earlier, the parametric model creates curve

representations in a continuous manner, which requires a discretization for applying the
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dimensionality reduction technique proposed in this study. In this case, discretization is

done by converting continuous curves into approximations of a polygonal form. These

polygonal approximations can be stored as a point coordinates vector. In analyzing

performance, it’s crucial to ensure we have enough points distributed evenly along the

foil’s profile. This ensures that performance metrics like drag and lift estimation yield

consistent results. In our study, we used the findings of [1], who exploited XFOIL for

evaluating foil performance and found that using 160 points, distributed based on curvature,

generally gives reliable results. However, we also need to consider how the number and

distribution of points affect the accuracy of the dataset used for dimensionality reduction.

To reduce geometric deviation, we opted for a higher number of points, 200, and examined

how different distributions affect results in four specific cases:

1. Uniform Spacing (Parametric Domain): We evenly distribute 200 parametric values,

{ti}, across the parametric domain [tk−1, tn+1], as shown in Eq. (2). These 200

points are then used to define the profile. However, it’s important to acknowledge

that the distribution of points on the profile curve is not uniform, as illustrated in

Fig. 3.2a.

2. Cosine Spacing: The cosine function is applied for adjusting Eq. (2) NURBS curve’s

parameterization. This adjustment concentrates points near the leading and trailing

edges of the profile, as depicted in Fig. 3.2b.

3. Curvature-Based Spacing: Here, we utilize the curvature of the profile to determine

the distribution of parametric values. This method leads to a higher concentration of

points close to the leading edge and guarantees that the curvature integral over each

of the parametric sections has the same value, as shown in Fig. 3.2c.

4. Uniform Spacing (Physical Domain): This approach involves discretizing the profile

by dividing its curve length into 199 equal-length segments. Each segment represents

an equal arc length along the curve, as depicted in Fig. 3.2d.
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All of these discretization methods are applied to define the design space. Their impact

on the process of dimension reduction and the validity of the resulting latent space is

thoroughly examined in the Results and Discussion Chapter with a detailed comparison.

Figure 3.2: Point distribution techniques [1]. fig:3.2

3.2.2 Computation of geometric moments

Traditional techniques for reducing the dimensionality of design spaces often rely solely on

the geometric representation of designs, such as point sets or polyhedral approximations.

However, this approach often falls short of preserving the shape’s full complexity and

underlying structures, resulting in subspaces that lack diversity and struggle to create

valid shapes. Building on the work of [2] and [1], we enhance the design description by

incorporating integral properties of shape geometry. By combining geometric information

from discretized profiles with geometric moments, we create an enhanced design vector

that more accurately captures the underlying characteristics of shapes and provides a

signature unique for each. Additionally, integrating geometric moments serves the dual

purpose of introducing features that are correlated with aerodynamic performance criteria

in a resourceful and effective manner. While many performance metrics, such as lift and

drag, typically require expensive simulations, several of these quantities can be evaluated

with significantly lower computational intensity due to being correlated to the geometric

moments.

17



Procedure

To create the unique Shape Significant Vector that possesses both the geometry of the

shape and its geometric moments represented by the equation P (ṽ, t) = (G(ṽ, t), M(ṽ, t)),

where M(ṽ, t) is the lumped geometric moment vector and G(ṽ, t) is the continuous shape

modification vector, we apply the 3D body R’s finite moments number that are defined by

the equation below [2] :

Mp,q,r =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
xpyqzrρ(x, y, z)dΓ, p, q, r ∈ {0, 1, 2, . . .}, (3)

This equation calculated the Γ’s geometric moments of order s, where s is a non-

negative integer equal to p + q + r. Assuming the s integer that was defined, we consider

that all Mp,q,r moments where p + q + r = s. and ρ(x, y, z) are


1 if (x, y, z) ∈ Γ

0 otherwise

are

contained in the vector M̃ s. Typically, computer-aided design packages use 0th (M0,0,0)

and 1st (M1,0,0, M0,1,0, M0,0,1) order moments in evaluating the volume of the object and

its centroid, respectively [2]:

V = M0,0,0,

c⃗ = {cx, cy, cz} =
{

M1,0,0

M0,0,0
,
M0,1,0

M0,0,0
,
M0,0,1

M0,0,0

}

Moreover, if the ρ(x, y, z) is a probability density function of a continuous random

variable, it means that M0 is the volume, M1 represents the mean and M2 represents the

variance of the random variable.

Various methods are applied in calculating geometric moments, Gauss’ divergence

theorem being the most prevalent approach [22, 23, 2]. This theorem converts volume

integrals into surface integrals. Here, we provide a brief explanation of how geometric

moments are evaluated by implementing the divergence theorem for S = ⋃N
i=1 Ti, which

approximates the surface bounding Γ. The number of triangles in S is represented by N

here.

Geometric moments typically change with rigid and non-rigid transformations like

translation, rotation, and scaling [24]. However, many physical quantities remain

unaffected by one or more of them. That is why, prior to including geometric moments in
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P (ṽ, t), it’s essential to ensure they are invariant to translation and scaling. The discussion

below focuses on geometric moments that remain unchanged by translation and scaling,

particularly when considering moments about the centroid c(Γ) = (Cx, Cy, Cz) of Γ.

These are known as central geometric moments and are defined as follows based on

Eq. (3):

µp,q,r =
∫

Γ
(x − Cx)p(y − Cy)q(z − Cz)rdΓ.

To proceed with the calculation of scaling invariance of µ̂p,q,r, we make an assumption

that Γ is scaled by a γ factor uniformly, which results in [2]:

µ̂p,q,r = γp+q+r+3µp,q,r.

Here, we conclude with the following equation:

MÎp,q,r = µp,q,r

(µ0,0,0)1+ (p+q+r)
3

which is Γ’s invariant geometric moment under uniform translation and scaling [24].

3.2.3 Dimensionality reduction

As discussed in Chapter 1, the computational expense of geometry optimization rises

significantly as the dimension of V expands. It escalates even higher when the calculation

of the performance index f becomes complex. To address this issue, our current study

aims to overcome the challenge of high dimensionality using feature extraction techniques

through dimensionality reduction. Typically, it involves extracting latent features from

V to reduce its dimension while preserving as much geometric variability as possible in

the newly produced domains. However, because of the limitations associated with the

standard design space dimensionality reduction method, we aim to create a space with

latent variables that extend beyond those extracted from V . Corresponding geometric

moments calculated from the shape geometry are one of these variables.

To create this physics-informed space, we assume that along with the continuous shape

modification vectors G̃(ṽ, t), there is a lumped vector containing the geometric moments
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M(ṽM , t) ∈ Rn
M with nM = 1, 2, . . .. The latter vector corresponds to an arbitrary point

ṽM , and has a null measure. We further make an assumption that G and M are the

definition domains for G̃(ṽ, t) and M(ṽM , t), respectively. Now we have a vector that

combines geometric and moments features:

P (ṽ, t) =
(
G̃(ṽ, t), M(ṽM , t)

)
.

This vector constructs a unique function of the shape signature vector containing the

baseline design information. Moreover, consider that P (ṽ, t) is part of a Hilbert space

described by the inner product as illustrated in Figure 3.3 [2]:

⟨a, b⟩f =
∫

P
f(v)a(v) · b(v)dv

=
∫

G
f̃(ṽ)ã(ṽ) · b̃(ṽ)dṽ + f(ṽM)a(ṽM) · b(ṽM),

Figure 3.3: Domains for G̃(ṽ, t) and M(ṽM , t), in a disjoint Hilbert space [2]. fig:3.3

The process of identifying the best design may face uncertainties of knowledge [7]. To

address this, we can view t as part of a stochastic space V , which has a probability density
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function p(t). This function indicates the likelihood of finding the optimal design within

V . Defining p(t) appropriately can be challenging, so it’s common to start with a uniform

distribution function. This means that any specific value of t has an equal chance of being

the optimal solution t∗. After defining p(t), we can calculate the mean and variance of the

shape signature vector as follows:

⟨P⟩ =
∫

T
f(v)P(ṽ, t)p(t)dt,

σ2 =
∥∥∥⟨P⟩2

∥∥∥ =
∫

T

∫
P

f(v)P(ṽ, t) · P(ṽ, t)p(t)dtdt,

Here, P̃ is SSV’s deviation from the mean. The objective of dimension reduction

is to determine the representation of P(ṽ, t), with lower dimensionality, i.e., P̃(ṽ, V)

that depends on a geometrically-functionally active latent variable (GFALV) vector v

instead of t [2].

Once we’ve built the SSV vector using invariant geometric moments, we apply KLE.

The goal of KLE is to discover the best set of orthonormal functions to linearly represent

the SSV. This process aims to achieve the following:

P̃ (ṽ, t) ≈
m∑

i=1
viϕi(ṽ),

Here, {ϕi(v)}m
i=1 are orthonormal functions that form the basis of the subspace V ,

which will preserve the variance in moments and shapes to the extent possible.

KLE’s optimal condition is to create functions preserving the highest geometric variance

σ2:

σ2 =
∞∑

i=1

∞∑
j=1

⟨vivj⟩(ϕi(ṽ)), ϕi(ṽ)f

=
∞∑

j=1
|vj|2 =

∞∑
j=1

⟨
(
P̃ , ϕi(ṽ)

)2

f
⟩.

Next problem’s solution subject to (ω(ṽ), ω(ṽ))2
f = 1, provides the basis that retains

the highest variance [7]:

min
ω∈L2

f
(P̃ )

J(ω(ṽ)) = ⟨(P̃ , ω(ṽ))2
f⟩
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Additionally, eigenvectors correlate with KL modes, eigenvalues represent the variance:

σ2 =
∞∑

i=1
λi,

Now, we select k eigenvectors as a foundation of the approximation. The choice of k is

decided by the necessary ϵ (where 0 < ϵ ≤ 1) of variance. In simpler terms, k is so picked

that the chosen eigenvectors enclose minimum ϵ × 100% of the data’s total variance [2].

3.2.4 Latent space

In addition to reducing dimensionality to create the latent space, we must also consider the

possibility of using parameter bounds. These bounds restrict exploration to a permissible

space that contains minimal or no infeasible or invalid designs. This step is crucial because,

while we ideally want to examine a vast space, the presence of invalid geometries in it

can hinder subsequent design optimization efforts. Typically, functional or side limits

outlining the optimal design spaces determine these bounds. In the original design space,

the design vector v usually includes features with physical significance, making it relatively

straightforward for designers to introduce constraints [1].

However, there is an issue with this method - the resulting optimization problem

becomes complex. This complexity is common in constraint optimization when numerous

functional limits are involved, making the optimization process time-consuming. Side

constraints, such as parameter value bounds, are easier for optimization algorithms to

handle and are preferable over complicated functional constraints. Nonetheless, even

when only side constraints are considered, challenges remain, and determining these

side constraints is tricky for designers. Unlike v, which represents physical parameters

like lengths and angles, u is a latent design vector with no direct physical interpretation.

Consequently, it’s difficult to determine the lower and upper values that ensure designs

within the feasible region of U are also valid in V . In essence, bounding U in a way that

satisfies all design constraints and requirements in the original space poses a significant

challenge.
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A common approach to setting bounds in the latent space is by using the standard

deviation from the mean shape, which is located at the design space’s center. This

technique strikes a balance between the amount of invalid geometries and the degree of

allowable variation, thus, we adopt this method. Here the limits of the ith element of the

latent variable are defined as:

ui ∈
[
−

√
αλi,

√
αλi

]
,

3.2.5 Design space quality analysis
subsection:

3.2.5 To assess how well a latent space can generate a wide variety of diverse and valid shapes,

we need to introduce suitable metrics. One commonly used metric for diversity is the

Hausdorff distance [25], which is often used to measure the distance between two sets

in a metric space. It can also be used to quantify the similarity or dissimilarity between

two free-form surfaces. In our scenario, we assume both shapes can be discretized using

a finite set of points. Then, using the following method we can evaluate the Hausdorff

distance H between the finite sets {C1 and {C2} [1]:

H(C̃1, C̃2) = max{h(C̃1, C̃2), h(C̃2, C̃1)}, where

h(C̃1, C̃2) = max
c1∈C̃1

min
c2∈C̃2

∥c1 − c2∥,

Here, h(Ã, B̃) is the H directed from set Ã to set B̃, and ∥ · ∥ denotes the Euclidean norm.

The measure of the diversity of the latent space is then defined as the average H

between the densely sampled designs acquired from the latent space and the reference

shape. Higher diversity values are preferable because they indicate the richness of latent

spaces. Nevertheless, high diversity also means that the probability of invalid shapes,

including self-intersections, oscillatory behavior, etc. is also increased. We use the

definition of validity provided by [1], which describes it as the ratio of invalid designs to

valid designs collected in the latent space from the dense sampling.
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3.3 Software use

The main software package used for programming purposes was MATLAB. It is a powerful

software environment commonly used in industry and academia for computing and

programming developed by MathWorks [26]. It offers a wide range of functions and

toolboxes for various applications such as data analysis, simulation, and image processing.

Its user-friendly interface and rich library of built-in mathematical functions make it

a popular choice for conducting scientific research and solving complex mathematical

problems.

During the present study, we used a wide range of functionality of this software.

The matrix-based essence of the language provides an opportunity to navigate easily

through numerous functions that we created for our use by applying the set of embedded

mathematical instruments. Also, it excels at numerical computation, which is critical for

software and language exploited for machine learning purposes.

However, MATLAB is mildly limited when it comes to working with 3D designs,

again, owing to its matrix-based nature. It still offers several tools for 3D visualization,

modeling, and analysis, but is substantially inferior to software specialized in it. One of

such alternatives that we considered using and used for some period was the Rhinoceros

3D and Rhino engine. The main advantages of Rhino were that it supported built-in tools

for analyzing 3D objects like wings, and could facilitate the calculation of geometric

moments and application of parametric modeling [27]. Despite possessing these features,

the intuitive understandability and user-friendly interface of MATLAB made it a better

environment. Moreover, the Rhino engine was especially uncomfortable for complex

numerical analysis that it was not specialized to work with.
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3.4 Variables

3.4.1 Number of points on each wing

When assessing performance, it’s vital to have enough number of points evenly spread

across the foil’s profile. This ensures that metrics like drag and lift estimation provide

consistent outcomes. Our research builds on [1], which utilized XFOIL to evaluate

foil performance and concluded that using 160 points distributed according to curvature

typically produces reliable results. However, we also need to account for how the quantity

and arrangement of points impact the accuracy of the dataset used for dimensionality

reduction. To minimize geometric deviation, we chose to increase the number of points to

200.

3.4.2 Number of sections of wing

In the preliminary stage of the project, we used the XFLR5 tool to determine the minimal

number of sections to divide the wing that would not hamper the accuracy of aerodynamic

performance characteristics. We created a sample wing with a continuous surface,

which was then divided into an increasing number of segments. The results of this

brief experiment are presented in Table 3.1. We initially decided to use five airfoils that

would divide the wing into four sections, but later reduced it by one, as the difference in

the performance results was negligible compared to the complexity of the wing database

collection.

Table 3.1: Table from the interim report tab:3.1

No. of Sections Lift Coefficient Drag Coefficient Lift-to-Drag Ratio
3 0.30166 0.00914 33.49234
4 0.31046 0.00911 34.07903
5 0.30370 0.00914 33.23895
6 0.30176 0.00914 33.02188
7 0.30468 0.00910 33.47802
8 0.30798 0.00905 34.02649
9 0.30378 0.00914 33.23654
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3.4.3 Point distribution method

The four methods of point distribution along the curve that we discussed previously were

cosine spacing, uniform spacing over physical and parametric domains, and curvature-

based spacing. It was decided to use all these methods to compare them, thus, the method

of point spacing on the airfoil profile curve was one of the parameters that we applied.

Their performance will be covered and compared in the Results and Discussion section of

the report.

3.4.4 Parameters included in the model

Along with the aforementioned fixed wing parameters – chord length, span, sweep angle –

we included 11 airfoil profile parameters, which were introduced by [21]:
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Table 3.2: Parameters’ definition tab:3.2

Nr. Name Description Symbol Actual Range
0 Length Length of foil’s chord L free
1 Upper-side

max width
Maximum width of suction
side w.r.t. Chord

u_max [0, 1] →
[

L
500 , L

5

]
2 Upper-side

max width
position

Longitudinal position of
suction side’s max width

x_u_max [0, 1] →
[

L
1010 , 7L

1010

]

3 Upper-side
angle

Suction’s side angle at
trailing edge w.r.t. Chord

a_b_u [0, 1] → [0, 90◦]

4 Upper-side
tip shape

Leading edge upper part
form factor

tip_u [0, 1] → [0.05, 1]

5 Upper-side
Inflection
point
position

Inflection point position s_u [0, 1]

6 Lower-side
max width

Maximum width of lower
side w.r.t. Chord

l_max [0, 1] →
[

L
500 , L

5

]
7 Lower-side

max width
position

Longitudinal position of
lower side’s max width

x_l_max [0, 1] →
[

L
1010 , 7L

1010

]

8 Lower-side
angle

Suction’s side angle at
trailing edge w.r.t. Chord

a_b_l [0, 1] → [−a_b_l, a_b_l]

9 Lower-side
tip shape

Leading edge lower part
form factor

tip_l [0, 1] → [0.05, 1]

10 Lower-side
Inflection
point
position

Inflection point position s_l [0, 1]

11 Tangent
angle
at leading
edge

The angle between the
vertical axis and foil’s
tangent direction at the
leading edge

a [0, 1] → [−20, 20◦]
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Chapter 4

Implementation
chap:

implementationThis chapter covers the implementation of the proposed approach through MATLAB. All

source codes are provided in Appendix A.

4.1 Reading the database table

After collecting the UIUC public airfoil profiles database into a spreadsheet, it was

rearranged into an array through the code provided in subsection A1. The number of

points on each profile was set to 200, and the number of profiles used for generating each

wing was set to 4. Then a “vect” matrix was initialized that would contain the locations of

points on wings profiles.

4.2 Parametric modeling

We used the parametric model developed by [17] and their MATLAB source code.

Additionally, we assigned the fixed-wing parameters and defined the relations between

wing and airfoil parameters.

4.3 Design discretization

We developed a discretizing function similar to the one introduced by [1]. It includes

a simple switch for choosing the suitable method of point distribution along the curve

from four techniques – uniform spacing in the parametric domain, uniform spacing in the

physical domain, cosine spacing, and curvature-based spacing.
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4.4 Computation of geometric moments

The computation of geometric moments and moment vectors was done using the

“sthOrderGeometricMoment” and “sthOrderGeometricMomentVector” functions that

were developed and published by [2].

4.5 Dimensionality reduction

At this stage, we employed the “KLE” function published by [2] to calculate KL modes

and values and normalized the design grid to have unit variance.

Also, we created a “varRetained” variable that would accumulate the retained variance

by acting as KL values sum and added a condition that would display the current dimension

number and reduction percentage right after the “varRetained” variable had reached a

required threshold of 95%.

4.6 Design space quality analysis

Self-intersection analysis was done using the “robustness” function and diversity evaluation

was done by the “diversity” function, both of which were published by [2].
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Results and Discussion
chap:

results

and

discussion

This section covers the results, including the efficiency of dimension reduction, latent

space quality, and how these two are impacted by the method of point distribution along

the curve and the inclusion of geometric moments.

5.1 Dimension reduction and creation of latent spaces

To assess the efficiency of the suggested approach, we explore latent spaces containing

different design or shape signature vectors, and various types of discretization.

The effectiveness of the produced latent spaces is determined by the degree of

dimensionality reduction achieved, while their overall quality is evaluated based on

the criteria outlined in Subsection 3.2.5. Initially, we assess the reduction in space

dimensionality and its correlation with the method of point distribution applied, as shown

in Figures 5.1, 5.2, 5.3, and 5.4. Subsequently, we analyze the diversity and robustness

of these spaces.
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Table 5.1: Dimension reduction efficiency tab:5.1

Spacing method Dimensionality
of
subspace to
achieve 95%
variance

Percentage
reduction

Mean square
error

Uniform spacing
(Parametric
domain)

5 54.55% 8.607e-05

Uniform spacing
(Parametric
domain)
with second-order
moments

4 63.63% 2.502e-05

Cosine spacing 5 54.55% 6.573e-05
Cosine spacing
with second-order
moments

4 63.63% 1.462e-05

Curvature-based
spacing

6 45.45% 10.701e-05

Curvature-based
spacing
with second-order
moments

5 54.55% 6.627e-05

Uniform spacing
(Physical domain)

4 63.63% 0.414e-05

Uniform spacing
(Physical domain)
with second-order
moments

4 63.63% 0.378e-05

The dimensionality of the initial space was 11, and its percentage reduction is presented

in Table 5.1. We set the threshold minimum of the variance retained to 95% as was

discussed previously, and were able to achieve an impressive reduction to 4-6 dimensions.

Evaluations of only shape-informed uniform spacing (parametric domain) and cosine

spacing along the curve given in Figures 5.1 and 5.2, respectively, demonstrated

very similar results, the curvature-based distribution (Figure 5.3) had a slightly worse

performance. The best results were achieved through the uniform spacing in the physical

domain (Figure 5.4).

Adding the physics-associated features by incorporating second-order geometric

moments resulted in an overall increase in the efficiency of reduction. All spacing
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methods except the physical domain uniform spacing experienced a reduction in the

minimum dimensionality required for reaching the threshold variance of 95% by one. The

improvement needed to achieve this progress in efficiency was not substantial as can be

seen from Figures 5.1, 5.2, and 5.3, where three curves corresponding to the spaces that

experienced an improvement tend to be already close to having a lower dimension number

than what is given in Table 3.2. Although the same can be observed from Figure 5.4, the

curve of the uniform spacing in the physical domain seems to be the furthest from the 95%

variance line. Nonetheless, here we can conclude that the incorporation of second-order

geometric moments had a positive effect on the efficiency of dimensionality reduction

while retaining high variance despite the improvement being mildly significant.

The mean square errors demonstrate the same trend – physics-informed spaces

performed slightly better compared to the ones containing purely geometrical features.

Figure 5.1: Variance [%] vs dimensionality, uniform spacing over the parametric domain. fig:5.1
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Figure 5.2: Variance [%] vs dimensionality, cosine spacing. fig:5.2

Figure 5.3: Variance [%] vs dimensionality, curvature-based spacing. fig:5.3
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Figure 5.4: Variance [%] vs dimensionality, uniform spacing over the physical domain. fig:5.4

5.2 Latent space quality analysis

The objective of this analysis is to determine if the produced subspaces are appropriate for

optimizing designs, which is one of the application perspectives of this study. We evaluate

their potential to accurately describe the underlying shape using the latent parameter vector

u and to produce diverse and valid geometries. Diversity is crucial for optimizing designs,

for it measures the differences between shapes in the latent space. Robustness, or validity,

indicates the ratio of invalid shapes in the latent space to the total number. Ideally, we

aim to produce spaces with minimal invalid designs. Both metrics are equally vital for

shape optimization because diverse designs and the absence of invalid shapes benefit

the process. While robustness is associated with the average rate of invalid geometries

in samples, diversity is related to the average distance between designs, as explained in

Subsection 3.2.5. The obtained estimates for all discretization types are illustrated in

Table 5.2.
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Table 5.2: Latent space quality tab:5.2

Distribution method Diversity of
space

% of self-
intersecting
designs

Curvature-based
spacing

19.749 0

Curvature-based
spacing with
second-order moments

19.749 0

Uniform spacing
(Physical domain)

27.907 0

Uniform spacing
(Physical domain) with
second-order moments

27.907 0

Table 5.2 demonstrates peculiar results for spaces that include second-order moments,

as they have the same diversity values compared to purely geometric spaces. However, it

needs to be mentioned that the results obtained by [1], which we discussed in the literature

review, were of a similar manner to the results provided in Table 5.1. They analyzed 2D

airfoil profiles instead of 3D wings.

The same could be applied to the self-intersection rates, as the results indicate their

complete absence. There are two hypotheses on why we got these results. One of them

implies that the reason is that we used the public database of existing airfoil profiles for

generating wings not expanding it by, for example, randomly modifying the baseline

design, which could potentially create those invalid designs. The other one is that there is

an error in our implementation of the method, which most probably occurred at the latent

space quality assessment stage.

Following this part, we will discuss the results presented in Table 5.1 assuming the first

explanation, but, the close examination of this possible error will be listed in future works.

The difference in diversity between the two discretization methods – curvature-based

spacing and uniform spacing on the physical domain – is significant, which is an indication

of the better distribution of points along the airfoil profile in the latter one. Both self-

intersection and diversity values seem to be insensitive to the incorporation of geometric

moments. These results are in alignment with the outcomes reported by [1] and [2],
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although directly interpolating their results to the present study is impossible due to critical

differences in setups.
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Chapter 6

Conclusions
chap:

conclusions
This study addressed the critical necessity for resource-effective optimization of

engineering products possessing complex free-form surfaces, such as turbine blades

and ship hulls. The curse of dimensionality, which is the exponential rise of the

required computational intensity, poses significant challenges in optimizing these

surfaces, negatively impacting product performance and competitiveness. By exploring

dimensionality reduction techniques, this research proposed an approach that could

potentially enhance optimization efficiency and product development. Through this study,

we provided valuable insights into the practical application of dimensionality reduction

methods in engineering design and aimed at eliminating the current gaps.

The main purposes of this research were to examine the feasibility of shape- and physics-

informed dimensionality reduction and to evaluate the required number of dimensions

that allow to retain the required level of variance, diversity, and validity. This study was

motivated by [1] and [2].

The primary findings of this study were the impact of the method of discretization on the

level of preserved variance of the space, and the effect of incorporating physics-associated

features of geometric shapes in the form of geometric moments on various criteria,

including variance, robustness, and diversity of the latent space. We concluded that the

incorporation of 2nd order geometric moments had a positive effect on the efficiency

of dimensionality reduction while retaining high variance despite the improvement

being mildly significant, while its effect on the diversity and self-intersection rate were

ambiguous. We provided the possible origins of the error causing this ambiguity and

discussed those findings with the necessary assumptions priorly stated.
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An extensive literature review was made before starting the study and the findings of

related research were integrated into our work, which is one of its strengths, alongside

its filling the knowledge gaps that appeared in the process of rapid development and

innovation taking place in the field of designing and optimizing free-from functional

geometries. However, weaknesses are also present in this study such as the already

mentioned uncertainty in the interpretation of findings. Moreover, the model of the wing

used in this research tends to be simple, which might hinder the application of the gathered

knowledge on complex shapes. Nevertheless, findings obtained in the present work have

the potential to be pivotal or act as a foundation for future works on the same or adjacent

topic.

The initial hypothesis, which stated that the incorporation of geometric moments into the

dimensionality reduction might result in increased efficiency and diversity of the generated

latent space, has been partially backed by the obtained results. While the impact of this

newly adopted technique on the quality of the retained spaces might not be remarkable,

we can conclude that the effect is notable and positive.

As it was previously mentioned, the topic of this study has gaps, to the filling of

which this study has contributed, and considering the increasing demand for applying

modern tools and techniques in solving such complex problems as the optimization of

free-form functional surfaces, this subject has bright prospects. The wide range of fields

where free-form surfaces play a pivotal role implies that this study has a high degree of

applicability.

The future work, besides introducing a more advanced wing model and expanding the

database examined, also includes the development of an optimization model that would

exploit the benefits acquired through the implementation of the findings of this study.
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Appendix A

Implementation on MATLAB
sec:app

A.1 Reading the database table

T = readtable(’./Database/AirfoilParameters.xlsx’,’Range’,’C:S’);

T = table2array(T);

n_points = 200;

n = 4;

vect = zeros(length(T), 3*n*n_points + 1 + 2*n);

lenT = 1263;

A.2 Parametric modeling

% Source code of the parametric model

function [ crv, crv_u, crv_l ] = airfoil_pmodel( v, l, s)

if nargin==1

Length = 1;

s = false;

elseif nargin==2

s = false;

Length = l;

else

Length = l;

end

44



Parametric modeling

u_max = v(1) * (0.99 * Length/5 ) + 0.01 * Length/5 ;

x_u_max = v(2) * 0.6 * Length + 0.1 * Length;

angle_b_u = v(3) * 90 * pi / 180;

tip_u = v(4) * (0.9 - 0.1) + 0.1;

s_u = x_u_max + (Length - x_u_max) * (v(5) * 0.9 + 0.05);

if s

l_max = u_max;

x_l_max = x_u_max;

angle_b_l = angle_b_u;

s_l = s_u;

tip_l = tip_u;

angle_l = 0;

else

l_max = v(6) * (0.99 * Length/5 ) + 0.01 * Length/5 ;

x_l_max = v(7) * 0.6 * Length + 0.1 * Length;

angle_b_l = angle_b_u * (2 * v(8) - 1);

tip_l = v(9) * (0.9 - 0.1) + 0.1;

s_l = x_l_max + (Length - x_l_max) * (v(10) * 0.9 + 0.05);

angle_l = (v(11) * 40 - 20)*pi/180;

end

%Upper Side

point_a = [0, 0, 1];

point_b1 = [0, tip_u * u_max, 1];

point_b2 = [(1 - tip_u) * x_u_max, u_max, 1];

point_c = [x_u_max, u_max, 1];

point_d1 = [s_u, u_max, 1];

y_t = (Length - s_u) * tan(angle_b_u);
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Parametric modeling

if y_t < u_max

point_d2 = [s_u, y_t, 1];

else

point_d2 = [Length - u_max / tan(angle_b_u), u_max, 1];

end

point_e = [Length, 0, 1];

%rotate control points around leading edge

cosa = cos(angle_l);

sina = sin(angle_l);

point_b1 = point_b1*[cosa, sina, 0;-sina, cosa, 0;0, 0,1];

%create upper side curve

upperSide = rsmak([0,0, 0, 0, .5, .5, .5, 1, 1, 1, 1],

[point_a’, point_b1’, point_b2’, point_c’,

point_d1’, point_d2’, point_e’]);

%Lower Side

point_b1 = [0, -tip_l * l_max, 1];

point_b2 = [(1 - tip_l) * x_l_max, -l_max, 1];

point_c = [x_l_max, -l_max, 1];

point_d1 = [s_l, -l_max, 1];

if s

point_d2(2) = -point_d2(2);

else

if angle_b_l > 0

y_t = (Length - s_l) * tan(angle_b_l);

if y_t < u_max

point_d2 = [s_l, y_t, 1];

else
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Parametric modeling

point_d2 = [Length - u_max / tan(angle_b_l),

u_max, 1];

end

else

angle_b_l = -1 * angle_b_l;

y_t = (Length - s_l) * tan(angle_b_l);

if y_t < l_max

point_d2 = [s_l, -y_t, 1];

else

point_d2 = [Length - l_max / tan(angle_b_l), -l_max, 1];

end

end

end

%rotate control points around leading edge

point_b1 = point_b1*[cosa, sina, 0;-sina, cosa, 0;0, 0,1];

%construct lower side curve

lowerSide = rsmak([0,0, 0, 0, .5, .5, .5, 1, 1, 1,1],

[point_a’, point_b1’, point_b2’, point_c’, point_d1’,

point_d2’, point_e’]);

%Construct a curve from both sides

crv = rsmak([0,0, 0, 0, .25, .25, .25, .5, .5,

.5, .75, .75, .75, 1, 1, 1,1],

[fliplr(upperSide.coefs),lowerSide.coefs(:,2:end)]);

crv_l = lowerSide;

crv_u = upperSide;

end
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Design discretization

% Fixed wing parameters

chord = 1;

lambda = deg2rad(5);

b = 10;

% Relations between wing and airfoil parameters

% At root

wing(1,:) = foil;

% At tip

x_le = b/2*tan(lambda);

x_te = x_le + chord;

foil(1:n_points) = foil(1:n_points)*chord+x_le;

wing(n,:) = foil;

foil = wing(1,:);

% At other sections

for i = 1 : n-1

x_le = i/(n-1) * b/2*tan(lambda);

x_te = x_le + chord;

foil(1:n_points) = foil(1:n_points)*chord+x_le;

wing(i+1,:) = foil;

foil = wing(1,:);

end

A.3 Design discretization

% Function for discretizing airfoils with 4 methods of point
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Design discretization

distribution along

% the curve

function [points] = discretize_foil(foil,N,mode)

foil.knots = (foil.knots - foil.knots(1))./(foil.knots(end)-

foil.knots(1));

switch mode

case 0 %uniform spacing in parametric domain

t = linspace(0,1,N);

case 1 %cosine spacing

t = linspace(0,1,N/2);

t = (1-cos(pi*t))/4;

t = [t,t+t(end)];

case 2 %curvature-based spacing

NN = 50;

t1 = linspace(0,1,N*NN);

vals = fntlr(foil,3,t1);

c = vecnorm(cross([vals(3:4,:);zeros(1,N*NN)],

[vals(5:6,:);zeros(1,N*NN)]))./(vecnorm(vals(3:4,:)).^3);

cc = zeros(1,N*NN);

for i=2:N*NN

cc(i) = (c(i-1)+c(i))*norm(vals(1:2,i)-vals(1:2,i-

1))/2 + cc(i-1);

end

[cc, indices] = unique(cc);

t1 = t1(indices);

step = cc(end)/(N-1);

k = 0:N-1;

step = k*step;
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Design discretization

t = interp1(cc,t1,step,"linear","extrap");

max_interval = 2/(N-1);

i=1;

while i<length(t)

if t(i+1)-t(i)>max_interval

t = [t(1:i) (t(i+1)+t(i))/2 t(i+1:end)];

else

i = i+1;

end

end

while length(t)>N

vals = fntlr(foil,1,t);

lengths = vecnorm(vals(1:2,2:end)-vals(1:2,1:end-1));

[~,i] = min(lengths);

if i==1

i=2;

end

t = [t(1:i-1) (t(i-1)+t(i+1))/2 t(i+2:end)];

end

otherwise %uniform spacing in physical domain

L = arc_length( foil, 0, 1);

dL = L/(N-1);

t = zeros(1,N);

options = optimset(’TolX’,1e-7);

for i=2:N

a = t(i-1);

t(i) = fminbnd(@obj_fun,a,a+.25,options);

end
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Computation of geometric moments

end

% points = fnval(foil,t);

points = fntlr(foil,1,t);

function res = obj_fun(x)

res = abs(arc_length(foil,a,x)-dL);

end

end

A.4 Computation of geometric moments

% To calculate moment(s), the shape should be composed of all

triangulated mesh

% elements

p=2; q=0; r=0;

moment =

sthOrderGeometricMoment(’C:\Users\Sultangazin\Desktop\DimRed\Data

base\vect.stl’, p,q,r,isCentral,isScaled);

disp([’m_’ num2str(p) num2str(q) num2str(r) ’ = ’

num2str(moment)])

% this function will evaluate a moment vector (M^s) containing

all s-order

s = 2;

moments = sthOrderGeometricMomentVector(’vect.stl’,

s,isCentral,isScaled);
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Dimensionality reduction

A.5 Dimensionality reduction

% These two lines of code normalize the Design grid to have unit

variance and

% implement KLE

normSamples = samples./sqrt(sum(var(samples)));

[KL_modes, KL_values] = KLE(normSamples);

% The following code calculates retained variance as a

cumulative KL-values sum

varRetained = (cumsum(KL_values)/sum(KL_values))*100;

[~,n_comp] = max(varRetained >= 95);

disp([’Subspace dimensionality: ’ num2str(n_comp)])

disp([’Reduction percentage: ’ num2str((size(designSpace,1)-

n_comp)/size(designSpace,1)*100) ’%’])

A.6 Design space quality analysis

% Checking Self Intersection

SelfInterDes = robustness(designs(1:2*n*n_points));

perOfSelfIntDes = size(SelfInterDes,1)/size(designs,1)*100;

disp([’% of Self Intersecting Designs: ’

num2str(perOfSelfIntDes)])

% Diversity evaluation
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Design space quality analysis

Hdist = diversity(designs(1:3*n*n_points),params,2, n, n_points);

diversity = max(Hdist);

disp([’Diversity of Latent Space: ’ num2str(diversity)])
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