
Risk-sensitive LQR problems with exponential

noise

Olzhas Shortanbaiuly

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Science in Applied Mathematics

Principal Supervisor:

Prof. Kerem Ugurlu (Nazarbayev University)

Second reader:

Prof. Manat Mustafa (Nazarbayev University)

Spring 2024



Abstract

This thesis is about optimal control of Markov Decision Processes and solving risk-

sensitive cost minimization and reward maximization problems, specifically, the Lin-

ear Quadratic Regulator (LQR) problem with Average-Value-at-Risk criteria. The

problem is solved for different risk levels, different random noises (theoretical and

sampled), and using different methods: analytical and approximate dynamic pro-

gramming. The obtained results were analyzed and discussed for the presence of cer-

tain patterns and trends. The results show that approximate dynamic programming

is a very accurate method for solving risk-sensitive LQR problems with exponential

noise.

Keywords: LQR problem, Markov Decision Process, Average-Value-at-Risk, Ap-

proximate Dynamic Programming, Exponential Distribution

i



Acknowledgments

I want to thank Dr.Ugurlu for helping and supporting me throughout my academic

journey. Additional gratitude is towards the professors of Department of Mathe-

matics of Nazarbayev University for all the knowledge and guidance through the

way.

My eternal gratitude to my parents, who gave their all for me and made me the

best person I am. I would also like to thank my dearest friends, who shared with

me all my highest and lowest moments with support. Thank you all!

ii



Table of Contents

Abstract i

Acknowledgments ii

Table of Contents iii

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Approximate dynamic programming . . . . . . . . . . . . . . 4

1.2.4 Risk measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.5 Probability distributions . . . . . . . . . . . . . . . . . . . . . 8

1.2.6 Quantile function . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Literature review 11

Chapter 3 Analytic solution 13

3.1 Hamiltonian-Jacobi-Bellman equations . . . . . . . . . . . . . . . . . 13

3.2 LQR Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 LQR Problem with Bernoulli Noise . . . . . . . . . . . . . . . . . . . 15

3.4 LQR Problem with Exponential Noise . . . . . . . . . . . . . . . . . 20

iii



3.4.1 LQR Problem with Theoretical Exponential Noise at risk level

α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 LQR Problem with Sampled Exponential Noise at risk level

α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.3 LQR Problem with Sampled Exponential Noise at risk level

α = 0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 LQR Problem with Sampled Exponential Noise at risk levels

α = 0.5, α = 0.75 and α = 0.99 . . . . . . . . . . . . . . . . . 32

3.4.5 Plots for LQR Problem with Sampled Exponential Noise at

risk level α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 4 Approximate dynamic programming algorithm 36

4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 5 Summary of main results 38

References 40

Chapter 6 Appendix 42

iv



Chapter 1

Introduction

Optimal control problems involve using optimal control theory to solve the optimiza-

tion problem over the controls. Different kinds of optimal control problems exist in

different fields including science and engineering.

In this thesis, discrete control is considered under a discrete-time setting. The

solved problem is about minimizing the cost through performing the optimization

over the controls [1]. It can be solved through dynamic programming when the

optimal control problem is formulated as a dynamic programming problem [2].

There is an existing risk in a real-world environment, such as a financial market.

It is important to solve optimal control problems under such an environment, subject

to a certain risk. This thesis aims at solving a certain optimal control problem under

two environments: riskless and risk-sensitive with existing risk.

Neural networks and dynamic programming are two approaches that are com-

monly used in such problems. Due to the curse of dimensionality introduced by

neural networks, the research focused more on dynamic programming methods,

specifically, approximate dynamic programming.

1.1 Motivation

This problem needs to be solved due to the many applications involved. For example,

we may aim to optimize the total cost of making a flight between two cities having

1



no direct route. The states are cities or places that we are located at, the next state

is the place we landed after making some flight, the controls are chosen flight routes

and costs are the ticket costs. We are only given the initial and terminal states

indicating the two sides of the flight.

Other than that, there is a main motivation to study this topic - the problem of

minimizing the expected cost for trading blocks of stocks over a fixed time horizon

[6]. Given at the number of shares and pt prices, we optimize

min
{at}T−1

t=0

E
T−1∑
t=0

pTt at

Solving the minimization problem for the Average-Value-at-Risk, risk measure

used in this thesis, is not an easy task considering the properties this indicator

holds. In comparison with other expected performance criteria as an expected value

in probability, linearity property does not necessarily hold:

AV aRα(X + Y ) ̸= AV aRα(X) + AV aRα(Y )

while

E(X + Y ) = E(X) + E(Y )

for any random variables X, Y .

1.2 Preliminaries

1.2.1 Markov Decision Process

The following definition gives the key concept of a Markov decision process [9].

Definition 1.1. A Markov decision process is a 4-tuple (X,A, Pa, Ra) such that:

• State space X - set of all possible states

• Action space A - set of all possible actions

• Pa(x1, x2) = P (xt+1 = x2|xt = x1, at = a) is a probability that using action a,

we move from state xt at time t to the state xt+1 at time t+ 1.

2



• Ra(xt, xt+1) is an immediately received reward by moving from state xt to xt+1

by performing an action a

Lemma 1.1. A decision process (X,A, Pa, Ra) is Markovian if and only if

Pa(xt+1|xt) = Pa(xt+1|xt, xt−1, xt−2, ..., x0)

This is an important property allowing to disregard all states except the previous

one, simplifying the computations for this thesis.

1.2.2 Dynamic programming

We are given:

• set of times t = 0, 1, 2, . . . T

• the states of the dynamic program xt ∈ X where X is the set of states and x0

is the initial state

• policy π(s, x) = as for actions as ∈ A and s = t, ..., T

π = (πt : t = 0, 1, 2, . . . T ) with controls(actions) πt at each time t = 0, 1, 2, . . . T

• costs for taking action at at state xt given by ct(at, xt)

• the sequence of states defined as: xt+1 = f(xt, πt) and transition given by

Markov Decision Process [3]

With this given information, we solve the following optimization problem through

iterating backward in time:

minimize
π

C(x0, π) :=
T−1∑
t=0

c(xt, πt) + cT (xT )

subject to xt+1 = f(xt, πt), πt ∈ A t = 0, 1, 2, . . . , T.

This approach is called dynamic programming.

3



1.2.3 Approximate dynamic programming

There are certain issues with applying backward dynamic programming.

• the state space X for the problem may be too large (difficult to evaluate

the value function Vt (xt) for all states within a reasonable time);

• the decision space A may be too large (difficult to find the optimal decision

for all states within reasonable time);

• computing the expectation of ‘future’ costs may be intractable when the out-

come space (set of all possible states in time period t+1, given the state and

decision in time period t) is large;

This motivates us to introduce alternative approach. For this, approximate dy-

namic programming is introduced.

For each time step t, states xt ∈ X, decisions at ∈ A bringing to a new state

xt+1 with probability P(xt+1|xt, at), discount factor γ, deterministic/direct cost

ct(xt, at), planning horizon T , policy π ∈ Π with decision function Xπ(xt)

returning a decision at ∈ A for all states xt ∈ X, we solved

minπ∈Π Eπ
{∑T

t=0 γct(xt, X
π
t (xt))

}
Reformulate it as a combination of smaller subproblems, giving us the Bellman

equation (for making a Markov Decision Process model)

Vt(St) = minat∈A
(
ct(xt, at) + γ

∑
x′∈X P(xt+1 = x′|xt, at)Vt+1(x

′)
)

For outcome space - set of possible states in period t + 1 given the state and

decision in period t, its size is driven by the random information Wt+1 (independent

of all prior information) that arrives between t and t + 1. This new information is

integrated in a transition function xt+1 = XM(xt, at,Wt+1).

Let P(Wt+1 = ω) denote the probability of outcome ω ∈ Ωt+1. Then rewrite the

previous equation with

Vt(St) = minat∈A

(
ct(xt, at) + γ

∑
ω∈Ωt+1

P(Wt+1 = ω)Vt+1(xt+1|xt, at, ω)
)
)

4



Combine optimization with simulation (sampling from Ωt+1), use approximations

of the optimal values of Bellman’s equations, and use approximate policies (further

integrating post-decision states)

Vt(St) = minat∈A (ct(xt, at) + γEω [Vt+1(xt+1|xt, at, ω)])

The post-decision state xa
t - the state immediately after action at, but before

the arrival of new information Wt+1 allowing to estimate the downstream costs.

Assigning the expected downstream costs Eω [Vt+1(xt+1|xa
t , ω)] to every post-decision

state xa
t eliminates the need to evaluate all possible outcomes ω for every action.

V a
t−1(x

a
t−1) = Eω

[
Vt(xt|xa

t−1, ω)
]

Vt(xt) = minat∈A(ct(xt, at) + γV a
t (x

a
t ))

V a
t (x

a
t ) = Eω [Vt+1(xt+1|xa

t , ω)]

Using these equations, the optimization problem changes to

V a
t−1(x

a
t−1) = Eω

[
min
at∈A

(ct(xt, at) + γV a
t (x

a
t−1, ω))

]
Solve the Bellman’s equations only for one state at each stage, using estimates of

the downstream values, and performing iterations n to learn these downstream val-

ues. We introduce the construct of approximated next-stage costs (estimated

downstream values) V
n

t (x
a,n
t ), replacing the standard expectation in Bellman’s equa-

tions, see (14), with an approximation

V
a

t (x
x,n
t ) = Eω

{
Vt+1(x

n
t+1|x

a,n
t , ω)

}
We obtain the ADP forward optimality equations using the post-decision state

and the approximated next-stage cost.

v̂nt = min
at∈A

(
c(xn

t , a
n
t ) + γV a

t

(
xM,x(xn

t , a
n
t )
))

ânt = arg min
ant ∈A

(
c(xn

t , a
n
t ) + γV a

t

(
xM,x(xn

t , a
n
t )
))

Then the approximate dynamic programming algorithm would have the following

steps:

5



• For each feasible decision ant , obtain an associated post-decision state xa,n
t

• The ADP forward optimality equations are solved first at stage t = 0 for an

initial state x0, and then for subsequent stages and states until the end of the

horizon

• In each iteration n, a sample path ωn ∈ Ω (set of all sample paths) is drawn

• To advance “forward” in time, from stage t to t + 1, the sample Wt+1(ω
n)

(sample realization at time t using the sample path ωn in iteration n) is used

• Update V
a

t−1(x
a,n
t−1) immediately after the forward optimality equations are

solved

• At stage t, the information arrives and decision taken in the new state xn
t that

incurs a cost. The approximated next-stage cost that was calculated at the

previous stage t− 1, V
a

t−1(x
a,n
t−1), has now been observed at stage t.

• The algorithm updates this approximated next-stage cost of the previous post-

decision state xa,n
t−1 using the old approximation, i.e., V

a

t−1(x
a,n
t−1) and the new

approximation, i.e., the value v̂nt given by (18).

• UV : the process “tuning” the approximating function:

V
a

t−1(x
a,n
t−1)← UV

(
V

a

t−1(x
a,n
t−1), x

a,n
t−1, v̂

n
t

)
1.2.4 Risk measures

Definition 1.2. For real-valued random variable X ∈ L1(Ω,A,P) defined on mea-

surable space (Ω,A,P), a coherent risk measure is defined to be a mapping

ρ : L1 → R such that the following axioms hold [5]:

• Convexity: ρ(γX + (1− γ)Y ) ≤ γρ(X) + (1− γ)ρ(Y ) ∀γ ∈ (0, 1), X, Y ∈ L1

• Monotonicity: if X ≤ Y P-a.s. then ρ(X) ≤ ρ(Y ) ∀X, Y ∈ L1

• Translational invariance: ρ(c+X) = c+ ρ(X) ∀c ∈ R, X ∈ L1

6



• Homogeneity: ρ(βX) = βρ(X) ∀X ∈ L1, β ≥ 0

In this thesis, the risk-averse operator selected as the risk measure is Average-

Value-at-Risk or AV aRα(X). This parameter can be defined in two ways. First, we

give the definition more common in the literature related to risk management.

Definition 1.3. For real-valued random variable X ∈ L1(Ω,A,P) defined on

measurable space (Ω,A,P) with finite mean (stating integrability with E|X| <∞),

at given risk level α ∈ (0, 1) the following can be defined [3]:

• Value-at-Risk at risk level α:

V aRα(X) = inf{x ∈ R : P(X ≤ x) ≥ α}

• Average-Value-at-Risk at risk level α:

AV aRα(X) =
1

1− α

∫ 1

α

V aRt(X)dt

This definition explains the core meaning of the Average-Value-at-Risk. AV aRα(X)

can be interpreted as average of Value-at-Risk’s which are larger than the Value-at-

Risk at risk level α. AV aRα(X) gives the value for the losses greater than the given

V aRα(X) level. Computation is done through averaging, by the use of an integral.

However, the following lemma is used as the definition of the Average-Value-at-

Risk in this thesis. It is then used to formulate the finite horizon problem.

Lemma 1.2. For real-valued random variable X ∈ L1(Ω,A,P) defined on mea-

surable space (Ω,A,P) with finite mean (stating integrability with E|X| < ∞), at

given risk level α ∈ (0, 1), the Average-Value-at-Risk can be defined as [5]:

AV aRα(X) = min
s∈R
{s+ 1

1− α
E[(X − s)+]}

with the minimum point s∗ = V aRα(X).

AV aRα(X) indeed satisfies all the axioms stated in Definition 1.1. Furthermore,

it has an interesting end behavior to be considered for computational reasons.

Remark 1.1. For the Average-Value-at-Risk AV aRα(X) defined on real-valued

random variable X ∈ L1(Ω,A,P), the following end behavior holds [3]:

7



• lim
α→0

AVaRα(X) = E[X]

• lim
α→1

AVaRα(X) = ess supX ≤ ∞

1.2.5 Probability distributions

In this thesis, Bernoulli and exponential distributions are introduced as a noise term

in a transition function. Each of these distributions has certain basic properties that

need to be considered.

Bernoulli distribution

Bernoulli distribution is a special case of Binomial distribution corresponding to

a single trial. It can be thought of as a result of a ”yes-no” experiment with two

outcomes. In this thesis, two possible outcomes are taken to be 1 with probability

p and -1 with probability 1− p, meaning that for X ∼ Bernoulli(p), P (X = 1) = p

and P (X = −1) = q = 1− p.

The probability mass function would be the following:

f(n, p) =


p if k = 1,

q = 1− p if k = −1
From this, the first two moments of the distribution can be derived. For X ∼

Bernoulli(p),

E[X] = 1 · p+ (−1) · (1− p) = p− 1 + p = 2p− 1

E[X2] = 12 · p+ (−1)2 · (1− p) = p+ 1− p = 1.

Exponential distribution

The exponential distribution is a probability distribution corresponding to a

Poisson point process and this process’ event distance. The Poisson point process

can be understood as a process with an average constant rate, where the events are

independent and continuous. Distribution has a parameter λ, corresponding to the

rate of events.

λ can only take positive values so λ > 0 and for X ∼ Exponential(λ), X ≥ 0

respectively.

The probability mass function would be the following:

8



f(x, λ) =


λe−λx if x ≥ 0,

0 if x < 0

Then, we can derive the first two moments of the distribution. For X ∼

Exponential(λ),

E[X] =
∫ +∞
0

x · fX(x)dx

=
∫ +∞
0

x · λe−λxdx = λ
∫ +∞
0

x · e−λx

Knowing the anti-derivative∫
x · λe−λxdx = (− 1

λ
x− 1

λ2 )e
−λx,

E[X] = 1
λ2 λ[(− 1

λ
x− 1

λ2 )e
−λx]+∞

0

= λ[ lim
x→+∞

(− 1
λ
x− 1

λ2 )e
−λx]+∞

0 − (− 1
λ
· 0− 1

λ2 )e
−λ·0

= λ[0 + 1
λ2 ] =

1
λ
.

The second moment can be derived similarly, so that

E[X2] = 1
λ2 .

1.2.6 Quantile function

The computation of the quantile s∗ is done using the numpy.quantile function. The

linear interpolation method is used.

For finding the new virtual index i+ g of an element lying between i and i+ 1,

the following formula is used for quantile 0 ≤ q ≤ 1 with a sorted list of n elements:

i+ g = q · (n− α− β + 1) + α

For the linear interpolation, α = 1 and β = 1. So, the formula becomes

i+ g = q · (n− 1) + 1

For example, for a list [1, 2, 3, 4] and q = 0.25, the virtual index of an element

corresponding to 25% quantile is:

i+ g = 0.25(4− 1) + 1 = 1.75

The 1.75th element lies between 1st element of 1 and 2nd element of 2. Finding

the value of the 1.75th element:

9



1 + (2− 1) ∗ 0.75 = 1.75.

So, 25% quantile for a list [1, 2, 3, 4] equals to 1.75.

1.3 Problem statement

The problem is defined using the dynamic programming definition given in Section

1.2.2.

In this problem, the objective function is the total cost. Since the optimization

problem involves using some expected performance criteria, there is a need to use

some risk-averse operator. In this thesis, AV aRα(X) is used to measure the reward

or cost dependent on risk level α [4].

We are interested in solving the optimal control problem over the infinite time

horizon, meaning having not limited terminal time T , which can be equal to ∞.

So, using the AVaR criteria, the optimization problem is reformulated as follows:

minimize
π∈A

AV aRπ
α(

∞∑
t=0

c(xt, at))

The optimization problem to solve:

min
π∈A

AV aRπ
α(
∑∞

t=0 c(xt, at))

where c(xt, at) is the cost of taking action at at state xt.

From this, the finite horizon problem can be formulated.

Theorem 1.1. The finite horizon problem for real-valued random variable X ∈

L1(Ω,A,P) defined on measurable space (Ω,A,P) and risk level α ∈ (0, 1) is defined

as follows:

inf
π∈A

AV aRπ
α(X|X0 = x) = inf

s∈R
{s+ 1

1− α
inf
π∈A

Eπ
x [(X − s)+]}

Proof. Using the Lemma 1.2,

inf
π∈A

AV aRπ
α(X|X0 = x) = inf

π∈A
inf
s∈R
{s+ 1

1−α
Eπ

x [(X − s)+]}

= inf
s∈R

inf
π∈A
{s+ 1

1−α
Eπ

x [(X − s)+]}

= inf
s∈R
{s+ 1

1−α
inf
π∈A

Eπ
x [(X − s)+]}.

Therefore, the finite horizon problem is formulated.

10



Chapter 2

Literature review

There is an abundance of different papers about risk-averse optimization problems

and solving optimal control problems and LQR problems.

The research heavily relies on the idea of optimal control and [1] fully explains

the concepts behind optimal control problems and approaches to solving them. This

paper is key to seeing different methods of solving the optimal control problems an-

alytically, using different approaches, such as HJB equations, Lagrange multipliers,

or gradient descent method.

However, there are two papers this thesis heavily relies on. First is Bauerle’s

work in [5] giving a new definition for the Average-Value-at-Risk, serving as a basis

for the computations in this thesis. In [3], a paper written by my supervisor on

this topic gives all the fundamental knowledge, theorems, and derivations needed to

solve the optimal control problem analytically. Most of the theoretical background

was taken from this work. On top of that, [2] gives insights into the idea of dynamic

programming and explains the simplest problems in dynamic programming and [9]

provides the definition and explanation for the Markov decision process concept.

The meaning of risk measures is defined, and the definition and explanation for

risk measures on the example of the Entropic-Value-at-Risk risk measure is provided

in [4]. Furthermore, it gives an example of solving optimization problems involving

EVaR that can be redone with AVaR. Similarly, [10] solves the risk-sensitive opti-

mization problem but with Conditional-Value-at-Risk, which can also be referred to

11



as an example.

Most literature on optimal control problems mainly uses neural networks. [6]

and [7] are sources giving fresh ideas on solving LQR problems using neural net-

works. The first paper gives an intuition of solving the optimal control problems

using neural networks built on the relationship between actions and states and pro-

vides implementation examples on real data such as portfolio optimization. The

other paper describes using Q-learning to solve optimal control problems with risk

measures of CVaR similar to EVaR. The implementation provided in this paper can

be reused for AVaR.

The majority of the literature does not focus on LQR problems specifically but

elaborates on optimal control problems in general. Even in cases with mentioning

the LQR problem, it is given in different formulation, mostly in matrix form as in

[12], [13] and [14] opposed to [3] stating the formulation of the LQR problem similar

to my thesis problem.

In terms of methodology, Out of the collected literature, [15] was the most rele-

vant to the research, stating the approximate dynamic programming algorithm with

an example of the nomadic trucker. The algorithm presented in this paper was

reformulated and changed to fit the selected LQR problem.

[8] is not as relevant as other papers, but gives some new ideas about analytical

solutions to optimal control problems considering the time, state and actions as

some nonlinear dynamical system.

12



Chapter 3

Analytic solution

3.1 Hamiltonian-Jacobi-Bellman equations

To solve the optimal control problems, Bellman’s optimality principle is used [8].

This principle states that there is no dependence of future states from past states

resulting in the present state. From this, the computations are started at a final

state and move backward performing calculations step-by-step. This idea is realized

through the concept of ”optimal value function”, meaning the minimum optimal

total cost for a path started at some state.

The optimal value function is given through the following HJB equation [5] for

(t, x) where 0 ≤ t ≤ T :

Qπ(t, x) ≜ c(x, a, t) +Q(t+ 1, x+ a+ ξ)

Qπ(T, x) ≜ g(x)

V (t, x) = inf
π
Qπ(t, x)

Through the iterations, each value function is obtained. Using the value function,

the optimization problem will be as follows:

min
a

AV aRα(Q
π(t, x)|FT )

for some history or information given by σ-algebra FT and terminal cost g(t) at

terminal time T .

13



3.2 LQR Problem

For the Linear Quadratic Regulator (LQR) Problem, the following conditions are

given:

• Transition (linear) function: xt+1 = xt + at + ξt for the random noise ξt

• Running (quadratic) cost: ct(x, a, t) = x2
t + a2t

• Total cost:
∑s=T

s=t c(xs, as), where π(s, x) = as, for s = t, ..., T .

At terminal time t = T , the total cost would be cT (xT , aT ).

Using the equation above, the total cost up to each rime from t = T to t = 0 is

computed. We are also given history FT .

The optimization problem is formulated as a minimization of a total cost:

min
at

AV aRα(Q
π(T, x)|FT )

which is equivalent to

min
aT∈A

AV aRα(cT (xT , aT ))

Using the dynamic programming approach, computations are done from t = T

to t = 0.

min
at

AV aRα(Q
π(T, x)|FT ) = min

at
ct(xt, at) + AV aRα(Q

π(t+ 1, xt+1)|FT )

The minimal AVaR value is obtained by iterating through the possible action

values, the procedure is repeated until t = 0.

In this problem, the randomness of xt+1 caused by random noise ξt is a key factor.

The effect of a distribution of a random noise has to be investigated thoroughly.

The simplest case with a Bernoulli noise is considered first, then the problem with

exponential noise is studied carefully afterwards.

14



3.3 LQR Problem with Bernoulli Noise

The thesis work takes the LQR problem with Bernoulli noise as a baseline setting,

where

• ξt ∼ Bernoulli(p = 1/2)

• α ∈ {0, 0.25, 0.5, 0.75, 0.99}

• at ∈ {−1,−0.5, 0, 0.5, 1}

• x0 = 1, t0 = 0

• T = 2.

The problem now is about computing AVaR for given ϕ(at, ξt) and set of values.

For this problem, the dynamic programming approach with backward computations

is also applied. ξt ∼ Bernoulli(p = 1/2) means that ξt = 1 with probability p = 1
2

and ξt = −1 with probability p = 1
2
.

We start the computations at time t = 2, then go backwards in time in 1 time

unit steps.

Step 1. t = 2

J(2, x2) = inf
a2
E[x2

2 + a22|x2, a2] = x2
2.

Therefore, the minimizing action a2 = 0.

Step 2. t = 1

J(1, x1) = inf
a1
E[x2

1 + a21 + J(2, x2)|x1, a1]

= inf
a1
E[x2

1 + a21 + (x1 + a1 + ξ1)
2|x1, a1]

= inf
a1
E[x2

1 + a21 + x2
1 + a21 + ξ21 + 2x1a1 + 2x1ξ1 + 2a1ξ1|x1, a1]

= inf
a1
E[2x2

1 + 2a21 + ξ21 + 2x1a1 + 2x1ξ1 + 2a1ξ1|x1, a1]

= 2x2
1 + inf

a1
{2a21 + 2x1a1 + E[ξ21 + 2x1ξ1 + 2a1ξ1|x1, a1]}

= 2x2
1+2x1E[ξ1|x1, a1]+E[ξ21 |x1, a1]+ inf

a1
{2a21+2x1a1+2a1E[ξ1|x1, a1]}

Given that ξ1 ∼ Bernoulli(p = 1/2), E[ξ1|x1, a1] and E[ξ21 |x1, a1] can be com-

puted.

15



E[ξ1|x1, a1] = 1(1
2
) + (−1)(1

2
) = 0

E[ξ21 |x1, a1] = 12(1
2
) + (−1)2(1

2
) = 1

2
+ 1

2
= 1.

Then,

J(1, x1) = 2x2
1 + 1 + 2inf

a1
{a21 + x1a1}.

Meaning that

ϕ(a1) = a21 + x1a1

a1 = −1 : ϕ(−1) = 1− x1

a1 = −0.5 : ϕ(−1) = 0.25− 0.5x1

a1 = 0 : ϕ(0) = 0

a1 = 0.5 : ϕ(−1) = 0.25 + 0.5x1

a1 = 1 : ϕ(1) = 1 + x1

The behavior of ϕ(a1) was checked graphically. In the plot below we deduce the

the piecewise function giving the minimum value at each interval.

Figure 3.1. Obtaining the minimizing piecewise function

So, the piecewise function giving the minimum value at each interval is

16



ϕ(a1) =



0.25 + 0.5x1, x1 ∈ [−1,−0.5)

0, x1 ∈ [−0.5, 0.5)

0.25− 0.5x1, x1 ∈ [0.5, 1.5)

1− x1 x1 ∈ [1.5, 3]

So, each interval will be considered as a separate case.

Step 3. t = 0

We obtain the equations for J(1, x1) for some given x1 in certain interval.

Case 1. x1 ∈ [−1,−0.5).

In this case, the optimizing action a1 = 0.5.

So,

J(1, x1) = 2x2
1 + 1 + 2(0.25 + 0.5x1).

= 2x2
1 + x1 + 1.5.

Case 2. x1 ∈ [−0.5,0.5).

In this case, the optimizing action a1 = 0.

So,

J(1, x1) = 2x2
1 + 1 + 2× 0.

= 2x2
1 + 1.

Case 3. x1 ∈ [0.5,1.5).

In this case, the optimizing action a1 = −0.5.

So,

J(1, x1) = 2x2
1 + 1 + 2(0.25− 0.5x1).

= 2x2
1 − x1 + 1.5.

Case 4. x1 ∈ [1,3].

In this case, the optimizing action a1 = −1.

So,

J(1, x1) = 2x2
1 + 1 + 2(1− x1).

= 2x2
1 − 2x1 + 3.

Therefore,

17



J(1, x1) =



2x2
1 + x1 + 1.5, x1 ∈ [−1,−0.5)

2x2
1 + 1, x1 ∈ [−0.5, 0.5)

2x2
1 − x1 + 1.5, x1 ∈ [0.5, 1.5)

2x2
1 − 2x1 + 3 x1 ∈ [1.5, 3]

For further computations for J(0, x0), it has to be noted that each noise was

sampled randomly, so we know that each of the noises has equal probabilities.

Knowing that x1 = x0 + a0 + ξ0 and x0 = 1, a0 ∈ {−1,−0.5, 0, 0.5, 1}, ξt ∈

{1,−1}, different cases should be considered. Each a0 case will be considered sepa-

rately given that x0 = 1 is fixed.

Case a. a0 = −1

J(0, x0, a0 = −1) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0 = 1, a0 = −1]

= inf
a0
E[x2

0 + a20 + J(1, x0 + a0 + ξ0)|x0 = 1, a0 = −1]

= x2
0 + a20 + (1/2)(J(1, 1− 1 + 1) + J(1, 1− 1− 1)

= x2
0 + a20 + (1/2)(J(1, 1) + J(1,−1))

= 12 + (−1)2 + (1/2)(2.5 + 2.5)

= 4.5

Case b. a0 = −0.5

J(0, x0, a0 = 0) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0 = 1, a0 = −0.5]

= inf
a0
E[x2

0 + a20 + J(1, x0 + a0 + ξ0)|x0 = 1, a0 = −0.5]

= x2
0 + a20 + (1/2)(J(1, 1− 0.5 + 1) + J(1, 1− 0.5− 1))

= x2
0 + a20 + (1/2)(J(1, 1.5) + J(1,−0.5))

= 12 + (−0.5)2 + (1/2)(4.5 + 1.5)

= 4.25

Case c. a0 = 0

J(0, x0, a0 = 0) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0 = 1, a0 = 0]

= inf
a0
E[x2

0 + a20 + J(1, x0 + a0 + ξ0)|x0 = 1, a0 = 0]

= x2
0 + a20 + (1/2)(J(1, 1 + 0 + 1) + J(1, 1 + 0− 1))

= x2
0 + a20 + (1/2)(J(1, 2) + J(1, 0))

18



= 12 + 02 + (1/2)(7 + 1)

= 5

Case d. a0 = 0.5

J(0, x0, a0 = 0) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0 = 1, a0 = 0.5]

= inf
a0
E[x2

0 + a20 + J(1, x0 + a0 + ξ0)|x0 = 1, a0 = 0.5]

= x2
0 + a20 + (1/2)(J(1, 1 + 0.5 + 1) + J(1, 1 + 0.5− 1))

= x2
0 + a20 + (1/2)(J(1, 2.5) + J(1, 0.5))

= 12 + 0.52 + (1/2)(10.5 + 1.5)

= 7.25

Case e. a0 = 1

J(0, x0, a0 = 0) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0 = 1, a0 = 1]

= inf
a0
E[x2

0 + a20 + J(1, x0 + a0 + ξ0)|x0 = 1, a0 = 1]

= x2
0 + a20 + (1/2)(J(1, 1 + 1 + 1) + J(1, 1 + 1− 1))

= x2
0 + a20 + (1/2)(J(1, 3) + J(1, 2))

= 12 + 12 + (1/2)(15 + 7)

= 13

After considering all these cases for a0 values, we deduce the final J(0, x0).

J(0, x0) = inf
a0∈{−1,−0.5,0,0.5,1}

J(0, x0)

= inf
a0∈{−1,0,1}

{J(0, x0, a0 = −1), J(0, x0, a0 = −0.5), J(0, x0, a0 = 0),

J(0, x0, a0 = 0.5), J(0, x0, a0 = 1)}

= inf{4.5, 4.25, 5, 7.25, 13}

= 4.25

So the final answer for α = 0 is J(0,x0) = 4.25.

19



3.4 LQR Problem with Exponential Noise

3.4.1 LQR Problem with Theoretical Exponential Noise at

risk level α = 0

Having made observations from the case with Bernoulli noise, the problem can be

solved for the noise coming from Exponential distribution. The problem setting

remains similar except for the noise term and the set of actions.

The noise ξt ∼ Exponential(λ), for λ > 0 is used. Calculations are made for

λ ∈ {0.5, 1, 1.5, 2}. Computation with λ = 1 is taken as a baseline. The action set

is changed to be at ∈ {−1, 0, 1} due to the dimensionality problem, to decrease the

number of possible state xt values for t ≥ 1. Terminal time is taken to be T = 2.

Step 1. t = 2

J(2, x2) = inf
a2
E[x2

2 + a22|x2, a2] = x2
2.

Therefore, the minimizing action a2 = 0.

Step 2. t = 1

J(1, x1) = inf
a1
E[x2

1 + a21 + J(2, x2)|x1, a1]

= inf
a1
E[x2

1 + a21 + (x1 + a1 + ξ1)
2|x1, a1]

= inf
a1
E[x2

1 + a21 + x2
1 + a21 + ξ21 + 2x1a1 + 2x1ξ1 + 2a1ξ1|x1, a1]

= inf
a1
E[2x2

1 + 2a21 + ξ21 + 2x1a1 + 2x1ξ1 + 2a1ξ1|x1, a1]

= 2x2
1 + inf

a1
{2a21 + 2x1a1 + E[ξ21 + 2x1ξ1 + 2a1ξ1|x1, a1]}

= 2x2
1+2x1E[ξ1|x1, a1]+E[ξ21 |x1, a1]+ inf

a1
{2a21+2x1a1+2a1E[ξ1|x1, a1]}

Given that ξ1 ∼ Exponential(λ), E[ξ1|x1, a1] and E[ξ21 |x1, a1] can be computed.

E[ξ1|x1, a1] =
1
λ

E[ξ21 |x1, a1] = V ar[ξ1|x1, a1] + E2[ξ1|x1, a1] =
1
λ2 +

1
λ2 = 2

λ2 .

Then,

J(1, x1) = 2x2
1 +

2
λ
x1 +

2
λ2 + 2inf

a1
{a21 + (x1 +

1
λ
)a1}.

Meaning that

ϕ(a1) = a21 + (x1 +
1
λ
)a1

a1 = −1 : ϕ(−1) = 1− x1 − 1
λ

20



a1 = 0 : ϕ(0) = 0

a1 = 1 : ϕ(1) = 1 + x1 +
1
λ

The behavior of ϕ(a1) was checked for several λ values graphically. Different

from Bernoulli noise, only two cases were identified for further computations. Here

we use the fact that E[ξ1|x1, a1] =
1
λ

Step 3. t = 0

Case 1. λ < 1 OR

λ ≥ 1 and x ≥ 1− E[ξ1|x1, a1].

In this case, the optimizing action a1 = −1.

So,

J(1, x1) = 2x2
1 +

2
λ
x1 +

2
λ2 + 2(1− x1 − 1

λ
).

= 2x2
1 + 2( 1

λ
− 1)x1 + 2(1− 1

λ
+ 1

λ2 ).

J(0, x0) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0, a0]

= inf
a0
E[x2

0+a20+2(x0+a0+ξ0)
2+2( 1

λ
−1)(x0+a0+ξ0)+2(1− 1

λ
+ 1

λ2 )|x0, a0]

Knowing that x0 = 1,

J(0, x0) = inf
a0
E[1+ a20+2(1+ a0+ ξ0)

2+2( 1
λ
− 1)(1+ a0+ ξ0)+ 2(1− 1

λ
+ 1

λ2 )|a0]

= inf
a0
E[1+ a20 +2+2a20 +2ξ20 +4a0 +4ξ0 +4a0ξ0 +2( 1

λ
− 1)+ 2( 1

λ
− 1)a0

+2( 1
λ
− 1)ξ0 + 2(1− 1

λ
+ 1

λ2 )|a0]

= 3 + 2( 1
λ
− 1) + 2(1− 1

λ
+ 1

λ2 ) + 2( 1
λ
+ 1)E[ξ0|a0] + 2E[ξ20 |a0] + inf

a0
{3a20

+2( 1
λ
+ 1)a0 + 4a0E[ξ0|a0]}

We know that E[ξ0|x0, a0] =
1
λ
and E[ξ20 |x0, a0] =

2
λ2 .

J(0, x0) = 3+2( 1
λ
− 1)+2(1− 1

λ
+ 1

λ2 )+2( 1
λ
+1)( 1

λ
)+ 4

λ2 + inf
a0
{3a20+2( 3

λ
+1)a0}

= 3 + 2
λ
− 2 + 2− 2

λ
+ 2

λ2 +
2
λ2 +

2
λ
+ 4

λ2 + inf
a0
{3a20 + 2( 3

λ
+ 1)a0}

= 3 + 2
λ
+ 8

λ2 + inf
a0
{3a20 + 2( 3

λ
+ 1)a0}

Meaning that

ϕ(a0) = 3a20 + 2( 3
λ
+ 1)a0

a1 = −1 : ϕ(−1) = 3− 2( 3
λ
+ 1) = 1− 6

λ

a1 = 0 : ϕ(0) = 0

a1 = 1 : ϕ(1) = 3 + 2( 3
λ
+ 1) = 4 + 6

λ

21



Knowing that λ > 0, the minimizing action is a0 = −1.

With J(0,x0) = 3 + 2
λ
+ 8

λ2 + 1− 6
λ
= 4− 4

λ
+ 8

λ2 .

Case 2. λ ≥ 1 and x ∈ [0,1− E[ξ1|x1, a1])

In this case, the optimizing action a1 = 0.

J(1, x1) = 2x2
1 +

2
λ
x1 +

2
λ2 + 2× 0

= 2x2
1 +

2
λ
x1 +

2
λ2

J(0, x0) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0, a0]

= inf
a0
E[x2

0 + a20 + 2(x0 + a0 + ξ0)
2 + 2

λ
(x0 + a0 + ξ0) +

2
λ2 |x0, a0]

Knowing that x0 = 1,

J(0, x0) = inf
a0
E[1 + a20 + 2(1 + a0 + ξ0)

2 + 2
λ
(1 + a0 + ξ0) +

2
λ2 |a0]

= inf
a0
E[1+a20+2+2a20+2ξ20 +4a0+4ξ0+4a0ξ0+

2
λ
+ 2

λ
a0+

2
λ
ξ0+

2
λ2 |a0]

= 3 + 2
λ
+ 2

λ2 + 2(2 + 1
λ
)E[ξ0|a0] + 2E[ξ21 |a0] + inf

a0
{3a20 + 2(2 + 1

λ
)a0

+4a0E[ξ0|a0]}

We know that E[ξ0|x0, a0] =
1
λ
and E[ξ20 |x0, a0] =

2
λ2 .

J(0, x0) = 3 + 2
λ
+ 2

λ2 + 2(2 + 1
λ
)( 1

λ
) + 4

λ2 + inf
a0
{3a20 + 2(2 + 3

λ
)a0}

= 3 + 2
λ
+ 2

λ2 +
4
λ
+ 2

λ2 +
4
λ2 + inf

a0
{3a20 + 2(2 + 3

λ
)a0}

= 3 + 6
λ
+ 8

λ2 + inf
a0
{3a20 + 2(2 + 3

λ
)a0}

Meaning that

ϕ(a0) = 3a20 + 2( 3
λ
+ 2)a0

a1 = −1 : ϕ(−1) = 3− 2( 3
λ
+ 2) = −1− 6

λ

a1 = 0 : ϕ(0) = 0

a1 = 1 : ϕ(1) = 3 + 2( 3
λ
+ 2) = 7 + 6

λ

Knowing that λ > 0, the minimizing action is a0 = −1.

With J(0,x0) = 3 + 6
λ
+ 8

λ2 − 1− 6
λ
= 2+ 8

λ2 .

3.4.2 LQR Problem with Sampled Exponential Noise at risk

level α = 0

Using the theoretical exponential noise for practical or experimental settings is diffi-

cult to do realistically. By the Law of Large Numbers, for a sample generated from

22



an experiment, we should maximize the sample size for the sample’s distribution

to converge to the original distribution. However, this would require taking large

samples creating infinitely many possibilities for states. For example, having taken

3 samples for noise distribution and having 3 possible actions, at each time t, there

would be 9t possible states.

To address this concern, it was attempted to approximate the exponential distri-

bution by taking 6 samples for noise term. That means, there would be 18 possible

x1 values. However, having 324 possible x2 values has no effect since time t = 2 is

terminal.

numpy.random.exponential was used to take 6 random samples from the expo-

nential distribution with λ = 1.0 and some fixed random seed of 41 for the repro-

ducibility of the experiment.

We are now solving the LQR problem for

• ξt ∈ {0.04, 0.05, 0.12, 0.29, 0.93, 1.13}

• α ∈ {0, 0.25, 0.5, 0.75, 1}

• at ∈ {−1, 0, 1}

• x0 = 1, t0 = 0

• T = 2.

Step 1. t = 2

J(2, x2) = inf
a2
E[x2

2 + a22|x2, a2] = x2
2.

Therefore, the minimizing action a2 = 0.

Step 2. t = 1

J(1, x1) = inf
a1
E[x2

1 + a21 + J(2, x2)|x1, a1]

= inf
a1
E[x2

1 + a21 + (x1 + a1 + ξ1)
2|x1, a1]

= inf
a1
E[x2

1 + a21 + x2
1 + a21 + ξ21 + 2x1a1 + 2x1ξ1 + 2a1ξ1|x1, a1]

= inf
a1
E[2x2

1 + 2a21 + ξ21 + 2x1a1 + 2x1ξ1 + 2a1ξ1|x1, a1]

= 2x2
1 + inf

a1
{2a21 + 2x1a1 + E[ξ21 + 2x1ξ1 + 2a1ξ1|x1, a1]}

23



= 2x2
1 + 2x1E[ξ1|x1, a1] + E[ξ21 |x1, a1] + 2inf

a1
{a21 + x1a1 + a1E[ξ1|x1, a1]}

Now that we have the samples from an exponential distribution, the expected

value is taken to be the sample mean and the sample mean squared replaces the

second moment. So,

E[ξ1|x1, a1] =
1
6
(0.04 + 0.05 + 0.12 + 0.29 + 0.93 + 1.13) = 0.43

E[ξ21 |x1, a1] =
1
6
(0.042 + 0.052 + 0.122 + 0.292 + 0.932 + 1.132) = 0.37.

Now we have

J(1, x1) = 2x2
1 + 0.86x1 + 0.37 + 2inf

a1
{a21 + (x1 + 0.43)a1}

Meaning that

ϕ(a1) = a21 + (x1 + 0.43)a1

a1 = −1 : ϕ(−1) = 1− x1 − 0.43 = −x1 + 0.57

a1 = 0 : ϕ(0) = 0

a1 = 1 : ϕ(1) = 1 + x1 + 0.43 = x1 + 1.43

From the theoretical noise example, we know that there are two cases given that

λ = 1.0. Note that E[ξ1|x1, a1] = 0.43. This will be used to obtain the equations

for J(1, x1) for some given x1.

Case 1. x1 ≥ 0.57.

In this case, the optimizing action a1 = −1.

So,

J(1, x1) = 2x2
1 + 0.86x1 + 0.37 + 2(−x1 + 0.57).

= 2x2
1 − 1.14x1 + 1.51.

Case 2. x1 < 0.57.

In this case, the optimizing action a1 = 0.

So,

J(1, x1) = 2x2
1 + 0.86x1 + 0.37 + 2× 0.

= 2x2
1 + 0.86x1 + 0.37.

For further computations for J(0, x0), it has to be noted that each noise was

sampled randomly, so we know that each of the noises has equal probabilities.

Knowing that x1 = x0+a0+ξ0 and x0 = 1, a0 ∈ {−1, 0, 1}, ξt ∈ {0.04, 0.05, 0.12, 0.29, 0.93, 1.13},

24



different cases should be considered. Each a0 case will be considered separately given

that x0 = 1 is fixed.

Case a. a0 = −1

J(0, x0, a0 = −1) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0 = 1, a0 = −1]

= inf
a0
E[x2

0 + a20 + J(1, x0 + a0 + ξ0)|x0 = 1, a0 = −1]

= x2
0 + a20 + (1/6)(J(1, 1− 1 + 0.04) + J(1, 1− 1 + 0.05)

+ J(1, 1− 1 + 0.12) + J(1, 1− 1 + 0.29) + J(1, 1− 1 + 0.93)

+ J(1, 1− 1 + 1.13)

= x2
0+a20+(1/6)(J(1, 0.04)+J(1, 0.05)+J(1, 0.12)+J(1, 0.29)

+ J(1, 0.93) + J(1, 1.13))]

= 12 + (−1)2 + (1/6)(0.41 + 0.42 + 0.50 + 0.79 + 2.18 + 2.78)

= 3.18

Case b. a0 = 0

J(0, x0, a0 = 0) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0 = 1, a0 = 0]

= inf
a0
E[x2

0 + a20 + J(1, x0 + a0 + ξ0)|x0 = 1, a0 = 0]

= x2
0 + a20 + (1/6)(J(1, 1.04) + J(1, 1.05) + J(1, 1.12) + J(1, 1.29)

+ J(1, 1.93) + J(1, 2.13))

= 12 + 02 + (1/6)(2.49 + 2.52 + 2.74 + 3.37 + 6.76 + 8.16)

= 5.34

Case c. a0 = 1

J(0, x0, a0 = 1) = inf
a0
E[x2

0 + a20 + J(1, x1)|x0 = 1, a0 = 1]

= inf
a0
E[x2

0 + a20 + J(1, x0 + a0 + ξ0)|x0 = 1, a0 = 1]

= x2
0 + a20 + (1/6)(J(1, 2.04) + J(1, 2.05) + J(1, 2.12) + J(1, 2.29)

+ J(1, 2.93) + J(1, 3.13))]

= 12 + 12 + (1/6)(7.51 + 7.58 + 8.08 + 9.39 + 15.34 + 17.54)

= 12.91

After considering all these cases for a0 values, we deduce the final J(0, x0).

J(0, x0) = inf
a0∈{−1,0,1}

J(0, x0)

= inf
a0∈{−1,0,1}

{J(0, x0, a0 = −1), J(0, x0, a0 = 0), J(0, x0, a0 = 1)}

25



= inf{3.18, 5.34, 12.91}

= 3.18

So the final answer for α = 0 is J(0, x0) = 3.18.

3.4.3 LQR Problem with Sampled Exponential Noise at risk

level α = 0.25

From Remark 1.1, we know that with a risk level α = 0, AV aRα(X) = E[X]. The

behavior of AV aRα(X) for α ̸= 0 should be investigated next. For this, we take an

example α = 0.25.

For α = 0.25, we are solving the similar LQR problem with

• ξt ∈ {0.04, 0.05, 0.12, 0.29, 0.93, 1.13}

• at ∈ {−1, 0, 1}

• x0 = 1, t0 = 0

• T = 2.

Step 1. t = 2

J(2, x2) = inf
a2
AV aR0.25[x

2
2 + a22|x2, a2] = inf

a2
AV aR0.25[x

2
2 + a22] = x2

2.

Therefore, the minimizing action a2 = 0.

Step 2. t = 1

J(1, x1) = inf
a1
AV aR0.25[x

2
1 + a21 + J(2, x2)|x1, a1]

= inf
a1
AV aR0.25[x

2
1 + a21 + (x1 + a1 + ξ1)

2|x1, a1]

Then, we use the Theorem 1.1.

J(1, x1) = inf
s∈R
{s+ 1

1−0.25
inf
a1
E[(x2

1 + a21 + (x1 + a1 + ξ1)
2 − s)+|x1, a1]}

= x2
1 + a21 + inf

s∈R
{s+ 1

1−0.25
inf
a1
E[((x1 + a1 + ξ1)

2 − s)+|x1, a1]}

= x2
1 + a21 + s∗ + 1

1−0.25
inf
a1
E[((x1 + a1 + ξ1)

2 − s∗)+|x1, a1]

We have to find the quantile s∗.

It’s known that s∗ ≜ V aRα((x1 + a1 + ξ1)
2)) = inf{x ∈ R : P((x1 + a1 + ξ1)

2 ≤

x) ≥ α}.

26



For this purpose, all possible x1 values are computed to consider each case of

possible x1 and a1 value pairs.

x0 a0 ξ0 x1

1 -1 0.04 0.04

1 -1 0.05 0.05

1 -1 0.12 0.12

1 -1 0.29 0.29

1 -1 0.93 0.93

1 -1 1.13 1.13

1 0 0.04 1.04

1 0 0.05 1.05

1 0 0.12 1.12

1 0 0.29 1.29

1 0 0.93 1.93

1 0 1.13 2.13

1 1 0.04 2.04

1 1 0.05 2.05

1 1 0.12 2.12

1 1 0.29 2.29

1 1 0.93 2.93

1 1 1.13 3.13

Table 3.1. x1 values

For each case of x1, each case of a1 value is considered separately. The quantile

computation is done through computing (x1+a1+ξ1)
2 for ξ1 ∈ {0.04, 0.05, 0.12, 0.29, 0.93, 1.13}

and getting the quantile using these 6 values by the help of numpy.quantile function

as given in Section 1.2.4.

If we denote the set of all possible sampled noise values as Ξ = {0.04, 0.05, 0.12, 0.29, 0.93, 1.13},

then

27



J(1, x1) = x2
1 + a21 + s∗ + 4

3

∑
ξ1∈Ξ(

1
6
)((x1 + a1 + ξ1)

2 − s∗)+)

Since this process involves 54 computations, it was automized by using the

Python code looping through all x1, a1 combinations, giving the s∗ and J(1, x1, a1)

values. In the table, π∗(1, x1) stands for the optimal action for the given t = 1 and

x1 value.

x1 a1 s∗ J(1, x1, a1) J(1, x1) π∗(1, x1)

0.04

-1 0.13 1.64

0.55 00 0.01 0.55

1 1.23 3.74

0.05

-1 0.13 1.64

0.56 00 0.01 0.56

1 1.25 3.77

0.12

-1 0.13 1.54

0.66 00 0.04 0.66

1 1.41 4.01

0.29

-1 0.18 1.42

0.99 00 0.13 0.99

1 1.84 4.68

0.93

-1 0.00 2.29

2.29 -10 1.00 3.26

1 3.99 8.24

1.13

-1 0.04 2.94

2.94 -10 1.43 4.31

1 4.83 9.68

1.04

-1 0.01 2.63

2.63 -10 1.23 3.82

1 4.44 9.01

28



x1 a1 s∗ J(1, x1, a1) J(1, x1) π∗(1, x1)

1.05

-1 0.01 2.66

2.66 -10 1.25 3.87

1 4.48 9.08

1.12

-1 0.04 2.90

2.90 -10 1.41 4.25

1 4.79 9.61

1.29

-1 0.13 3.57

3.57 -10 1.84 5.26

1 5.56 10.96

1.93

-1 1.00 7.12

7.12 -10 3.99 10.10

1 8.99 17.07

2.13

-1 1.43 8.57

8.57 -1-0 4.83 11.94

1 10.22 19.31

2.04

-1 1.23 7.90

7.90 -1-0 4.44 11.09

1 9.66 18.28

2.05

-1 1.25 7.97

7.97 -1-0 4.48 11.18

1 9.72 18.40

2.12

-1 1.41 8.49

8.49 -1-0 4.79 11.85

1 10.16 19.20

2.29

-1 1.84 9.84

9.84 -1-0 5.56 13.54

1 11.27 21.23

29



x1 a1 s∗ J(1, x1, a1) J(1, x1) π∗(1, x1)

2.93

-1 3.99 15.96

15.96 -1-0 8.99 20.93

1 15.98 29.90

3.13

-1 4.83 18.20

18.20 -1-0 10.22 23.57

1 17.62 32.95

Table 3.2. J(1, x1, a1) values

Step 3. t = 0

Now, having obtained J(1, x1, a1) values, we can move to computing J(1, x0, a0)

values. For this, a similar approach is used.

J(0, x0) = inf
a0
AV aR0.25[x

2
0 + a20 + J(1, x1)|x0, a0]

Knowing that x0 = 1,

J(0, x0) = inf
a0
AV aR0.25[1

2 + a20 + J(1, x1)|a0]

Using Theorem 1.1,

J(0, x0) = inf
s∈R
{s+ 1

1−0.25
inf
a0
E[(1 + a20 + J(1, x1)− s)+|a0]}

= 1 + a20 + inf
s∈R
{s+ 1

1−0.25
inf
a0
E[(J(1, x1)− s)+|a0]}

= 1 + a20 + s∗ + 1
1−0.25

inf
a0
E[(J(1, x1)− s)+|a0]

= 1 + a20 + s∗ + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, x1)− s∗)+)

As we know, x1 = x0+a0+ξ0 and x0 = 1, a0 ∈ {−1, 0, 1}, ξt ∈ {0.04, 0.05, 0.12, 0.29, 0.93,

1.13} = Ξ. So, each a0 case will be considered separately given that x0 = 1 is fixed.

Table 3.1 is used to obtain x1 values resulted by certain a0 value. We apply the

Table 3.2 to retrieve corresponding J(1, x1) values.

Case a. a = −1

s∗ = V aR0.25(J(1, 1− 1 + ξ0)) = V aR0.25(J(ξ0)) = 0.59

Therefore,

J(0, x0, a0 = −1) = 1 + (−1)2 + s∗ + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, x1)− s∗)+)

= 1 + (−1)2 + s∗ + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, 1− 1 + ξ1)− s∗)+)

30



= 1 + 1 + 0.59 + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, ξ1)− 0.59)+)

= 2.92 + 2
9
[(J(1, 0.04)− 0.59)+ + (J(1, 0.05)− 0.59)+

+(J(1, 0.12)−0.59)++(J(1, 0.29)−0.59)++(J(1, 0.93)−0.59)+

+(J(1, 1.13)− 0.59)+]

= 2.59 + 2
9
[0 + 0.03 + 0.07 + 0.4 + 1.7 + 2.35]

= 3.59

Case b. a = 0

s∗ = V aR0.25(J(1, 1 + 0 + ξ0)) = V aR0.25(J(1 + ξ0)) = 2.72

Therefore,

J(0, x0, a0 = 0) = 1 + 02 + s∗ + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, x1)− s∗)+)

= 1 + 02 + s∗ + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, 1 + 0 + ξ1)− s∗)+)

= 1 + 2.72 + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, 1 + ξ1)− 2.72)+)

= 3.72 + 2
9
[(J(1, 1.04)− 2.72)+ + (J(1, 1.05)− 2.72)+

+(J(1, 1.12)−2.72)++(J(1, 1.29)−2.72)++(J(1, 1.93)−2.72)+

+(J(1, 2.13)− 2.72)+]

= 3.72 + 2
9
[0 + 0 + 0.18 + 0.85 + 4.4 + 5.85]

= 6.23

Case c. a = 1

s∗ = V aR0.25(J(1, 1 + 1 + ξ0)) = V aR0.25(J(2 + ξ0)) = 8.1

Therefore,

J(0, x0, a0 = 1) = 1 + 12 + s∗ + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, x1)− s∗)+)

= 1 + 12 + s∗ + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, 1 + 1 + ξ1)− s∗)+)

= 2 + 8.1 + 4
3

∑
ξ1∈Ξ(

1
6
)(J(1, 2 + ξ1)− 8.1)+)

= 10.1 + 2
9
[(J(1, 2.04)− 8.1)+ + (J(1, 2.05)− 8.1)+

+(J(1, 2.12)− 8.1)+ + (J(1, 2.29)− 8.1)+ + (J(1, 2.93)− 8.1)+

+(J(1, 3.13)− 8.1)+]

= 10.1 + 2
9
[0 + 0 + 0.39 + 1.74 + 7.86 + 10.1]

= 14.56

After considering all these cases for a0 values, we deduce the final J(0, x0).

31



J(0, x0) = inf
a0∈{−1,0,1}

J(0, x0)

= inf
a0∈{−1,0,1}

{J(0, x0, a0 = −1), J(0, x0, a0 = 0), J(0, x0, a0 = 1)}

= inf{3.59, 6.23, 14.56}

= 3.59

So the final answer for α = 0.25 is J(0,x0) = 3.59.

The obtained results can be collected in the following table, where π∗(0, x0)

stands for the optimal action for the given t = 0 and x0 value.

x0 a0 s∗ J(0, x0, a0) J(0, x0) π∗(0, x0)

1

-1 0.59 3.59

3.59 -10 2.72 6.23

1 8.10 14.56

Table 3.3. J(0, x0, a0) values

3.4.4 LQR Problem with Sampled Exponential Noise at risk

levels α = 0.5, α = 0.75 and α = 0.99

The calculation with nonzero risk α is done similarly to the α = 0.25 case. The

results of the work are collected in a table.

α J(0, x0)

0 3.18

0.25 3.59

0.5 4.37

0.75 5.61

0.99 6.81

Table 3.4. J(0, x0) values versus risk level α

From Table 3.4, it can be observed that a higher α value would result in a higher

J(0, x0) value.

32



3.4.5 Plots for LQR Problem with Sampled Exponential

Noise at risk level α = 0

Vmin(0,1) values were computed using code incorporating an approximate dynamic

programming algorithm, mentioned in Section 4. To investigate the behavior of the

Vmin(0,1) depending on terminal time t = T , the plots of Vmin(0,1) versus the number

of iterations n ∈ {1, ..., N = 200} and the terminal time T ∈ {2, 3, 4, 5} were made.

The plots show convergence to a true value after a certain number of iterations in

the range n ∈ {1, ..., N = 200}.

The plots demonstrate that the number of iterations needed for Vmin(0,1) to con-

verge increases as the terminal time T increases, which is explained by the number

of possible states increasing each time as in Section 3.4.2. As there are 18t possible

states at each time t, the problem becomes much more computationally complex as

time increases.

Figure 3.2. Vmin(0,1) vs number of iterations plot for terminal time T = 2 for

α = 0

33



Figure 3.2. Vmin(0,1) vs number of iterations plot for terminal time T = 3 for

α = 0

Figure 3.2. Vmin(0,1) vs number of iterations plot for terminal time T = 4 for

α = 0

34



Figure 3.2. Vmin(0,1) vs number of iterations plot for terminal time T = 5 for

α = 0

35



Chapter 4

Approximate dynamic

programming algorithm

4.1 The algorithm

The approximate dynamic programming approach described in [12] was simplified

and modified for our problem. The computation consists of the following steps:

• Select and fix the number of iterations N .

• Set the iteration counter n = 1, set the initial parameters for state(x0), initial

time t0, terminal time T .

• Set the action space A (so that at ∈ A) and take a random noise samples ξt

(so that ξt ∼ SelectedDistribution)

• Initialize an initial approximation V
0

t , ∀t ∈ {1, ..., T}

• Forward pass: For each t ∈ {1, ..., T} create a random path by randomly

choosing (at, ξt).

• Backward pass: For each t ∈ {1, ..., T} compute following using the the

selected learning rate α and the decision ânt obtained from forward pass:

36



v̂nt = c(xn
t , â

n
t ) + v̂nt , with v̂nT+1 = 0

V
n

t−1(x
a,n
t−1) = UV

(
V

n−1

t−1 (x
a,n
t−1), x

a,n
t−1, v̂

n
t

)
= (1− α)V

n−1

t−1 + αv̂nt

• Increment n until the iteration number n > N .

• Return the value functions V
N

t (x
a,n
t ) ∀t ∈ {1, ..., T} and xt ∈ X.

4.2 Implementation

The algorithm is implemented in Python 3, using the NumPy, random and Mat-

plotlib libraries. The code is given in the Appendix.

4.3 Evaluation

To evaluate the performance of the code on the LQR problem of this thesis, the

check was done with all the given risk levels α ∈ {0, 0.25, 0.5, 0.75, 0.99}.

α Jtheor(0, x0) Jcode(0, x0) error

0 3.18 3.18 0

0.25 3.59 3.59 0

0.5 4.37 4.37 0

0.75 5.61 5.61 0

0.99 6.81 6.81 0

Table 3.5. Jtheor(0, x0) values comparison to Jcode(0, x0) values versus risk level α

This, with the addition of the convergence of the plots to the true values obtained

analytically, shows the perfect accuracy of this algorithm to the given LQR problem.

However, further tests may be needed for the higher terminal time T values.

37



Chapter 5

Summary of main results

LQR Problem with Theoretical Exponential Noise at a risk level α = 0 gave a

pattern regarding the optimal policy. It considered two cases:

• Case 1. λ < 1 OR

λ ≥ 1 and x ≥ 1− E[ξ1|x1, a1].

• Case 2. λ ≥ 1 and x ∈ [0,1− E[ξ1|x1, a1])

So, for Case 1, the optimal policy is a0 = −1, a1 = 0, a2 = 0.

For Case 2, the optimal policy is a0 = −1, a1 = −1, a2 = 0.

The LQR Problem with Sampled Exponential Noise at a risk level α = 0.25

justifies this observation. With the λ = 1 and E[ξ1|x1, a1] = 0.43, we know that

1−E[ξ1|x1, a1] = 1−0.43 = 0.57. As seen in Table 3.2, for all x1 < 0.57, the optimal

action a1 = 0, while the optimal action a1 = −1 for x1 ≥ 0.57.

Both for theoretical and exponential noise, a0 = −1 is satisfied for any case.

Intuitively, ct(xt, at) = x2
t +a2t , so a0 = 0 may be assumed to be a minimizing action.

However, since c1(x1, a1) = x2
1 + a21 and x1 = x0 + a0 + ξ0 for x0 = 1 and ξ0 > 0,

x1 is minimized by a0 = −1 due to the transition function. So, compared with

Bernoulli noise which can take a value of -1, in the case of the exponential noise, the

action value has to be minimized even further as exponential noise punishes action

at more, giving a higher weight to it. So, this point is verified both theoretically

and in experiments.

38



The LQR Problem with Sampled Exponential Noise at a risk level α ̸= 0 also

proves the Lemma 1.1., where

lim
α→1

AV aRα(X) = ess supX ≤ ∞

This is proved by the pattern that the value function is directly proportional to the

risk level α. So, for higher risks, higher-value functions are expected as stated in

the Lemma.

39



References

1. Todorov, E. Optimal control theory (2006). Bayesian Brain: Probabilistic

Approaches to Neural Coding. MIT Press: Cambridge, MA, USA, 269–298.

2. Walton, N. Stochastic control (2020)

3. Ugurlu, K. (2017). Controlled Markov Processes with AVaR Criteria for Un-

bounded Costs. Journal of Computational and Applied Mathematics, 319,

24-37.

4. Ahmadi-Javid, A. (2012). Entropic value-at-risk: A new coherent risk mea-

sure. Journal of Optimization Theory and Applications. 155 (3): 1105–1123.

5. Bauerle, N. Ott, J. (2011). Markov Decision Processes with Average-Value-

at-Risk criteria. Mathematical Methods of Operations Research, 74, 361-379.

6. Han, J. Weinan E. (2016). Deep Learning Approximation for Stochastic

Control Problems. ArXiv. https://doi.org/10.48550/arXiv.1611.07422

7. Yu, X. Shen S. (2023). Risk-Averse Reinforcement Learning via Dynamic

Time-Consistent Risk Measures. ArXiv. https://doi.org/10.48550/arXiv.2301.05981

8. Crespo L. Sun J-Q. (2003). Stochastic optimal control via Bellman’s principle.

Automatica, 39, 2109-2114.

9. Wrobel, A. (1984). On Markovian Decision Models with a Finite Skeleton”.

Mathematical methods of Operations Research. 28: 17-27.

40



10. Benac, L. Godin, F. (2021). Risk averse non-stationary multi-armed bandits.

ArXiv.

11. Mes, M. R. K., Perez Rivera, A. E. (2017). Approximate Dynamic Pro-

gramming by Practical Examples. Markov Decision Processes in Practice (pp.

63-101). International Series in Operations Research Management Science;

No. 248). Springer.

12. Nazemi, A., Talebi, F. Abdolbaghi Ataabadi A. (2022). Mean-AVaR in credi-

bilistic portfolio management via an artificial neural network scheme. Journal

of Experimental Theoretical Artificial Intelligence.

13. Ni, Y-H., Zhang, J-F., Li, X. (2016). Indefinite Mean-Field Stochastic Linear-

Quadratic Optimal Control: From Finite Horizon to Infinite Horizon. IEEE

Transactions on Automatic Control, 61(11), 3269-3284.

14. Hu, Y., Jin, H. Zhou, X. (2011). Time-Inconsistent Stochastic Linear-Quadratic

Control. SIAM Journal on Control and Optimization, 50(3), 1548-1572.

41



Chapter 6

Appendix

Appendix A. Code for graphical analysis for formulating minimizing

piecewise value function

1 # -*- coding: utf -8 -*-

2 """ appendix_a.ipynb

3

4 Automatically generated by Colab.

5

6 Original file is located at

7 https :// colab.research.google.com/drive /1

gwUcGbxVand5G3g4kAcZU1OIeXpBsD3B

8 """

9

10 import numpy as np

11 import matplotlib.pyplot as plt

12

13 # defining the range for x

14 x_vals = np.linspace(-1, 3, 1000)

15

16 # defining the functions for each interval

17 y1 = 1 - x_vals

18 y2 = 0.25 - 0.25* x_vals

19 y3 = 0* x_vals

20 y4 = 0.25 + 0.25* x_vals

42



21 y5 = 1 + x_vals

22

23 # defining the piecewise function giving the optimal value function

24 def piecewise(x):

25 if x < -0.5:

26 return 0.25 + 0.5*x

27 elif -0.5 <= x and x < 0.5:

28 return 0

29 elif 0.5 <= x and x < 1.5:

30 return 0.25 - 0.5*x

31 else:

32 return 1 - x

33

34 #vectorizing the piecewise function so that it can take numpy array

as

35 #an input and computing the piecewise function values immediately

36

37 piecewise_vectorized = np.vectorize(piecewise)

38 y_piecewise = piecewise_vectorized(x_vals)

39

40 # making the plots

41

42 plt.figure(figsize = (10, 7))

43 plt.xlim(-1, 3)

44 plt.ylim(-2, 4)

45 plt.xlabel(’$x_1$ ’)

46 plt.ylabel(’$\phi(a_{1})$’)

47 plt.title(’Graphs of the $\phi(a_{1})$ for $a_1$ ’)

48

49 plt.plot(x_vals , y1 , label = ’$\phi(a_{1}) = 1 - x_1$’)

50 plt.plot(x_vals , y2 , label = ’$\phi(a_{1}) = 0.25 - 0.5 x_1$’)

51 plt.plot(x_vals , y3 , label = ’$\phi(a_{1}) = 0$’)

52 plt.plot(x_vals , y4 , label = ’$\phi(a_{1}) = 0.25 + 0.5 x_1$’)

53 plt.plot(x_vals , y5 , label = ’$\phi(a_{1}) = 1 + x_1$’)

43



54 plt.plot(x_vals , y_piecewise , label = ’piecewise min’, color = ’k’,

linestyle = ’--’)

55

56 plt.text (2.5, -1.5, ’$\phi(a_{1}) = 1 - x_1$’, fontsize = 9,

verticalalignment = ’bottom ’)

57 plt.text(2, -0.75, ’$\phi(a_{1}) = 0.25 - 0.5 x_1$’, fontsize = 9,

verticalalignment = ’bottom ’)

58 plt.text (2.5, 0.1, ’$\phi(a_{1}) = 0$’, fontsize = 9,

verticalalignment = ’bottom ’)

59 plt.text (2.4, 1.75, ’$\phi(a_{1}) = 0.25 + 0.5 x_1$’, fontsize = 9,

verticalalignment = ’bottom ’)

60 plt.text(2, 3.3, ’$\phi(a_{1}) = 1 + x_1$’, fontsize = 9,

verticalalignment = ’bottom ’)

61

62 plt.axvline(0, color=’black’, linewidth = 0.5)

63 plt.axhline(0, color=’black’, linewidth = 0.5)

64 plt.grid(True)

65 plt.legend ()

66

67 plt.show()

Appendix B. Code for analytical computation of LQR problem at risk

level α ̸= 0.

1 # -*- coding: utf -8 -*-

2 """ appendix_b.ipynb

3

4 Automatically generated by Colab.

5

6 Original file is located at

7 https :// colab.research.google.com/drive /1DHP -

n8NW4sovcnOQlamROpBDlIu_bL6R

8 """

9

10 import numpy as np

11

12 alpha = 0.25 #setting risk level

44



13

14 action_arr = np.array([-1, 0, 1]) # initial set of actions

15

16 np.random.seed (41) # setting the seed for reproducibility

17 random_arr = np.random.exponential(scale = 1.0, size = 6) # sample

6 points from exponential distribution with lambda = 1

18 random_arr = np.array(sorted(np.round(random_arr , 2)))

19

20 x1_vals = [] # array to store x1 values

21

22 for a in action_arr:

23 for w in random_arr:

24 x1_vals.append(round(1 + a + w, 2)) # #iterating through all

possible actions and noises

25

26 # computing q-quantile given x1, a and random noise values for 0 <=

q < = 1

27 def quantile_finder(x1 , a, random_arr , q):

28 lst = []

29 for ran in random_arr:

30 lst.append ((x1 + a + ran)**2)

31 qt = np.quantile(lst , q) # Numpy function for quantile

32 return qt

33

34 # solving for optimal j(1, x1) for each x1

35 def j1_finder (x1_vals , a_vals , random_arr):

36 j_vals = [] # array to store j1 values

37 for x1 in x1_vals:

38 q_vals = [] # array to store qt values

39

40 for a in action_arr:

41 # get a quantile for each x1 and a pair

42 qt = np.round(quantile_finder(x1 , a, random_arr , q = alpha),

2)

43

45



44 sum = 0

45 # replacing the expected value by average sum through all

random noises

46 for ran in random_arr:

47 sum += (1/6)*max((x1 + a + ran)**2 - qt , 0)

48

49 # computing the value function

50 q = np.round(x1**2 + a**2 + qt + sum*2, 2)

51 print(’x1: {}, a: {}, qt: {}, q: {}’.format(x1, a, qt, q))

52 q_vals.append(q)

53

54 # getting the minimum value J(1, x1) for each x1

55 j1 = np.min(q_vals)

56 j_vals.append(j1)

57

58 return j_vals

59

60 # function call to get an array of j1 values for all possible x1

values

61 j1 = j1_finder(x1_vals , action_arr , random_arr)

62

63

64 def j0_finder (j1):

65 j0_vals = [] # array to store j0 values

66 a = -1

67 for i in range (3):

68 # compute quantile for each action

69 qt = np.round(np.quantile(j1[6*i:6*i+6], q = alpha), 2)

70

71 sum = 0

72 # replacing the expected value by average sum through all

random noises

73 for j in range (6*i, 6*i + 6):

74 sum += (1/6)*max(j1[j] - qt , 0)

75

46



76 # computing the value function

77 q = np.round (1 + a**2 + qt + sum*2, 2)

78 print(’a: {}, qt: {}, q: {}’.format(a, qt, q))

79

80 # getting the J(0, x0, a0) for each a0

81 j0_vals.append(q)

82 a += 1

83

84 # getting the minimum value J(0, x0) for each x0

85 j0 = np.min(j0_vals)

86 return j0

87

88 # function call to get an array of j0 values for all possible x0

values

89 j0 = j0_finder(j1)

Appendix C. Code for approximate dynamic programming algorithm

and running simulations

1 # -*- coding: utf -8 -*-

2 """ appendix_c.ipynb

3

4 Automatically generated by Colab.

5

6 Original file is located at

7 https :// colab.research.google.com/drive /1

aBO5QcPcOZdVMcIgXEW9MVaDVzRYjuUw

8 """

9

10 import numpy as np

11 import time

12 import random

13 import matplotlib.pyplot as plt

14

15 # returns costs array for the given curent states and action

16 # real valued

17 def cost(state , action):

47



18 cost = (state ** 2) + (action ** 2)

19 cost = np.round(cost , 2)

20

21 return cost

22

23 # real valued scalar

24 def random_next_element(state , action , ran):

25 next_state = round(state + action + ran , 2)

26

27 return next_state

28

29 def V_hash(V_table , time , state , value):

30 key = (time , state)

31 V_table[key] = value

32

33 return V_table

34

35 def V_lookup(V_table , time , state):

36 key = (time , state)

37 value = V_table[key]

38

39 return value

40

41 def init_cost(state , time):

42 max_action = 2

43 max_random = 2

44 terminal = 5

45 val = state **2 + max_action **2

46 for i in range(0, terminal - time + 1):

47 next_state = state + max_random + max_action

48 tmp = next_state **2 + max_action **2

49 val+= tmp

50

51 return val

52

48



53 # dynamic avar calculation

54 # at each time t; calculates avar using the next time’s avar value

as the r.v.

55 def avar(V_table , alpha , state , s, action , time , terminal , ran_arr)

:

56 # if terminal calculate the terminal value AND hash the value for

that c(state ,...)+ aggr - s for that (state , aggr)

57

58 if time == terminal:

59 avar_val = np.round(cost(state , action) ,2)

60

61 return (avar_val , V_table)

62 #otherwise calculate next stage and next aval avar

63 else:

64 ran_len = len(ran_arr)

65 next_time = time + 1

66 s_arr = np.array ([])

67 tmp = 0

68 avar_val = 0

69 for ran in ran_arr:

70 #find the avar for the next space for the given fixed action

71 next_state = random_next_element(state , action , ran) # F(x_t

, a_t , \xi_t) # real valued

72 next_time = time + 1

73 next_key = (next_time , next_state)

74 val_2 = 0

75 if next_key in V_table: # in V_table_val

76 print(’KEY {} found next_time: {}, next_state: {} with used

action: {}’.format(next_key , next_time , next_state , action))

77 val_2 = V_lookup(V_table , next_time , next_state) #V lookup

val without act

78 print(’val_2 by looking up: ’, val_2)

79 else:

80 print(’KEY {} NOT found next_time: {}, next_state: {} with

used action: {}’.format(next_key , next_time , next_state , action)

49



)

81 val_2 = init_cost(state , time)

82 print(’init cost val2: ’, val_2)

83 #hash that void value to the corresponding key

84 V_table = V_hash( V_table , next_time , next_state , val_2) #

V hash val without act

85 s_arr = np.append(s_arr , val_2)

86 s_q = np.quantile(s_arr , alpha , interpolation=’linear ’) # real

valued quantile for s_q

87 s_q = np.round(s_q , 2)

88 for elt in s_arr:

89 avar_val += (1 / ran_len) * max(elt - s_q , 0) # expected

value part

90 avar_val = s_q + (1 / (1 - alpha)) * avar_val #the remaining

arithmetic operations

91 avar_val = cost(state , action) + avar_val # accumulating the

cost

92 avar_val = np.round(avar_val ,2)

93

94 print(’time , state , action: ’, time , state , action)

95

96 return (avar_val , V_table)

97

98 # dynamic avar calculation

99 # at each time t; calculates avar using the next time’s avar value

as the r.v.

100 def avar(V_table , alpha , state , s, action , time , terminal , ran_arr)

:

101 # if terminal calculate the terminal value AND hash the value for

that c(state ,...)+ aggr - s for that (state , aggr)

102

103 if time == terminal:

104 avar_val = np.round(cost(state , action) ,2)

105

106 return (avar_val , V_table)

50



107 #otherwise calculate next stage and next aval avar

108 else:

109 ran_len = len(ran_arr)

110 next_time = time + 1

111 s_arr = np.array ([])

112 tmp = 0

113 avar_val = 0

114 for ran in ran_arr:

115 #find the avar for the next space for the given fixed action

116 next_state = random_next_element(state , action , ran) # F(x_t

, a_t , \xi_t) # real valued

117 next_time = time + 1

118 next_key = (next_time , next_state)

119 val_2 = 0

120 if next_key in V_table: # in V_table_val

121 print(’KEY {} found next_time: {}, next_state: {} with used

action: {}’.format(next_key , next_time , next_state , action))

122 val_2 = V_lookup(V_table , next_time , next_state) #V lookup

val without act

123 print(’val_2 by looking up: ’, val_2)

124 else:

125 print(’KEY {} NOT found next_time: {}, next_state: {} with

used action: {}’.format(next_key , next_time , next_state , action)

)

126 val_2 = init_cost(state , time)

127 print(’init cost val2: ’, val_2)

128 #hash that void value to the corresponding key

129 V_table = V_hash( V_table , next_time , next_state , val_2) #

V hash val without act

130 s_arr = np.append(s_arr , val_2)

131 s_q = np.quantile(s_arr , alpha , interpolation=’linear ’) # real

valued quantile for s_q

132 s_q = np.round(s_q , 2)

133 for elt in s_arr:

134 avar_val += (1 / ran_len) * max(elt - s_q , 0) # expected

51



value part

135 avar_val = s_q + (1 / (1 - alpha)) * avar_val #the remaining

arithmetic operations

136 avar_val = cost(state , action) + avar_val # accumulating the

cost

137 avar_val = np.round(avar_val ,2)

138

139 print(’time , state , action: ’, time , state , action)

140

141 return (avar_val , V_table)

142

143 #running the simulations

144 def simulate(x_0 , t_0 , T, alpha , action_arr , random_arr , N, s, lr):

145

146 print(’s in simulate: ’, s)

147

148 V_table = Running_Bellman(alpha , T, action_arr , random_arr , N, s,

x_0 , lr)

149

150 return V_table

151

152

153 # Simulation with Bernoulli noise

154

155 x_0 = 1 # initial state

156 t_0 = 0 # initial time

157 T = 2 # terminal time

158 N = 200 # maximum number of iterations

159 alpha = 0.00 # risk level , can be 0, 0.25, 0.5, 0.75, 0.99

160

161 s_array = np.array ([0]) # s to be minimized in AVaR formula

162 action_arr = np.array([-1, -0.5, 0, 0.5, 1]) # initial set of

actions

163 random_arr = np.array([-1, 1]) # array of random Bernoulli noises

164

52



165 key = (t_0 , x_0) # initial key

166 min_value = float(’inf’)

167 V_min = {}

168

169 for r_a in s_array:

170 V_table = simulate(x_0 , t_0 , T, alpha , action_arr , random_arr , N,

r_a , lr = 0.95)

171 tmp = V_table[key]

172 if tmp < min_value:

173 #if the initial value is minimum then assign the value function

as the minimum

174 V_min = V_table

175 min_value = tmp

176 s_min = r_a

177

178 print(’(V_min [(time ,state , aggr)]: min_value)’, V_min)

179 print(’s_min: ’, s_min)

180 print(’V_min [({}, {})]: {}’.format(t_0 , x_0 , min_value))

181

182

183 # Simulation with Exponential noise

184

185 x_0 = 1 # initial state

186 t_0 = 0 # initial time

187 T = 2 # terminal time

188 N = 200 # maximum number of iterations

189 alpha = 0.00 # risk level , can be 0, 0.25, 0.5, 0.75, 0.99

190

191 s_array = np.array ([0])

192 action_arr = np.array([-1, 0, 1]) # initial set of actions

193

194 np.random.seed (41) # setting the seed for reproducibility

195 random_arr = np.random.exponential(scale = 1.0, size = 6) # sample

6 points from exponential distribution with lambda = 1

196 random_arr = np.array(sorted(np.round(random_arr , 2)))

53



197

198 key = (t_0 , x_0) # initial key

199 min_value = float(’inf’)

200 V_min = {}

201

202 for r_a in s_array:

203 V_table = simulate(x_0 , t_0 , T, alpha , action_arr , random_arr , N,

r_a , lr = 0.99)

204 tmp = V_table[key]

205 if tmp < min_value:

206 #if the initial value is minimum then assign the value function

as the minimum

207 V_min = V_table

208 min_value = tmp

209 s_min = r_a

210

211 print(’(V_min [(time ,state , aggr)]: min_value)’, V_min)

212 print(’s_min: ’, s_min)

213 print(’V_min [({}, {})]: {}’.format(t_0 , x_0 , min_value))

Appendix D. Code for Vmin(0,1) vs number of iterations plot for ter-

minal time T ∈ {2, 3, 4, 5}

1 # -*- coding: utf -8 -*-

2 """ appendix_d.ipynb

3

4 Automatically generated by Colab.

5

6 Original file is located at

7 https :// colab.research.google.com/drive /1 r019nE00oxXE -

BkOzGZFEhtPBqCw1zFR

8 """

9

10 def value_array_creater(terminal_time):

11 min_vals = [] # array to store J(0, x0) value for each number of

iterations n

12

54



13 for N in range(1, 201):

14 x_0 = 1 # initial state

15 t_0 = 0 # initial time

16 T = terminal_time # terminal time , can be 2, 3, 4, 5

17 alpha = 0.00 # risk level , can be 0, 0.25, 0.5, 0.75, 0.99

18

19 s_array = np.array ([0]) # s to be minimized in AVaR formula

20 action_arr = np.array([-1, 0, 1]) # initial set of actions

21

22 np.random.seed (41) # setting the seed for reproducibility

23 random_arr = np.random.exponential(scale = 1.0, size = 6) #

sample 6 points from exponential distribution with lambda = 1

24 random_arr = np.array(sorted(np.round(random_arr , 2)))

25

26 key = (t_0 , x_0) # initial key

27 min_value = float(’inf’)

28 V_min = {}

29

30 for r_a in s_array:

31 V_table = simulate(x_0 , t_0 , T, alpha , action_arr , random_arr

, N, r_a , lr = 0.99)

32 tmp = V_table[key]

33

34 if tmp < min_value:

35 #if the initial value is minimum then assign the value

function as the minimum

36 V_min = V_table

37 min_value = tmp

38 s_min = r_a

39

40 min_vals.append(min_value)

41 print(’(V_min [(time ,state , aggr)]: min_value)’, V_min)

42 print(’s_min: ’, s_min)

43 print(’V_min [({}, {})]: {}’.format(t_0 , x_0 , min_value))

44

55



45 return min_vals

46

47

48 # Obtaining J(0, x0) values for terminal time = 2

49 t = 2

50 min_vals2 = value_array_creater(terminal_time = t)

51

52 # Getting the minimum J(0, x0) value for terminal time = 2

53 np.min(min_vals2)

54

55 # Making a plot

56 n = np.arange(1, 201, 1) # number of iteration

57 plt.figure(figsize =(10 ,7))

58 plt.plot(n, min_vals2) # J(0, x0) value versus number of iteration

plot

59 plt.title(r’$V_\min$ (0,1) vs number of iterations plot for terminal

time $T = {}$ for $\alpha = 0$’.format(t)) # plot title

60 plt.axhline(y=3.18 , color=’r’, linestyle=’--’) # Add horizontal

line at y = 3.98 (the minimum J(0, x0) value for terminal time =

2)

61 plt.text (-10.3, 3.2, ’3.18’, color=’red’, ha=’right’) # Annotate

the y-axis at the level 3.98 (the minimum J(0, x0) value for

terminal time = 2)

62 plt.xlabel(’Iterations ’)

63 plt.ylabel(’$V_\min$ (0,1)’)

64 plt.show()

56


	Abstract
	Acknowledgments
	Table of Contents
	   Introduction
	Motivation
	Preliminaries
	Markov Decision Process
	Dynamic programming
	Approximate dynamic programming
	Risk measures
	Probability distributions
	Quantile function

	Problem statement

	   Literature review
	   Analytic solution
	Hamiltonian-Jacobi-Bellman equations
	LQR Problem
	LQR Problem with Bernoulli Noise
	LQR Problem with Exponential Noise
	LQR Problem with Theoretical Exponential Noise at risk level = 0
	LQR Problem with Sampled Exponential Noise at risk level = 0
	LQR Problem with Sampled Exponential Noise at risk level = 0.25
	LQR Problem with Sampled Exponential Noise at risk levels = 0.5, = 0.75 and = 0.99
	Plots for LQR Problem with Sampled Exponential Noise at risk level = 0 


	   Approximate dynamic programming algorithm
	The algorithm
	Implementation
	Evaluation

	   Summary of main results
	References
	   Appendix

