
School of Sciences and Humanities

Department of Mathematics

Thesis

Solving Linear-Quadratic Regulator Problem with

Average-Value-at-Risk Criteria using Approximate Dynamic

Programming

Author: Arailym Raikhankyzy

Supervisor: Kerem Ugurlu

21 April, 2024

Contents

0.1 Abstract . 3

1 Overview 4

1.1 Introduction . 4

1.2 Literature Review . 5

1.3 Linear Quadratic Regulator Control Problem 6

1.4 Average Value at Risk . 8

1.5 LQR-AVaR problem . 10

2 Methods 10

2.1 Approximate Dynamic Programming 10

2.2 Algorithm Description and Implementation 11

3 Experiments 14

3.1 Experimental Problems . 14

3.2 Plot Analysis . 22

4 Conclusion 26

5 Appendix 28

2

0.1 Abstract

This master’s thesis explores the intersection of optimal control theory and risk-

sensitive decision-making by addressing the finite-horizon discrete-time linear

quadratic regulator (LQR) problem with a focus on the average-value-at-risk (AVaR)

criteria. The study aims to mathematically formalize the LQR-AVaR problem within

the dynamic programming framework and develop a computational algorithm based

on approximate dynamic programming techniques to solve it. The algorithm’s ef-

fectiveness is rigorously assessed through the analysis of experiment results and plot

evaluations. The experiment results indicate that the approximate dynamic pro-

gramming algorithm, when applied properly, performs well for the problem, with

experiments suggesting high accuracy.

3

1 Overview

1.1 Introduction

Optimal control problems have been widely studied and applied in various fields,

such as robotics, aerospace, and finance. The linear quadratic regulator (LQR) is a

classical control method that has been widely used to solve optimal control problems

with quadratic cost or reward functions. However, in real-world applications, the

system dynamics and cost functions are often uncertain or stochastic, which can

lead to suboptimal performance or even failure of the control system.

To address this challenge, the average value at risk (AVaR) has been proposed as

a risk measure to provide robustness to uncertainty and unexpected events. In this

thesis, we have chosen to use "dynamic" AVaR instead of a simple AVaR method-

ology. Dynamic AVaR is preferred due to its ability to take into account the time-

varying nature of financial markets and better handle changes in market conditions.

Additionally, it provides more flexibility in terms of the range of data that can be

incorporated, allowing for a more accurate capture of complex risk patterns. Dy-

namic AVaR also offers a more accurate estimation of tail risk, which may be missed

by a simple AVaR model that assumes a symmetrical distribution of returns. Ulti-

mately, our decision to use dynamic AVaR is based on the belief that it is a more

appropriate methodology for providing a robust and accurate estimation of risk in

financial markets.

The LQR-AVaR problem is an extension of the classical LQR problem that

includes the AVaR risk measure as a constraint. The LQR-AVaR problem can be

solved using traditional dynamic programming and optimisation techniques, but the

computational complexity can be high, especially for high-dimensional systems.

In this thesis, approximate dynamic programming (ADP) was the method of

choice for this optimal control problem due to its discrete and nonlinear nature.

For the application of machine learning-based approaches, our problem lacked the

4

data required to train machine learning algorithms. Bellman’s principle functions

are complex and nonlinear with the inclusion of a new risk measure, making the old

optimisation techniques impracticable. These functions could not be minimised by

optimisation techniques; hence, a method that could manage the complex dynamics

of the issue had to be used. ADP offers a principled framework for addressing the

complexities of our problem domain and arriving at precise solutions, since there is

no straightforward optimisation path. This thesis aims to address the LQR-AVaR

problem by presenting an ADP algorithm and implementing a computer program

to solve the problem.

1.2 Literature Review

In recent years, there has been a growing interest in using machine learning tech-

niques for solving optimal control problems. Several studies have proposed different

approaches and algorithms to tackle this problem, and in this review, we will sum-

marize some of the related work in this field.

N. Báuerle and J. Ott’s study, presented in [1], explores into the problem of

minimizing the AVaR of discounted costs across both limited and infinite horizon

scenarios. By reducing the complexity of the issue to a standard Markov Decision

Process (MDP) and creating the necessary conditions for the existence of an ideal

policy, their approach expands the state space as needed. On the basis of this work,

N. Báuerle and U. Rieder expand on the research in [2] by examining situations

in which exponential utility is employed for risk-sensitive evaluations rather than

AVaR.

K. Ugurlu[3] makes more progress by formulating the LQR-AVaR problem, which

deals with situations where costs may be unbounded across an indefinite horizon.

The presence of an optimal policy is shown by suitable state aggregation and heuris-

tic selection of a global variable s.

Properties of the AVaR and dynamic AVaR are studied by Y. Yoshida in [4]

5

and by Y. Yoshida and S. Kumamoto in [5]. Through dynamic programming, an

optimality equation for the optimal average value-at-risks across time is formulated

by Y. Yoshida[5]. The study provides optimal portfolio compositions and their

associated average value-at-risks as solutions to this equation.

There are currently two popular machine learning methods for approximating the

Hamilton-Jacobi-Bellman equation: deep learning and reinforcement learning. The

deep learning approach to solving high-dimensional partial differential equations,

including the Hamilton-Jacobi-Bellman equation, is studied and implemented using

Python by M. R. Rothe[6] for her master thesis. Deep learning approach based

on Monte-Carlo sampling for solving stochastic control problems is presented by J.

Han and W. E in [7]. Another article written by J. Blechschmidt and O. G. Ernst[8]

presents three neural network based method to solve partial differential equations

such as Hamilton-Jacobi-Bellman equation. The reinforcement learning method

for solving the problem of risk-sensitive Markov Decision Processes is studied by X.

Yu[9]. In this paper, they consider maximizing reward problem instead of minimizing

risk. The algorithm that they present is developed using deep Q-learning framework.

Finally, an approximate dynamic programming algorithm for solving the problem

of the curse of dimensionality in large and stochastic optimization problems as the

LQR-AVaR problem is presented by M. Mes and A. P. Rivera[10].

1.3 Linear Quadratic Regulator Control Problem

We consider a controlled Markov Decision Process (xt) in discrete time and a non-

negative cost process (Ct). The initial state at time 0 is given by x0 = x. The action

(at) is chosen from the given controlled constrained action set A. For discrete time

t ∈ [0, T] the next state is given by a transition function X(xt, at, wt), that is

xt+1 = X(xt, at, wt)

6

where a(xt, at, wt) is a real valued function, at ∈ A is an action at time t. The

problem is to minimize the cost

Cu
T =

T−1∑
t=0

c(xt, at) + g(xT),

where x0 = x is an initial state, c(xt, at) is a cost function at time t and g(xT) is a

terminal cost at time T.

Embed the problem into finding

Q(t, x0) = inf
at∈A

[T−1∑
k=t

c(xt, at) + g(xT)
]
,

where xk+1 = xk + ak, xt = x, t ≤ k ≤ T .

Proposition 1.1 (Hamilton-Jacobi-Bellman equation) For all (t, x), x ∈ R

and 0 ≤ t ≤ T ,

Q(t, x) = inf
a∈A

[
c(x, a, t) +Q(t+ 1, X(x, a, t)

]
Q(T + 1, x) = g(x).

(1.3.1)

For more information about dynamic programming and control problems, please

refer to [11].

In our case, we consider Linear Quadratic Regulator control problem (LQR prob-

lem) defined as follows:

Definition 1.1 For a discrete-time linear system given by

xt+1 = Axt +Bat + wt, x0 = x, where t ∈ [0, 1, 2, ..., T], x ∈ R

with a noise wt (i.i.d.) and a quadratic cost function defined as

J(0, x) = E

[
xT
TQTxT +

T−1∑
t=0

(
xT
t Qxt + aTt Rat

)]
.

7

The goal is to find the optimal control sequence minimizing the cost function.

1.4 Average Value at Risk

Instead of minimizing the expected value of the cost function we will use Average-

Value-at-Risk which is a more comprehensive measure of risk that measures the

expected value of the worst-case scenario.

Definition 1.2 Let X be a real-valued random variable and let α be a discount factor

such that α ∈ (0, 1).

The Average-Value-at-Risk of X at level α, denoted by AV aRα(X) is defined by

AV aRα(X) = E
[
X|X ≥ V aRα(X)

]
,

where V aRα(X) is the Value-at-Risk of X at level α, defined by

V aRα(X) = inf
{
x ∈ R : P(X ≤ x) ≥ α

}
.

To reduce the complexity of computing AVaR both in the code and in the exper-

imental problems, we represent it as the solution of a convex optimization problem,

as shown in the lemma given by R. T. Rockafellar and S. Uryasev[12].

Lemma 1.1 Let X be a real-valued random variable and let α ∈ (0, 1). Then

AV aRα(X) = min
∀s∈R

{
s+

1

1− α
E[(X − s)+]

}
(1.4.1)

and the minimum is given by

s∗ = V aRα(X) = inf
{
x ∈ R : P (X ≤ x) ≥ α

}
. (1.4.2)

The following properties of AVaR is given in [4].

8

Lemma 1.2 For α ∈ [0, 1] and real-valued random variables X and Y , the Average-

Value-at-Risk has the following properties:

1. Coherence: sub-additive

AV aRα(
n∑

i=1

Xi) ≤
n∑

i=1

AV aRα(Xi)

and translation-invariant

AV aRα(X + c) = AV aRα(X) + c, for c ∈ R.

2. Monotonicity: if X ≤ Y , then

AV aRα(X) ≤ AV aRα(Y).

3. Positive homogeneity:

AV aRα(X) + AV aRα(Y) ≤ AV aRα(X + Y).

The dynamic AVaR, which is AVaR evaluated with respect to conditional expec-

tation, has the following properties[5]:

Lemma 1.3 Let α ∈ [0, 1] and X, Y and Z be real-valued random variables. Assume

X and Z are independent. Then

1. AV aRα(X|Z) = AV aRα(X).

2. AV aRα(Y |Z) = Y.

3. AV aRα(X + Y |Z) = AV aRα(X) + Y.

9

1.5 LQR-AVaR problem

The main objective of the problem is to find the optimal control, denoted by a∗t for

t ∈ {0, ..., T}, for the problem

min
at

AV aRα(c(xt, at)|xt, at), for 0 ≤ t ≤ T,

where

xt = Axt+Bat + wt, x0 = x, t ∈ {0, 1, 2, ..., T},

c(xt, at) =
T∑
t=0

(
xT
t Qxt + aTt Rat

)
,

given a set of admissible actions A and a random variable wt. Here A,B and Q,R

are parameters of choice for different problems.

2 Methods

2.1 Approximate Dynamic Programming

Dynamic programming breaks down complex Markov Decision Processes (MDPs)

based optimal control problems into smaller, easier to handle subproblems. The goal

is to solve these smaller problems in order to find the best possible policy or set of

actions for the MDP overall. But because of the infamous "curse of dimensional-

ity," calculating the exact solution—which is often accomplished through backward

dynamic programming—proves difficult and sometimes impossible for large-scale is-

sues. To address this, Approximate Dynamic Programming (ADP) is introduced as

a modelling paradigm based on the MDP framework, providing a range of meth-

ods to overcome the dimensionality problem in large-scale, multi-period stochastic

optimisation problems.

ADP is a method used to solve complex stochastic optimization problems, par-

10

ticularly in the field of control theory. It is an iterative approach that seeks to find

an optimal solution by breaking down the problem into smaller subproblems and

solving each one in a recursive manner. The term "approximate" in ADP indicates

that the method is not always guaranteed to find the exact optimal solution, but

rather a solution that is close enough to the optimal solution within a specified

tolerance level.

One of the key advantages of ADP is its ability to handle large-scale optimization

problems that would be computationally intensive to solve exactly. By breaking the

problem down into smaller subproblems and solving them iteratively, ADP can pro-

vide near-optimal solutions in a more manageable amount of time. This is especially

beneficial when dealing with systems that have a large number of states or inputs,

or when the system dynamics are complex and difficult to model.

The ADP framework is particularly suitable for problems with a finite horizon,

such as the finite horizon discrete-time linear quadratic regulator (LQR) problem.

In the context of LQR, ADP is used to find the optimal control input sequence

that minimizes a cost function over a finite time horizon, subject to the system

dynamics. The cost function typically includes terms for state deviation, input size,

and final state deviation, and the goal is to minimize the total cost over the entire

time horizon.

2.2 Algorithm Description and Implementation

In this section, we will delve into the intricacies of the approximate dynamic pro-

gramming (ADP) algorithm as implemented within this thesis. Originally proposed

by M. Mes and A. P. Rivera[10], the ADP algorithm represents a value-based ap-

proach tailored to tackle stochastic optimization problems effectively.

The ADP algorithm operates on the principle of iteratively solving Bellman’s

equations for individual states at each stage. It accomplishes this by utilizing esti-

mates of downstream values and conducting iterative updates to refine these estima-

11

tions. The algorithm takes as input the initial state xt, the admissible set of actions

A, the set of random variables wt, the discount factor or risk averseness α, and the

terminal time T . Additionally, it allows the learning of the hyperparameters such

as the number of iterations N and the learning rate β.

At its core, the algorithm aims to yield the optimal actions and corresponding

values for each time step t ∈ {0, 1, ..., T}. Notably, the code incorporates a built-in

function capable of computing both the expected cost value when α = 0 and the

average-value-at-risk (AVaR) for varying α values.

The ADP algorithm consists of two main stages: the forward pass and the back-

ward pass. During the forward pass, random actions at and random variables wt are

selected to construct a sample path, which is then stored as states xt+1 = xt+at+wt.

Subsequently, in the backward pass, these generated sample paths are utilized to

iteratively update the values at each iteration, refining the approximation of the

optimal solution.

This approach not only facilitates efficient exploration of the solution space but

also enables the algorithm to adapt and learn from the dynamics of the system, ul-

timately yielding robust and effective solutions to stochastic optimization problems.

12

Algorithm 1: ADP algorithm for solving LQR-AVaR Problem
Input : x0, A, wt, α, T, β,N
Output: J(t, xt) for t ∈ {0, 1, ..., T}
Step 0: Initialization

Step 0a: Choose an initial approximation J(t, xt) for t ∈ {0, ..., T}.
Step 0b: Choose the number of iterations N .
Step 0c: Set the initial state to x0.

for n = 1, 2, ..., N do
Step 1: Forward Pass

for t = 0, ..., T do
Step 1a: Create a sample path by choosing random (at, wt) and
update the states xt+1 = xt + at + wt;

end

Step 2: Backward Pass

for t = T, T − 1, ..., 1 do
Step 2a: Compute J̃(t, xt) using the state xt from the forward pass:

J̃(t, xt) = c(xt, at) +AV aR(J̃(t+ 1, xt+1)), with J̃(T + 1, xT+1) = 0;

Step 2b: Update the approximation J(t, xt) for state xt using

J(t, xt) = (1− β) ∗ J̃(t, xt) + β ∗ J(t, xt);

end
end

Step 3: Return J(t, xt) for t ∈ {0, 1, ..., T}

13

3 Experiments

In this section, we will solve problems using experimental scenarios using dynamic

programming techniques and compare the findings with the results returned by the

code in order to assess its performance, since there are no data or accuracy metrics

available to support the numerical outcomes offered by the algorithm. We will also

do plot analysis to show that the suggested ADP algorithm validates the expected

dynamics and trends in the LQR-AVaR problem.

3.1 Experimental Problems

In the following calculations we will use formulas 1.4.1 and 1.4.2 to calculate the

AV aRα,

AV aRα(X) = min
∀s∈R

{
s+

1

1− α
E[(X − s)+]

}
,

s∗ = V aRα(X) = inf
{
x ∈ R : P (X ≤ x) ≥ α

}
,

and the following representation of the Bellman’s principle, given by proposition

1.3.1, will be used for easier calculations:

J(t, xt) = inf
at

Q(t, xt, at),

Q(t, xt, at) =c(xt, at) + AV aRα

(
J(t+ 1, xt+1)|xt, at

)
=

=c(xt, at) + inf
s∈R

{
s+

1

1− α
E[(J(t+ 1, xt+1)− s)+|xt, at]

}
=

=c(xt, at) + s∗ +
1

1− α
E[(J(t+ 1, xt+1)− s∗)+|xt, at].

Problem 1: LQR-AVaR Problem with α = 0.25. Given a linear transition

14

function xt+1 = xt + at +wt and a quadratic cost function c(xt, at) = x2
t + a2t , where

the random variable wt is Bernoulli and given by

wt =


1, with p = 0.5

−1, with p = 0.5

with the initial state x0 = 1, the set of admissible actions A = {−1,−0.5, 0, 0.5, 1}.

Minimize AV aRα

(∑T
t=0 c(xt, at)

)
over at ∈ A when α = 0.

Solution: Note that AV aRα=0

(∑T
t=0 c(xt, at)

)
= E

[∑T
t=0 c(xt, at)

]
.

When T=1:

For t = 1,

J(1, x1) = inf
a1

{
E
[
x2
1 + a21|x1, a1

]}
= inf

a1

{
x2
1 + a21

}
= x2

1, a
∗
1 = 0.

Here, the conditional expectation E
[
x2
1 + a21|x1, a1

]
simplifies to x2

1 + a21 because,

given the fixed values of x1 and a1, they act as constants in the computation. Also,

a∗1 is the optimal action at time t = 1.

For t = 0,

J(0, x0) = inf
a0

{
x2
0 + a20 + E

[
(x0 + a0 + w)2|x0, a0

]}
=

= inf
a0

{
x2
0 + a20 +

1

2
(x0 + a0 + 1)2 +

1

2
(x0 + a0 − 1)2

}
=

= inf
a0

{
2x2

0 + 2a20 + 2x0a0 + 1
}
=

=2x2
0 + 1 + 2 inf

a0

{
a20 + x0a0

}
.

Here, we need to find the infimum of the function ϕ(a0) = a20+x0a0. The function

attains its infimum point ϕ(a0) = −0.25 when a∗0 = −0.5.

15

J(0, x0 = 1) = 2 ∗ 12 + 1 + 2 ∗ (−0.25) = 2.5.

In summary,

J(1,−1) = 1, J(1,−0.5) = 0.25, J(1, 0) = 0, J(1, 0.5) = 0.25, J(1, 1) = 1,

J(1, 1.5) = 2.25, J(1, 2) = 4, J(1, 2.5) = 6.25, J(1, 3) = 9,

J(0, 1) = 2.5.

When T=2:

For t = 2,

J(2, x2) = inf
a2

{
E
[
x2
2 + a22|x2, a2

]}
= inf

a2

{
x2
2 + a22

}
= x2

2, a
∗
2 = 0.

For t = 1,

J(1, x1) = inf
a1

{
x2
1 + a21 + E

[
(x1 + a1 + w)2|x1, a1

]}
=

= inf
a1

{
x2
1 + a21 +

1

2
(x1 + a1 + 1)2 +

1

2
(x1 + a1 − 1)2

}
=

= inf
a1

{
2x2

1 + 2a21 + 2x1a1 + 1
}
= 2x2

1 + 1 + 2 inf
a1

{
a21 + x1a1

}
.

Here, we need to find the infimum of the function ϕ(a1) = a21+x1a1. By analysing

each possible cases graphically we derive the followings:

x1 ∈ [−1,−0.5), a∗1 = 0.5, J(1, x1) = 2x2
1 + x1 + 1.5

x1 ∈ [−0.5, 0.5), a∗1 = 0, J(1, x1) = 2x2
1 + 1.

x1 ∈ [0.5, 1.5), a∗1 = −0.5, J(1, x1) = 2x2
1 − x1 + 1.5.

x1 ∈ [1.5, 3], a∗1 = −1, J(1, x1) = 2x2
1 − 2x1 + 3.

16

For t=0,

Q(0, 1,−1) = 12 + (−1)2 +
1

2

(
J(1, 1) + J(1,−1)

)
= 4.5.

Q(0, 1,−0.5) = 12 + (−0.5)2 +
1

2

(
J(1, 1.5) + J(1,−0.5)

)
= 4.25.

Q(0, 1, 0) = 12 + 02 +
1

2

(
J(1, 2) + J(1, 0)

)
= 5.

Q(0, 1, 0.5) = 12 + 0.52 +
1

2

(
J(1, 2.5) + J(1, 0.5)

)
= 7.25.

Q(0, 1, 1) = 12 + 12 +
1

2

(
J(1, 2.5) + J(1, 0.5)

)
= 10.75.

The minimizing action for time t = 0 is a∗0 = −0.5 and the optimal value is J(0, 1) =

4.25.

In summary,

J(2,−3) = 9, J(2,−2.5) = 6.25, J(2,−2) = 4, J(2,−1.5) = 2.25, J(2,−1) = 1,

J(2,−0.5) = 0.25, J(2, 0) = 0, J(2, 0.5) = 0.25, J(2, 1) = 1, J(2, 1.5) = 2.25,

J(2, 2) = 4, J(2, 2.5) = 6.25, J(2, 3) = 9, J(2, 3.5) = 12.25, J(2, 4) = 16,

J(2, 4.5) = 20.25, J(2, 5) = 25,

J(1,−1) = 2.5, J(1,−0.5) = 1.5, J(1, 0) = 1, J(1, 0.5) = 1.5, J(1, 1) = 2.5,

J(1, 1.5) = 4.5, J(1, 2) = 7, J(1, 2.5) = 10.5, J(1, 3) = 15,

J(0, 1) = 4.25.

The numerical results achieved by this calculation perfectly matches with the out-

puts generated by the code. The dynamics of the optimal values given by code over

the iterations are shown in Figure 1.

Problem 2: LQR-AVaR Problem with α = 0.25. Given a linear transition

function xt+1 = xt + at +wt and a quadratic cost function c(xt, at) = x2
t + a2t , where

17

Figure 1: The dynamics of the optimal value J(0, 1) over N = 100 iterations for
Problem 1 and 2.

the random variable wt is Bernoulli and given by

wt =


1, with p = 0.5

−1, with p = 0.5

with the initial state x0 = 1, the set of admissible actions A = {−2, 2}, and the

terminal time T = 2. Minimize AV aRα

(∑T
t=0 c(xt, at)

)
over at ∈ A when α = 0.25.

Solution:

For t = 2,

J(2, x2) = inf
a2

{
AV aR0.25

(
x2
2 + a22|x2, a2

)}
= inf

a2

{
x2
2 + a22

}
= x2

2 + 4, a∗2 = −2 or 2.

For t = 1,

Q(1, x1, a1) =x2
1 + a21 + s∗ +

1

1− 0.25
E[((x1 + a1 + w1)

2 + 4− s∗)+|x1, a1] =

=x2
1 + a21 + s∗ +

4

3

(
1

2
((x1 + a1 + 1)2 + 4− s∗)++

+
1

2
((x1 + a1 − 1)2 + 4− s∗)+

)
.

Given x0 = 1 and A = {−2, 2}, the set of possible states for x1 is {−2, 0, 2, 4}.

18

Now, we will find the optimal values at time t = 1 separately for each cases of x1.

For x1 = −2,

a1 = −2, s∗ = V aR0.25((−2− 2 + w)2 + 4) = 17, Q(1,−2,−2) = 33,

a1 = 2, s∗ = V aR0.25((−2 + 2 + w)2 + 4) = 5, Q(1,−2, 2) = 13.

For x1 = 0,

a1 = −2, s∗ = V aR0.25((0− 2 + w)2 + 4) = 7, Q(1, 0,−2) = 15,

a1 = 2, s∗ = V aR0.25((0 + 2 + w)2 + 4) = 7, Q(1, 0, 2) = 15.

For x1 = 2,

a1 = −2, s∗ = V aR0.25((2− 2 + w)2 + 4) = 5, Q(1, 2,−2) = 13,

a1 = 2, s∗ = V aR0.25((2 + 2 + w)2 + 4) = 17, Q(1, 2, 2) = 33.

For x1 = 4,

a1 = −2, s∗ = V aR0.25((4− 2 + w)2 + 4) = 7, Q(1, 4,−2) = 31,

a1 = 2, s∗ = V aR0.25((4 + 2 + w)2 + 4) = 35, Q(1, 4, 2) = 67.

For t=0,

J(0, x0) = inf
a0

{
x2
0 + a20 + AV aR0.25

(
J(1, x1)|x0, a0

)}
, x0 = 1.

a0 = −2, s∗ = V aR0.25(J(1, 1 + 2 + w)) = 17.5, Q(0, 1, 2) = 31.5

a0 = 2, s∗ = V aR0.25(J(1, 1− 2 + w)) = 13.5, Q(0, 1,−2) = 19.5

19

In summary,

J(2,−5) = 29, J(2,−3) = 13, J(2,−1) = 5, J(2, 1) = 5, J(2, 3) = 13, J(2, 5) = 29,

J(1,−2) = 13, J(1, 0) = 15, J(1, 2) = 13, J(1, 4) = 31,

J(0, 1) = 19.5.

For this problem the results obtained matches exactly with the outputs of the code

as well.

Problem 3: LQR-AVaR with the standard normal random variable wt

and α = 0. Given the linear transition function xt+1 = xt+ at+wt and a quadratic

cost function c(xt, at) = x2
t + a2t , where the random variable wt is standard normal

and given by

wt =


−0.14, with p = 1/3

−0.17, with p = 1/3

−0.11, with p = 1/3

with the initial state x0 = 1, the set of admissible actions A = {−1, 0, 1}, and the

terminal time T = 2. Minimize AV aRα

(∑T
t=0 c(xt, at)

)
over at ∈ A when α = 0.

Solution: For t = 2,

J(2, x2) = inf
a2

{
E
[
x2
2 + a22|x2, a2

]}
= inf

a2

{
x2
2 + a22

}
= x2

2, a2 = 0.

20

x1 -0.14 -0.17 -0.11 0.83 0.86 0.89 1.83 1.86 1.89
J(1, x1) 0.10 0.13 0.07 1.17 1.26 1.35 4.83 4.98 5.13

Table 1: Values of J(1, x1) for each x1

For t = 1,

J(1, x1) = inf
a1

{
x2
1 + a21 + E

[
(x1 + a1 + w)2|x1, a1

]}
=

= inf
a1

{
x2
1 + a21 +

1

3
(x1 + a1 − 0.14)2 +

1

3
(x1 + a1 − 0.17)2+

+
1

3
(x1 + a1 − 0.11)2

}
=

= inf
a1

{
2x2

1 + 2a21 + 2x1a1 − 0.28x1 − 0.28a1 + 0.0202
}
=

= 2x2
1 − 0.28x1 + 0.0202 + 2 ∗ inf

a1

{
a21 + x1a1 − 0.14a1

}
.

Here, we need to find the infimum of the function ϕ(a1) = a21 + x1a1 − 0.14a1. By

analysing each possible cases we get the followings:

x1 ∈ [−0.17, 1.14), a1 = 0, J(1, x1) = 2x2
1 − 0.28x1 + 0.0202.

x1 ∈ [1.41, 1.89], a1 = −1, J(1, x1) = 2x2
1 − 0.28x1 + 2.3002.

For t=0,

Q(0, 1,−1) = 12 + (−1)2 +
1

3

(
J(1,−0.11) + J(1,−0.14) + J(1,−0.17)

)
= 2.1.

Q(0, 1, 0) = 12 + 02 +
1

3

(
(J(1, 0.89) + J(1, 0.86) + J(1, 0.83)

)
= 2.26.

Q(0, 1, 1) = 12 + 12 +
1

3

(
(J(1, 1.89) + J(1, 1.86) + J(1, 1.83)

)
= 6.98.

Thus, the optimal value is J(0, 1) = 2.1.

The results of this problem demonstrate the effectiveness of the proposed code,

even when applied to standard normal random variables instead of Bernoulli distri-

butions. The evolution of optimal values over the course of iterations is illustrated in

21

Figure 2. As depicted in this graph, larger random variables require a greater num-

ber of iterations to converge to an optimal value compared to the previous problems.

Figure 2: The dynamics of the optimal value J(0, 1) over N = 100 iterations for
Problem 3.

3.2 Plot Analysis

In this plot analysis, our aim is to validate four crucial trends present in the LQR-

AVaR problem, as demonstrated by the output results obtained from the proposed

ADP algorithm-based code.

1. As the risk aversion parameter α increases, the optimal value J(0, 1) is ex-

pected to increase correspondingly.

2. With an increase in the terminal time T , the optimal values J(0, 1) should

also rise.

3. As the available action set A expands, the optimal values J(0, 1) are antici-

pated to decrease.

4. As the terminal time T increases, a larger number of iterations N is necessary

for the convergence of the optimal values J(0, 1).

22

In Figure 3, the plot illustrates problem 2 for different values of α. It is evident that

as α rises, the optimal value J(0, 1) steadily increases. This trend can be ascribed

to the growing inclination towards risk reduction, which encourages the selection of

strategies that offer greater protection against potential losses. Consequently, this

cautious approach tends to favor actions associated with higher expected values,

resulting in an overall increase in the optimal value.

Figure 3: Optimal values J(0, 1) across varying α values when T = 2

In Figure 4, two graphs illustrate the variation of optimal values J(0, 1) as the

terminal time changes for problem 2, with a fixed number of iterations N = 100.

The initial graph depicts a linear increase in the optimal value J(0, 1) up to T = 8.

In the subsequent graph, we observe that as time progresses, the linear trend begins

to fluctuate. This deviation occurs because, with increasing time, the number of

iterations N required for convergence also increases. Therefore, with N = 100, the

number of iterations is insufficient for convergence of the values beyond T = 8,

leading to the observed fluctuations in the line graph. This phenomenon is further

demonstrated in Figure 6.

In Figure 5, we present the optimal values of problem 2, showcasing various

samples of the action set A drawn from the interval [−1, 1], with different step sizes

23

Figure 4: Optimal values J(0, 1) across different terminal time T

denoted by state_delta. As state_delta increases, the action set A becomes smaller.

For the state_delta = 0.25, the action set A = {−1,−0.75,−0.5, 0, 0.5, 0.75, 1}

For the state_delta = 0.5, the action set A = {−1,−0.5, 0, 0.5, 1}

For the state_delta = 1, the action set A = {−1, 0, 1}

For the state_delta = 2, the action set A = {−1, 1}

For the state_delta = 0.25, we have the largest set A, whereas for state_delta =

2, the set reduces to its smallest form {−1, 1}. Notably, the optimal values J(0, 1)

exhibit a decreasing trend as state_delta decreases and the action set A expands.

Figure 6 illustrates how the number of iterations N required for convergence

steadily grows as the terminal time T increases from 1 to 6. However, at T = 6,

a jump appears in the interval t ∈ (20, 40), which is marked by a red arrow. The

unusual behaviour arises from the insufficiency of iterations: at the terminal time

T = 6, the convergence of the optimal values J(0, 1) is not achieved at N = 100.

Thus, in this case, it is necessary to increase the number of iterations N for the

convergence of the values.

24

Figure 5: Optimal values J(0, 1) across different action set A values when T = 2

Figure 6: Optimal values J(0, 1) across different terminal times T when the maxi-
mum iteration number is N = 100 and α = 0.25

25

4 Conclusion

In this thesis, we delved into addressing the linear quadratic regulator problem with

average-value-at-risk criteria (LQR-AVaR) through the application of approximate

dynamic programming (ADP). Initially, we formulated the problem using dynamic

programming principles and solved several experimental problems manually. Sub-

sequently, using Python, we developed an ADP algorithm-based code and did a

comparison analysis of the outcomes with those of the experimental cases. The

thorough analysis indicated a remarkably high level of accuracy, with the graphical

representations closely mirroring the anticipated trends and dynamics present in the

LQR-AVaR problem.

References

[1] Bäuerle, N. and Ott, J. “Markov Decision Processes with Average-Value-at-

Risk criteria”. In: Mathematical Methods of Operations Research 74 (2011),

pp. 361–379. doi: http://dx.doi.org/10.1007/s00186-011-0367-0.

[2] Bäuerle, N. and Rieder, U. “More Risk-Sensitive Markov Decision Processes”.

In: Mathematical Methods of Operations Research 39(1) (2014), pp. 105–120.

doi: http://dx.doi.org/10.1287/moor.2013.0601.

[3] K. Uğurlu. “Controlled Markov Decision Processes with AVaR criteria for un-

bounded costs”. In: Journal of Computational and Applied Mathematics 319

(2016), pp. 24–37.

[4] Y. Yoshida. “An Ordered Weighted Average with a Truncation Weight on

Intervals”. In: Springer-Verlag Berlin Heidelberg (2012), pp. 45–55.

[5] Y. Yoshida and S. Kumamoto. “Dynamic Average Value-at-Risk Allocation

on Worst Scenarios in Asset Management”. In: Springer Nature Switzerland

(2019), pp. 674–683.

26

https://doi.org/http://dx.doi.org/10.1007/s00186-011-0367-0
https://doi.org/http://dx.doi.org/10.1287/moor.2013.0601

[6] M. R. Rothe. “Numerical Experiments on a Deep Learning Approach to Solv-

ing High Dimensional Partial Differential Equations”. In: Norwegian University

of Science and Technology, Master’s thesis in Applied Physics and Mathemat-

ics (2020).

[7] Jiequn Han and Weinan E. “Deep Learning Approximation for Stochastic Con-

trol Problems”. In: Beijing Institute of Big Data Research (2016).

[8] J. Blechschmidt and O. J. Ernst. “Three ways to solve partial differential

equations with neural networks—Areview”. In: Gesellschaft für Angewandte

Mathematik und Mechanik (2021). doi: http://dx.doi.org/10.1002/gamm.

202100006.

[9] X. Yu and S. Shen. “Risk-Averse Reinforcement Learning via Dynamic Time-

Consistent Risk Measures”. In: IEEE Conference Paper (2022). doi: http:

//dx.doi.org/10.1109/CDC51059.2022.9992450.

[10] Martijn Mes and Arturo Perez Rivera. “Approximate Dynamic Programming

by Practical Examples”. In: Beta Working Paper series 495 (2016).

[11] D. P. Bertsekas. Dynamic Programming and Optimal Control. 2017.

[12] R. Tyrrell Rockafellar and Stanislav Uryasev. “Conditional value-at-risk for

general loss distributions”. In: Journal of Banking and Finance (2002).

27

https://doi.org/http://dx.doi.org/10.1002/gamm.202100006
https://doi.org/http://dx.doi.org/10.1002/gamm.202100006
https://doi.org/http://dx.doi.org/10.1109/CDC51059.2022.9992450
https://doi.org/http://dx.doi.org/10.1109/CDC51059.2022.9992450

5 Appendix

The Code

1 import numpy as np

2 import tensorflow as tf

3 import time

4 import random

5 import matplotlib.pyplot as plt

6

7 def cost(state, action):

8 cost = (state ** 2) + (action ** 2)

9 cost = np.round(cost, 2)

10

11 return cost

12

13 def random_next_element(state, action, ran):

14 next_state = round(state + action + ran, 2)

15

16 return next_state

17

18 def V_hash(V_table, time, state, value):

19 key = (time, state)

20 V_table[key] = value

21

22 return V_table

23

24 def V_lookup(V_table, time, state):

25 key = (time, state)

26 value = V_table[key]

28

27

28 return value

29

30 def init_cost(state, time):

31 max_action = 2

32 max_random = 2

33 terminal = 5

34 val = state**2 + max_action**2

35 for i in range(0, terminal - time + 1):

36 next_state = state + max_random + max_action

37 tmp = next_state**2 + max_action**2

38 val+= tmp

39

40 return val

41

42 def avar(V_table, alpha, state, s, action, time, terminal, ran_arr): #use

V_table sil Q_table_val↪→

43 # if terminal calculate the terminal value AND hash the value for that

c(state,...)+ aggr - s for that (state, aggr) CHANGE↪→

44

45 if time == terminal:

46 avar_val = np.round(cost(state, action),2)

47

48 return (avar_val, V_table)

49 #otherwise calculate next stage and next aval avar

50 else:

51 ran_len = len(ran_arr)

52 next_time = time + 1

53 s_arr = np.array([])

54 tmp = 0

29

55 avar_val = 0

56 for ran in ran_arr:

57 #find the avar for the next space for the given fixed action

58 next_state = random_next_element(state, action, ran) # F(x_t, a_t,

\xi_t) # real valued↪→

59 next_time = time + 1

60 next_key = (next_time, next_state)

61 val_2 = 0

62 if next_key in V_table: # in V_table_val

63 print('KEY {} found next_time: {}, next_state: {} with used action:

{}'.format(next_key, next_time, next_state, action))↪→

64 val_2 = V_lookup(V_table, next_time, next_state) #V lookup val

without act↪→

65 print('val_2 by looking up: ', val_2)

66 else:

67 print('KEY {} NOT found next_time: {}, next_state: {} with used

action: {}'.format(next_key, next_time, next_state, action))↪→

68 val_2 = init_cost(state, time)

69 print('init cost val2: ', val_2)

70 #hash that void value to that KEY

71 V_table = V_hash(V_table, next_time, next_state, val_2) ##V hash

val without act↪→

72 s_arr = np.append(s_arr, val_2)

73 s_q = np.quantile(s_arr, alpha, interpolation='linear') # real valued

quantile for s_q↪→

74 s_q = np.round(s_q, 2)

75 for elt in s_arr:

76 avar_val += (1 / ran_len) * max(elt - s_q, 0) #expected value part

77 avar_val = s_q + (1 / (1 - alpha)) * avar_val #the remaining arithmetic

operations↪→

30

78 avar_val = cost(state, action) + avar_val

79 avar_val = np.round(avar_val,2)

80

81 print('time, state, action: ', time, state, action)

82

83 return (avar_val, V_table)

84

85 def Running_Bellman(alpha, terminal, action_arr, random_arr, N, s, x_0,

beta): #remove Q_table argument↪→

86 save_values = []

87 output_dim = len(action_arr)

88

89 path = {} #time and state, aggr and min action dictionary

90 V_table = {} #optimal value and state, aggr dictionary

91 cntr = 0

92

93 # composed of two passes: one forward one backward pass

94 while cntr < N:

95

96 x_init = x_0

97 state = x_init

98 len_random_arr = len(random_arr)

99 len_action_arr = len(action_arr)

100 for t in range(0,terminal): #forward pass.. no value assignment in

forward loop↪→

101 rand_act_index = random.randint(0, len_action_arr -1) #choose an

action index↪→

102 sample_action = action_arr[rand_act_index] #choose a random action

103

31

104 rand_index = random.randint(0, len_random_arr -1) #choose a random

index↪→

105 sample_rand = random_arr[rand_index] #sample randomness

106

107 path[t] = state # at time t record the state and the min_action NO

STORE FOR ACTION SIL↪→

108

109 print('path[time]: ', t, path[t])

110 print('Current state: {} at t: {}'.format(state, t))

111 state = round(state + sample_action + sample_rand, 2) #create next

state↪→

112 print('next state: {} at time: {} using action {}: '.format(state,

t+1, sample_action))↪→

113 # no value hashed in the first loop

114

115 # use the state from the loop above to store state at terminal

116 path[terminal] = state

117 print('Forward pass ended')

118

119 print('Backward pass started')

120 for t in range(terminal, -1, -1): # for loop up to and including zero

121 state = path[t] #go backwards using the states and optimal actions

sampled at each time t < terminal↪→

122 print('path[{}]:{}'.format(t, state))

123

124 if t == terminal:

125 min_term_val = float('inf') #assign min terminal val for

(state,aggr) pair↪→

126 min_term_action = float('inf') #assign min terminal action for

(state,aggr) pair↪→

32

127 print('finding minimal action loop')

128 for action in action_arr: #assign q table for terminal

129 print('state, action: ', state, action)

130 val = np.round(cost(state, action),2)

131 print('current val: ', val)

132 if val < min_term_val:

133 min_term_val = val

134 min_term_action = action

135 print('Found in terminal: {}, state: {}, the optimal action: {},

the optimal value: {} '.format(terminal, state,

min_term_action, min_term_val))

↪→

↪→

136 #hash the minimum value at terminal

137 V_table = V_hash(V_table, terminal, state, min_term_val)

138 print('V_table: ', V_table)

139 else:

140 v_tilde = float('inf')

141 min_action = float('inf')

142 for action in action_arr: # find the minimum among the actions

143 (tmp_val, V_table) = avar(V_table, alpha, state, s, action, t,

terminal, random_arr)↪→

144 if tmp_val < v_tilde:

145 min_action = action

146 v_tilde = tmp_val

147 # PREVIOUS V_lookup store to approximate with beta lookup and

from below 1-beta v_tilde CHANGE↪→

148 if (t, state) in V_table: #if it is in v table

149 V_lookup_val = V_lookup(V_table, t, state)

150 else:

151 V_lookup_val = v_tilde # just count on bellman principle

152 print('t, Before Update: V_table: ', V_table)

33

153 print('t, Before Update: V_lookup_val: '.format(t, state),

V_lookup_val)↪→

154 print('t, v_tilde: ', t, v_tilde)

155

156 # arrangement for learning rate or not

157 val = np.round(((1-beta) * v_tilde) + (beta*V_lookup_val),2)

158

159 ##print('time, value to be hashed: ', t, val)

160 # V_table, time, state, aggr, value

161 print('t, state, min_action, val:', t, state, min_action, val)

162 V_table = V_hash(V_table, t, state, val) #update the table val

for that time, state↪→

163 print('V_table: ', V_table)

164

165 cntr += 1

166 print('Backward pass ended')

167 save_values.append(V_table[0, 1])

168

169 return V_table, save_values

170

171 def simulate(x_0, t_0, T, action_arr, alpha, random_arr, N, s, beta):

172

173 print('s in simulate: ', s)

174

175 V_table, save_values = Running_Bellman(alpha, T, action_arr, random_arr,

N, s, x_0, beta)↪→

176

177 return V_table, save_values

178

179 x_0 = 1

34

180 t_0 = 0

181 terminal = 2

182 alpha = 0.0

183 N = 100

184

185 s_array = np.array([0])

186

187 max_action = 1

188 max_random = 1

189 delta = 1

190

191 action_arr = np.round(np.arange(-max_action, max_action + delta, delta), 2)

192 random_arr = np.round(np.arange(-max_random, max_random + delta, delta), 2)

193

194 key = (t_0, x_0)

195 min_value = float('inf')

196 V_min = {}

197 for r_a in s_array:

198 V_table, save_values = simulate(x_0, t_0, terminal, action_arr, alpha,

random_arr, N, r_a, 0.1)↪→

199 tmp = V_table[key]

200 if tmp < min_value:

201 #if the initial value is minimum then assign the value function as the

minimum↪→

202 V_min = V_table

203 min_value = tmp

204 s_min = r_a

205

206 print('(V_min[(time,state, aggr)]: min_value)', V_min)

207 print('s_min: ', s_min)

35

208 print('V_min[({}, {})]: {}'.format(t_0, x_0, min_value))

Toy Problem 1: α = 0

1 x_0 = 1

2 t_0 = 0

3 terminal = 2

4 alpha = 0.0

5 N = 100

6

7 action_arr = np.array([-1, -0.5, 0, 0.5, 1])

8 random_arr = np.array([-1, 1])

9 s_array = np.array([0])

10

11 key = (t_0, x_0)

12 min_value = float('inf')

13 V_min = {}

14 for r_a in s_array:

15 V_table, save_values = simulate(x_0, t_0, terminal, action_arr, alpha,

random_arr, N, r_a, 0.1)↪→

16 tmp = V_table[key]

17 if tmp < min_value:

18 V_min = V_table

19 min_value = tmp

20 s_min = r_a

21

22 print('(V_min[(time,state, aggr)]: min_value)', V_min)

23 print('s_min: ', s_min)

24 print('V_min[({}, {})]: {}'.format(t_0, x_0, min_value))

25

36

26 N = list(range(1, 101))

27

28 # Plotting

29 plt.plot(N, save_values, marker='o', linestyle='-')

30 plt.title('V_min[0,1] over Iterations')

31 plt.xlabel('Iterations (N)')

32 plt.ylabel('V_min[0, 1]')

33 plt.grid(True)

34 plt.show()

Toy Problem 2: α = 0.25

1 x_0 = 1

2 t_0 = 0

3 terminal = 2

4 alpha = 0.25

5 N = 100

6

7 action_arr = np.array([-2, 2])

8 random_arr = np.array([-1, 1])

9 s_array = np.array([0])

10

11 key = (t_0, x_0)

12 min_value = float('inf')

13 V_min = {}

14 for r_a in s_array:

15 V_table, save_values = simulate(x_0, t_0, terminal, action_arr, alpha,

random_arr, N, r_a, 0.1)↪→

16 tmp = V_table[key]

17 if tmp < min_value:

37

18 V_min = V_table

19 min_value = tmp

20 s_min = r_a

21

22 print('(V_min[(time,state, aggr)]: min_value)', V_min)

23 print('s_min: ', s_min)

24 print('V_min[({}, {})]: {}'.format(t_0, x_0, min_value))

25

26 N = list(range(1, 101))

27

28 # Plotting

29 plt.plot(N, save_values, marker='o', linestyle='-')

30 plt.title('V_min[0,1] over Iterations')

31 plt.xlabel('Iterations (N)')

32 plt.ylabel('V_min[0, 1]')

33 plt.grid(True)

34 plt.show()

1) As alpha increases, the optimal values must increase

1 x_0 = 1

2 t_0 = 0

3 terminal = 2

4 alpha = [x * 0.01 for x in list(range(0, 50, 5))]

5 N = 100

6

7 action_arr = np.array([-2, 2])

8 random_arr = np.array([-1, 1])

9 s_array = np.array([0])

10

38

11 key = (t_0, x_0)

12 min_value = float('inf')

13 V_min = {}

14 save_values_2 = []

15 for a in alpha:

16 for r_a in s_array:

17 V_table, _ = simulate(x_0, t_0, terminal, action_arr, a, random_arr, N,

r_a, 0.25)↪→

18 tmp = V_table[key]

19 save_values_2.append(tmp)

20 if tmp < min_value:

21 V_min = V_table

22 min_value = tmp

23 s_min = r_a

24

25 # Plotting

26 plt.plot(alpha, save_values_2, marker='o', linestyle='-')

27 plt.title('V_min[0, 1] vs Alpha')

28 plt.xlabel('Alpha')

29 plt.ylabel('V_min[0, 1]')

30 plt.grid(True)

31 plt.show()

2) As time increases, the optimal values must also increase

1 x_0 = 1

2 t_0 = 0

3 terminal = list(range(1, 10, 1))

4 alpha = 0.25

5 N = 100

39

6

7 action_arr = np.array([-2, 2])

8 random_arr = np.array([-1, 1])

9 s_array = np.array([0])

10

11 key = (t_0, x_0)

12 min_value = float('inf')

13 V_min = {}

14 save_values_3 = []

15 for time in terminal:

16 for r_a in s_array:

17 V_table, _ = simulate(x_0, t_0, time, action_arr, alpha, random_arr, N,

r_a, 0.25)↪→

18 tmp = V_table[key]

19 save_values_3.append(tmp)

20 if tmp < min_value:

21 V_min = V_table

22 min_value = tmp

23 s_min = r_a

24

25 # Plotting

26 plt.plot(terminal, save_values_3, marker='o', linestyle='-')

27 plt.title('V_min[0, 1] vs Terminal Time')

28 plt.xlabel('Terminal time')

29 plt.ylabel('V_min[0, 1]')

30 plt.grid(True)

31 plt.show()

3) As the available action set increases, the optimal values must de-

crease

40

1 x_0 = 1

2 t_0 = 0

3 terminal = 2

4 alpha = 0

5 N = 200

6

7 random_arr = np.array([-1, 1])

8 s_array = np.array([0])

9 max_action = 1

10 state_deltas = [1/(2**x) for x in list(range(-1, 3))]

11

12 key = (t_0, x_0)

13 min_value = float('inf')

14 V_min = {}

15 save_values_4 = []

16 for state_delta in state_deltas:

17 for r_a in s_array:

18 action_arr = np.round(np.arange(-max_action, max_action + state_delta,

state_delta), 2)↪→

19 V_table, _ = simulate(x_0, t_0, terminal, action_arr, alpha,

random_arr, N, r_a, 0.25)↪→

20 tmp = V_table[key]

21 save_values_4.append(tmp)

22 if tmp < min_value:

23 V_min = V_table

24 min_value = tmp

25 s_min = r_a

26

27 # Plotting

41

28 plt.plot(state_deltas, save_values_4, marker='o', linestyle='-')

29 plt.title('V_min[0, 1] vs state_delta')

30 plt.xlabel('state_delta')

31 plt.ylabel('V_min[0, 1]')

32 plt.grid(True)

33 plt.show()

4) As the terminal time increases, more iterations is needed for con-

vergence of the optimal values

1 x_0 = 1

2 t_0 = 0

3 terminal = list(range(1, 11, 1))

4 alpha = 0.25

5 N = 100

6

7 action_arr = np.array([-2, 2])

8 random_arr = np.array([-1, 1])

9 s_array = np.array([0])

10

11 key = (t_0, x_0)

12 min_value = float('inf')

13 V_min = {}

14 save_values_5 = np.zeros((10, 100))

15 for time in terminal:

16 for r_a in s_array:

17 V_table, values = simulate(x_0, t_0, time, action_arr, alpha,

random_arr, N, r_a, 0.25)↪→

18 tmp = V_table[key]

19 save_values_5[time-1] = np.array(values)

42

20 if tmp < min_value:

21 V_min = V_table

22 min_value = tmp

23 s_min = r_a

24

25 N_iter = list(range(1, 101, 1))

26 num_plots = len(terminal)

27 num_cols = 2

28 num_rows = (num_plots + num_cols - 1) // num_cols

29

30 fig, axs = plt.subplots(num_rows, num_cols, figsize=(12, 20))

31

32 for i, ax in zip(terminal, axs.flat):

33 values = list(save_values_5[i-1])

34 ax.plot(N_iter, values, marker='o', linestyle='-')

35 ax.set_title('V_min[0, 1] for Time = '+str(i))

36 ax.set_xlabel('N')

37 ax.set_ylabel('V_min[0, 1]')

38 ax.grid(True)

39

40 plt.tight_layout()

41 plt.show()

Standard Normal Randomness with Toy Problem 2

1 import random

2

3 random.seed(42)

4 random_arr = [round(random.gauss(0, 1), 2) for _ in range(3)]

5

43

6 x_0 = 1

7 t_0 = 0

8 terminal = 2

9 alpha = 0

10 N = 100

11

12 s_array = np.array([0])

13

14 max_action = 1

15 state_delta = 1

16 action_arr = np.round(np.arange(-max_action, max_action + state_delta,

state_delta), 2)↪→

17

18 key = (t_0, x_0)

19 min_value = float('inf')

20 V_min = {}

21 for r_a in s_array:

22 V_table, save_values_5 = simulate(x_0, t_0, terminal, action_arr, alpha,

random_arr, N, r_a, 0.1)↪→

23 tmp = V_table[key]

24 if tmp < min_value:

25 V_min = V_table

26 min_value = tmp

27 s_min = r_a

28

29 print('(V_min[(time,state, aggr)]: min_value)', V_min)

30 print('s_min: ', s_min)

31 print('V_min[({}, {})]: {}'.format(t_0, x_0, min_value))

32

33 N = list(range(1, 101))

44

34

35 # Plotting

36 plt.plot(N, save_values_5, marker='o', linestyle='-')

37 plt.title('V_min[0,1] over Iterations')

38 plt.xlabel('Iterations (N)')

39 plt.ylabel('V_min[0, 1]')

40 plt.grid(True)

41 plt.show()

45

	Abstract
	Overview
	Introduction
	Literature Review
	Linear Quadratic Regulator Control Problem
	Average Value at Risk
	LQR-AVaR problem

	Methods
	Approximate Dynamic Programming
	Algorithm Description and Implementation

	Experiments
	Experimental Problems
	Plot Analysis

	Conclusion
	Appendix

