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ABSTRACT

Modern Astrophysics, and the study of Core-Collapse Supernovae in particular, require

an intense computational power and convenient code for different machines. A portable

versatile code IDEFIX is able to deal with these issues. This thesis demonstrates a

simulation of Core-Collapse Supernova with stable shock using IDEFIX.

The model has an outer accreting part and inner shock. The code provides an extensive

possibilities to efficiently modify the model for specific needs.

Throughout the work, we obtain standing accretion shock instability (SASI) with 3D

simulations, as well as observe how an outer convective shell with velocity perturbations

affect the shock and SASI for different perturbation profiles. Additionally, we provide a

way of analyzing those accreting perturbations which hints towards the future research of

this topic.
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1 INTRODUCTION

1.1 Parallel programming and Kokkos

Current astrophysical problems require complex computations and simulations of various

processes, including hydrodynamical flows. Simulations of stellar evolution and core-

collapse supernovae is one of such complex tasks that cannot be computed on a single

computer effectively. Thus, there is a need for parallel programming with supercomputers

and large computational nodes and an efficient portable code for solving those tasks on

different machines [1], which is a big problem in computational astrophysics.

Computers perform tasks using central processing units (CPUs) and graphic process-

ing units (GPUs). For an average computer, CPUs usually have 6-12 cores, while GPUs

have around 1000-5000 cores. Although performance of GPUs and CPUs increase expo-

nentially, a lot of modern astrophysical problems require extensive computation, so one

way of speeding up the calculations is to parallelize them on several cores.

The main challenge of parallel programming is a deliberate control of memory and

optimization in order to correctly delegate tasks between cores, which may be tedious

for large codes. Also, the code must be specific for the supercomputer with many cores

depending on its architecture and characteristics which additionally complicates the de-

velopment and implementation of simulations.

To solve this issue, it is possible to use Kokkos metaprogramming library [2]. Kokkos

has tools and algorithms to control memory and data transfer between cores such that

different codes and applications written with Kokkos can be implemented on different

machines.

1.2 Core-Collapse Supernovae

Core-Collapse Supernovae (CCSNe) occur during the explosion of a massive star with

potential energy in the order of 1053 erg [3, 4]. There are several scenarios of how it

happens, such as an electron capture, pair instability, iron core and so on. In general, the

gravitational collapse of a star to Proto-Neutron Star (PNS) happens when an iron core

becomes inert and ceases to generate nuclear energy. Then, the collapsing core bounces

out of incompressible matter and creates a shockwave, which stalls after a few milliseconds

due to the loss of kinetic energy, and revives for hundreds of milliseconds due to neutrino

heating. During the shock revival there are inner cooling region and outer heating gain

region that creates convections. This normally occurs in a region with equal heating and

cooling rate called gain region.

One outcome of the stalled shock is the standing accretion shock instability (SASI).

Such instability exhibits large scale oscillations of the shockwave. The emergence of SASI
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can be explained by advective-acoustic cycle mechanism [5]. The mechanism of such

cycle involves two waves: an entropy and voritcity advective wave, and an acoustic wave

outwards. Advective waves towards the PNS causes an acoustic wave that propagates

to the shockwave, which in turn creates another entropy and vorticity wave. The waves

hitting the shockwave and PNS surface have amplitudes Lsh and L∇ respectively. Such

cycle becomes unstable if LshL∇ > 0, leading to SASI behaviour.

Figure 1: The diagram of the advective-acoustic cycle. Blue vorticity waves move towards
a PNS and cause an acoustic wave to shock.

In this work, our task is to investigate the CCSN with their pre-collapse convection

and the evolution of shock with an efficient portable code for parallel computing.

2 METHOD

2.1 IDEFIX Code

In this research work, we use new IDEFIX code developed by Lesur et al. [6, 7] to sim-

ulate core-collapse supernova. IDEFIX is a portable code that allows to solve various

nonrelativistic hydrodynamical (HD) and magnetohydrodynamical (MHD) problems us-

ing Kokkos library. The code contains algorithms and modules to create astrophysical

flows with realative ease. This section will describe its main tools and features.

2.1.1 Hydrodynamics and Solution

IDEFIX uses continuity and momentum equations:

∂tρ+∇ · (ρυ⃗) = 0 (1)
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∂t(ρυ⃗) +∇ · (ρυ⃗ × υ⃗ + P I+Π) = −ρ∇ψ (2)

Here ρ is the density, P - pressure, υ⃗ is the flow velocity, ψ is the gravitational potential,

and I - identity matrix. The viscous stress tensor is given as:

Π = η1(∇υ⃗ + (∇υ⃗)T ) + (η2 −
2

3
η1)∇ · υ⃗ (3)

Here η1 and η2 are standard and bulk viscosities respectively.

IDEFIX starts the solution of HD equations by setting generalized conserved quantities

U = (ρ, P, υ⃗) for the density, pressure and velocity respectively as

∂tU +∇ · F⃗ = S (4)

In this equation, F⃗ is a flux of conserved quantities and S is a source term. The whole

solution is based using time-average flux terms ⟨F ⟩ to find average conserved quantities

⟨U⟩.
Different Riemann solvers can be used to solve the needed differential HD equation

such as Russanov flux, Harten, Lax and van Leer (HLL), the HLLC, the approximate

linear Roe Riemann solver and so on [6, 8]. All these types of Riemann solvers are by

itself a complex topic of Computational Physics and lies outside the scope of this work.

2.1.2 Implementing Kokkos

As was stated above, Kokkos library makes the code portable for any device. In case of

IDEFIX, any code run has a host as a CPU and device as either CPU or GPU. Kokkos

has functions IdefixArrayND and idefix for to initialize N-dimensional arrays and for

loops on a device. As an example, a typical for loop in three dimensions look like this:

void Func(Hydro *hydro){

IdefixArray4D<real> Vc = data->hydro-Vc;

idefix_for("Func", 0,

0,data->np_tot[KDIR],0,data->np_tot[JDIR],0,data->np_tot[IDIR],

KOKKOS_LAMBDA (int k, int j, int i) {

//Operations with Vc

});

}

2.1.3 Output

IDEFIX gives output files in .vtk format (VTK - Visual Toolkit). It stores all the neces-

sary data about density, pressure and velocity at certain timesteps specified in the input

file. This file format can be opened and visualized using Paraview software.
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2.1.4 Performance

Lesur et al. completed performance tests on CPUs and GPUs in comparison to another

astrophysical code PLUTO [6, 9]. They did the comparison on the same 3D Orszag

Tang problem. The performance test (cell/sec/nodes) on AMD Rome CPU demonstrates

roughly similar performance compared to PLUTO at lower number of nodes, but IDEFIX

is 20-30 % more efficient with over 10000 nodes. Parallel efficiency test shows over 80 %

efficiency on CPUs with IDEFIX compared to 60 % with PLUTO code. In addition,

IDEFIX reaches over 80 % and 95 % parallelization efficiency with 2563 subdomains on

Nvidia V100 and AMD Mi250 GPUs respectively.

2.2 Simulation Code Contents

Each simulation implemented in IDEFIX uses certain set of codes and modules that

specifies the setup, inputs and outputs, and overall implementation of the simulation. The

main parts of the needed simulations are in the ”Test” directory by files definitions.hpp,

idefix.ini and setup.cpp. This section will further elaborate on each of these files as

described in the documentation of the code [7].

2.2.1 Definitions file

The difinitions.hpp is the main problem header file that defines the components, di-

mensions, and geometry.

Parameters define the number of vector components for the velocity and magnetic

field (for MHD). The options are 1, 2, and 3.

Dimensions sets the number of physical dimensions of the system (1D, 2D and 3D).

It is possible to have more components than dimensions.

Geometry sets the general geometry of the system as (X1, X2, X3). The main options

are:

1. CARTESIAN: A Cartesian coordinate system (X1, X2, X3) = (x, y, z).

2. CYLINDRICAL: A cylindrical coordinate system (X1, X2, X3) = (R, z, φ). It is used

only for 2D cylindrical problems.

3. POLAR: A polar coordinate system (X1, X2, X3) = (R,φ, z) for 3D cylindrical

problems.

4. SPHERICAL: A spherical coordinate system (X1, X2, X3) = (R, θ, φ) for all three

dimensions.

2.2.2 Setup file

setup.cpp contains the code for the physical implementation of the simulation. It gets the

initial parameters, arrays and variables, specific functions and outputs. This subsection
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will explain some of its features with examples.

Firstly, the setup class defines all initial conditions and constructors of the code from

an input file. The setup constructor of this class is called during the setup to set Input,

Grid, DataBlock and Output objects. Input is used for user-defined parameters. For

example, the parameter rsh for the initial shock radius can be set as:

rsh = input.Get < real > (”Setup”, ”Rshock”, ZERO F);

In addition to this, it allows to enroll a user-defined function so there won’t be a

need to define lots of empty functions. As an example, if there is a specific user-defined

boundary condition function, it must be enrolled as:

data.hydro− > EnrollUserDefBoundary(&UserdefBoundary);

Next, the InitFlow is a method in Setup class that defines the initial conditions of the

hydrodynamical flow with Vc array containing values for density, pressure, and velocities.

For instance, in case of a density equal to rho, pressure equal to p, radial velocity of vx

and zero angular velocities, the initial flow is written as:

void Setup::InitFlow(DataBlock &data) {

DataBlockHost d(data); // Create a host copy

for(int k = 0; k < d.np_tot[KDIR] ; k++) {

for(int j = 0; j < d.np_tot[JDIR] ; j++) {

for(int i = 0; i < d.np_tot[IDIR] ; i++) {

d.Vc(RHO,k,j,i) = rho;

d.Vc(PRS,k,j,i) = p;

d.VC(VX1,k,j,i) = vx;

d.Vc(VX2,k,j,i) = ZERO_F;

d.Vc(VX3,k,j,i) = ZERO_F;

}

}

}

d.SyncToDevice();

}

In the setup file, a user-defined boundary condition can be defined by enrolling

UserdefBoudary function. Source term for energy, density, pressure or for any other

parameter can be specified by MySourceTerm function.

2.2.3 Input file

idefix.ini is the default problem input file. It contains various entry values for each

class of the simulation in the setup file. Those values are separated in each section of
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the file, and is read at the start as was shown in the section 2.2.2. This subsection will

elaborate on some of entries in the input file.

Grid section states the grid size of the problem in 1/2/3 dimensions, domain of each di-

mension, number of grid points and spacing between grid points, mainly uniform (u) or log-

arithmic (l) depending the coordinate as xi−1/2 = xstartα
i/N where α = xend+|xstart|−xstart

xstart
.

As an example, logarithmic scaling in X1 from 0.4 to 10.0, and uniform in X2 and X3

from 0 to π and 2π respectively is written as follows:

[Grid]

X1-grid 1 0.4 300 l 10.0

X2-grid 1 0.0 48 u 3.141592653589793

X3-grid 1 0.0 96 u 6.283185307179586

Here X1/X2/X3 specifies the coordinate, ”1” is the number of grid blocks in the

corresponding coordinate and 500/48/96 is the number of grid points.

TimeIntegrator section defines the variables for the time integrator method. This

section allows to choose, for instance, value of the first time step with first dt variable,

and the time at which the run stops with tstop variable. Other than that, it also specifies

more specific details like number of integration stages (1st order Euler or 2nd/3rd order

Runge-Kutta) and CFL value for numerical stability.

Hydro section defines the hydrodynamic parameters of the problem. Main two param-

eters are a solver for hydrodymanic equations and adiabatic constant γ. For example,

HLL solver and γ = 4/3 is defined as:

[Hydro]

solver hll

gamma 1.333333333333333333

In addition, this section allows to switch on a specific type of diffusion (Ohmic diffusion,

ambipolar diffusion), switch on Hall effect, rotation in z axis etc for specific problems.

Setup section defines variables for the setup class of the code for user-defined functions,

initial flow, source term and so on. The variables in this section are specific for each type

of HD problem.

Boundary section specifies the boundary conditions in the beginning and end of each

coordinate as X1− beg, X1− end, X2− beg, X2− end, X3− beg, X3− end. The class has

several options for boundary conditions:

• periodic copies beginning and end periodically as in full circle.

• axis defines an axis in spherical geometry for θ from 0 to π.

• reflective explicitly reverses normal component of velocity.
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• userdef sets user-defined boundary condition if it is enrolled in the setup file.

Output section defines how the code gives output files. Mainly it can define the time

interval between log outputs and VTK outputs in code time units as:

[Output]

vtk 5.0e0

log 1000

2.2.4 Code configuration

The parallelization can be done using either Message Passing Interface (MPI) or Open

Multi-Processing (OpenMP) application programming interface (API). In order to run

the simulation either on CPU or GPU, the code must be configured using Cmake software.

By default, it can be configured with command cmake $IDEFIX DIR such that it runs

on CPU in series. However, it is possible to run in parallel with OpenMP interface by

adding −DKokkos ENABLE OPENMP = ON and specifiying number of CPU threads with

export OMP NUM THREADS = N.

In order to run the code on GPUs, MPI interface can be enabled by adding

−DIdefix MPI = ON. Also, Cmake has various commands to choose GPU architecture,

enable CUDA API and so on. In this work, we run simulations with only OpenMP.

2.3 Simulation Model

In our simulation, we use a model with two parts: outer subsonic part with Bondi accretion

and inner supersonic part with stationary shock.

2.3.1 Stationary shock

The model of the stationary shock is described in Fernandez & Thompson’s work [10].

The stationary shock is created with a pre-shock Mach number of M1 = 5 and the initial

shock radius (r = rsh). The system uses hydrodynamic equations of state (1)-(3) for an

ideal gas. The adiabatic index γ = 4/3 and the the radius of proto-neutron star (PNS) is

defined rpns = 0.4.

The nuclear dissociation energy ε contributes to the conservation of energy at r = rsh

as:

υ21
2

+
γ

γ − 1

p1
ρ1

=
υ22
2

+
γ

γ − 1

p2
ρ2

+ ε (5)

In our model, we simplify this by taking ε = 0.
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Figure 2: Diagram of the model with supersonic shock inside Bondi accretion outside

The shock compression factor is defined as κ = ρ2/ρ1 and for ε = 0 can be calculated

from pre-shock Mach number:

κ = (γ + 1)
(
γ − 1 + 2M−2

1

)−1
(6)

For γ = 4/3 this becomes κ = 7
3

M2
1

M2
1/3+2

. This value is the factor by which

shockwave changes density and velocity before and after the shock. It is defined by

ShockCompressionFactor function in the code.

The source term in the equation (4) is represented as the neutrino heating Qν [11]:

Qν =

(
B

r2
− Ap3/2

)
exp(−(s/smin)

2) (7)

Here A is the cooling normalization, B is the heating normalization, s is the entropy

defined as:

s =
1

γ − 1
ln

[
p

p2

(
ρ2
ρ

)γ]
(8)

Where p2 and ρ2 are initial pressure and density at r = rsh. smin is the minimal

entropy at r = rsh, so its bigger absolute value leads to less cooling. Also, cooling is

corrected by cooling correction factor as (4πυ1)/(rpns∆Ec) where ∆Ec is the total change

of energy due to cooling. This factor is needed to stabilize the computation of cooling

rate.
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The values of A, B and smin are defined in the input and setup files as Acool, Aheat

and smin respectively. The equation (7) is implemented in MySourceTerm function by

changing variable Uc(ENG, k, j, i) for energy.

The shockwave further evolves and has two stable outcomes: convection-dominated

and SASI-dominated sequnce. The two outcomes can be quantified by a convection pa-

rameter χ [12]:

χ =

∫ rsh

rg

|ωBV |
|υr|

dr (9)

ωBV is the Brunt–Väisälä frequency expressed in terms of gravitational acceleration g

and entropy s as:

ωBV =

√
γ − 1

γ
g∇s (10)

χ < 3 are stable and usually leads to SASI-dominance with ε = 0, and χ > 3 leads to

convection-dominance.

2.3.2 Bondi accretion

The outer part above the shock is simulated in accordance with Bondi accretion model.

The model describes the accretion of a gas cloud of mass M with spherical symmetry

into some compact object [13]. The solution of the problem gives us the expression for

steady accretion rate Ṁ , gas velocity and how the gas is affected. This section provides

a solution of Bondi accretion problem from the textbook by Frank, King and Raine [14].

First of all, with spherical symmetry and steady flow, the continuity equation (1)

becomes:

1

r2
d

dr
(r2ρυ) = 0 (11)

From this, r2ρυ = const. Here, −ρυ is the inward flux of the matter, so the continuous

influx rate is;

Ṁ = −4πr2ρυ (12)

As the gravitational force F = −GMρ/r2 is only in radial direction, the Euler equation

can be written as:

υ
dυ

dr
+

1

ρ

dP

dr
+
GM

r2
= 0 (13)

Since the speed of sound is defined as c =
√
dP/dρ, the gradient of pressure is
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dP

dr
=
dP

dρ

dρ

dr
= c2

dρ

dr

This combined with equation (11) changes the equation (13):

υ
dυ

dr
− c2

υr2
dυ

dr
+
GM

r2
= 0

Finally, by rearranging terms we get:

1

2

(
1− c2

υ2

)
d

dr

(
υ2
)
= −GM

r2

(
1− 2c2r

GM

)
(14)

The right hand side of the equation (14) must be negative at large distance, and

increases as r decreases. Hence, the right hand side must be zero at some distance rs

equal to:

rs = (GM) /
(
2c2(rs)

) ∼= 7.5× 1013 cm (15)

In general, equation (14) has six types of solutions for subsonic and supersonic speeds

depending on rs and
d
dr
(υ2). Type 1 and 2 correspond to c(rs) = υ(rs) and either υ2 → 0

as r → ∞ or υ2 → 0 as r → 0, so these two types make a transition between supersonic

and subsonic velocities at r = rs. Type 3 and 4 are d
dr
(υ2) = 0 at r = rs and either

υ2 < c2 or υ2 > c2 everywhere, so always in subsonic or supersonic region. Lastly, types 5

and 6 are similarly d
dr
(υ2) = ∞ at υ2 = c2(rs) and always in the region r > rs or r < rs.

For our model, we are interested in the type 3 solution which is solved as the following

equation:

1

2
υ2 − c2 ln υ2 − 2c2 ln r − GM

r
= 0 (16)

The Figure 3 visualizes all types of solutions.

3 RESULTS

3.1 Stabilizing the Shock

Before doing proper 3D simulations, we must get configurations for stable shockwave in

the first place. For practical reasons, it is better to find needed parameters and initial

values by doing 1D simulation first.

Initially, 1D run with aheat = 0.0493818 and reflection coefficient of 1 shows rapid

increase of shock radius from Rsh = 3.0 to Rsh = 14.0 over 20 time steps.

Thus, our first task is to make shock radius stable in first 10-20 timesteps in 1D. There

are several parameters that can be changed to affect shock radius and its evolution: cooling

correction, separate heat value for the source term, smin entropy, and reflection coefficient.
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Figure 3: Mach number squared vs r/rs. Type 3 solution from the equation (14) is shown
along with other types of solutions. The graph is taken from the textbook by Frank, King
and Raine (2002) [14]

The cooling correction term is by default defined as (4πυ1)/(rpns∆E), where ∆E is

the total energy change due to cooling. This term is needed to stabilize the numerical

solution by multiplying it to cooling normalization A from equation (7), and its numerical

value is ∼ 0.03. Nevertheless, it is possible to set cooling correction to higher constant

value such as 1.0, which increases total cooling and decreases outflow.

Another way of decreasing net heating is by introducing a separate heat normalization

B from equation (7). In the code, it is possible to change Aheat with other variable in

the function MySourceTerm, so there will be different heat normalization for the initial

condition and shock evolution. Since our initial Aheat = 0.0493818, we can set separate

heat value = 0.0 − 0.04 to decrease heating.

smin is the minimum entropy as shown in equation (7), which prevents runaway cooling.

Its smaller absolute value corresponds to more cooling. While initially smin ∼ −20.0, we

can set it to ∼ −5.0 to achieve less net heating.
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Lastly, it is possible to alter inner boundary condition. The UserdefBoudary function

defines inner boundary condition for υr velocity as υref = −υr. But, the reflection can be

changed by changing its coefficient as υref = −Crefυr. The coefficient Cref here can be

varied from 0 to 1. Smaller values correspond to less flux outwards which may prevent

blow out of the shock wave.

The figure 4 shows how implementation of these methods decrease the shock radius

over time compared to initial values. While some parameters still shows constant increase,

some on the contrary shrinks the shock radius.

Figure 4: Shock radius over time with different parameters of cooling, heating and bound-
ary condition

A special script was written to find the most optimal parameters. With cooling cor-

rection of 1.0, the script runs the simulation in 1D with changing smin from -4.8 to -3.0,

heat from 0.001 to to 0.04, and reflection coefficient from 0.0 to 1.0. In total, over 800

quick runs were done, and the script records the ratio of initial and final shock radius and

the ratio of initial and final velocity at r = rpns. The goal was to find the parameters

that result in ratio of 1 for shock radius and υpns closest to 0. After that, it resulted in

the clear visualization that shows best parameters.

In the end, the best values ended up to be smin = −4.6, heat− 0.0015, and reflection

coefficient of 0.7.

3.2 3D simulation

After finding the right parameters for stable shockwave, we can perform 3D runs. IDE-

FIX allows to make multi-dimensional runs simply by setting number of grid blocks in
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(a) t = 0 (b) t = 300

(c) t = 450 (d) t = 550

(e) t = 700 (f) t = 800

Figure 5: SASI over time = 800

azimuthal and polar coordinates. For our run, we set it to 48 and 96 for θ and φ angles

respectively.

The convection parameter from the eq. (9) is χ ∼ 0.1 for these parameters with low

heating, so SASI-dominance is expected.

In order to obtain perturbations faster, we can add random perturbations to the

density in the InitFlow function as ρ = ρ0±δρ = ρ0±10−2ξρ0 where ξ is a random number

from 0 to 1. The output is every ∆t = 5.0 and the simulation is run up to tstop = 800. After

the extensive simulation, we obtain the result that shows the SASI behavior starting from

around t = 200. The shockwave oscillates along y axis with the period of ∼ 50. Without

random density perturbations, the oscillations start at t ∼ 750. The images below show

the radial velovity as slice in YZ plane at times t = 0; 300; 450; 550; 700; 800. The Figure

5 shows the perturbation of the shockwave. This result is a good example of SASI, so we

can further modify the model with velocity perturbations.
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3.3 Adding Velocity Perturbations

Various studies show that asphericities of the progenitor affect the supernova core-collapse

and specifically SASI by causing more aspherical motions in the post-shock region [15, 16].

These asphericites are presented as convective shells with solenoidal velocity perturbations

with condition ∇ · (ρυ⃗) = 0 and Mach number Mprog ∼ 0.1 [17]. The dominant wave

number l can have different values.

The velocity perturbation δυ can be added to the initial velocity in some outer (Bondi

accretion) region rmin ≤ r ≤ rmax. The perturbation is defined from the stream function

ψ⃗ as:

δυ⃗ =
C

ρ
∇× ψ⃗ (17)

Here C is a dynamic viscosity value and the stream function is defined as:

ψ⃗ = e⃗φ
sin θ

r
sinnπ

r − rmin

rmax − rmin

Yl,1(θ, 0) (18)

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (19)

n and l are number of perturbation cells in radial and angular direction, and Pm
l is

associated Legendre polynomial. Spherical harmonic is chosen to be Yl,1 so there is no

singularity at θ = 0 and θ = π. For our model, we are interested in perturbations with

n = 1 and l = 1; 2; 4. We choose dynamic viscosity value such that maximum Mach

number of the convective layer is δυ/c ∼ 0.1. Calculating equations (17), (18) and (19)

gives expressions for radial and angular velocities as follows:

δυl=1
r = − 5

4r2

√
3

π sin2 θ
cos θ sin

3
2 (θ) sin

(
π(r − rmin)

rmax − rmin

)
(20)

δυl=1
θ = −

√
3π sin3 (θ)

2r(rmin − rmax)
cos

(
π(r − rmin)

rmax − rmin

)
(21)

δυl=2
r = −

√
15

2π sin2 θ

(3 + 7 cos (2θ)) sin
3
2 (θ)

8r2
sin

(
π(r − rmin)

rmax − rmin

)
(22)

δυl=2
r = −

√
15π sin3 (θ)

2

cos θ

2r(rmin − rmax)
cos

(
π(r − rmin)

rmax − rmin

)
(23)

δυl=4
r = −

√
5

π sin2 θ

3(27 + 56 cos (2θ) + 77 cos (4θ)) sin
3
2 (θ)

128r2
sin

(
π(r − rmin)

rmax − rmin

)
(24)
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δυl=4
θ =

3
√

5π sin3 (θ) cos θ(3− 7 cos2 (θ))

8r(rmin − rmax)
cos

(
π(r − rmin)

rmax − rmin

)
(25)

The perturbations are on r and θ planes, while υφ = 0 for any l and n.

We can add such velocity perturbations in the InitFlow function by changing

d.Vc(VX1, k, j, i) and d.Vc(VX2, k, j, i) variables in a certain region of radius. The Figure

6 show the radial and azimuthal velocity perturbation slice in the region 5.0 ≤ r ≤ 7.0.

(a) υr with l = 1 (b) υθ with l = 1

(c) υr with l = 2 (d) υθ with l = 2

(e) υr with l = 4 (f) υθ with l = 4

Figure 6: Radial and azimuthal velocity perturbations with l = 1; 2; 4

l = 1 perturbation demonstrates the occurrence of SASI starting from t ∼ 110 along Z

axis, which is much earlier than without perturbations. Contrary to this, l = 2 and l = 4

perturbations result in stable shockwave even up to t = 600 as shown in in Figure 7.

3.4 Getting Convection Instead of SASI

SASI is expected for cases with lower heating. We observed this in all previous examples

because there was a separate small heating for evolution. Despite this, it is possible to get
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(a) l = 1, t = 150 (b) l = 1, t = 300 (c) l = 1, t = 600

(d) l = 2, t = 150 (e) l = 2, t = 300 (f) l = 2, t = 600

(g) l = 4, t = 150 (h) l = 4, t = 300 (i) l = 4, t = 600

Figure 7: l = 1; 2; 4 perturbations at t = 150; 300; 600

stable shockwave with more heating, and subsequently less cooling. More heating may

result in random convections instead of SASI.

By varying cooling correction, it was possible to get a stable shock without separate

heat value i.e. aheat = 0.0493818 during the evolution. To achieve this, we must set the

reflection coefficient to zero and cooling correction to 0.5. This results in stable shock in

1D. With this value of heat convection parameter is χ ≈ 5.68, so convection-dominance

is expected instead of SASI [12].

Nonetheless, 3D simulation shows SASI similar to previous results, and not convection

that can be expected with higher heating.

One possible solution to get convection was by setting the heating at the inner bound-

ary to zero so the matter accretes less in the center. This can be done by changing the

source term Q(eq. (7)):

Q = Q
[
1− exp (−105(r − rpns)

2)
]

(26)

The function exp (−105(r − rpns)
2) very quickly decreases at r = rpns. Subtracting the

source term from itself at the center also stabilizes the shockwave, but 3D run once again

shows only SASI.
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Figure 8: δP/(γP ) and δM at various times for Rshell = rs, 2rs, l = 1

3.5 Analyzing the Accretion of the Velocity Perturbation

We have done multiple CCSN simulations that showed SASI dominance with convective

shells and sufficient heating. Now, it is possible to further investigate the effect of velocity

convections on the shockwave using IDEFIX code. This is achieved by changing the

simulation code to contain only Bondi accretion. The inner boundary is changed from 0.4

(PNS radius) to 1.0 (shock radius) accordingly and the boundary condition is changed to

outflow.

Prior to the shock, the acoustic perturbations have a dependence [18]:

δP/P ∼ δρ/ρ ∼ δM (27)
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Here, δP , δρ and δM are deviations of pressure, density and Mach number from their

angle average values ⟨P ⟩, ⟨ρ⟩, ⟨M⟩ as:

δP = ⟨⟨P ⟩ − P ⟩

δρ = ⟨⟨ρ⟩ − ρ⟩

δM = ⟨⟨M⟩ −M⟩

We place velocity perturbations as described in the section 3.3 at distances Rshell = rs

and Rshell = 2rs, where rs = 39.0 is a sonic radius (M = 1). The width of these

perturbations are from 0.9Rshell to 1.1Rshell. During the simulations, quantities δP , δρ,

δυr, δυθ and δM are recorded along with angle averaged values of the pressure, density

and velocities for further analysis.

The Figure 8 shows the values of δP/(γP ) and δM for l = 1 and Rshell = rs; 2rs.

During the accretion, the identity (27) is visible, but over time both graphs stretch and

start increasing to ∼ 10−3.

With this method, the values of δP/(γP ), δυr/c and δυθ/c can be analyzed during

the accretion to check and compare with previous semi-analytical works of such model.

These values are plotted in graphs shown in Figure 9. One noticeable feature is that l = 1

values are mostly straight line, whereas l = 2 have a significant dip, and l = 4 have several

dips. At Rshell = 3rs number of such dips increase. On top of that, these results show

increasing δP/(γP ), while semi-analytical solutions predicted a plateau [18].

The question of why these patterns occur is a topic of further research. Future goal

is to systematically study the accretion from various distances (Rshell = 5rs; 10rs as

an example) and effectively visualize pressure and velocities to qualitatively analyze the

occurrence of those dips.

4 CONCLUSION

In this thesis, we used new portable Astrophysical flow code IDEFIX designed for high-

performance computing. The code solves solves conserved quantities and source terms

specified in the setup.cpp. The variety of classes and features of the input file and setup

file allows to create various astrophysical code for specific needs.

We used a code for Core-Collapse Supernovae that has outer accreting part and inner

shockwave. 1D simulations were done to find the parameters of minimal cutoff entropy,

heating normalization, and reflection coefficient of the inner boundary condition. The

most optimal parameters were proven to be smin = −4.6, Cref = 0.7, aheat = 0.0015
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Figure 9: Top row: δP/(γP ) at Rshell = rs; 2rs; 3rs. Middle row: δυr/c at Rshell =
rs; 2rs; 3rs. Bottom row: δυθ/c at Rshell = rs; 2rs; 3rs

during evolution of the shock and cooling correction of 1. Alternatively, for constantly

high aheat = 0.0493818, Cref = 0.0 and cooling correction of 0.5 also gives a stable shock.

Despite the first parameters predicting SASI (χ < 3.0), and the second one convection

(χ > 3.0), 3D simulations of both resulted in standing accretion shock instability.

The effect of convective shells with angular numbers l = 1; 2; 4 on shock was also

demonstrated. l = 1 perturbations speed up the occurrence of shock oscillations by ∼ 6

times, and l = 2 and l = 4 perturbations did not result in SASI nor convection up to

t = 600.

Further analysis of such perturbations can be done with pure Bondi accretion by ana-

lyzing the data at shock radius. The accretion of perturbations show a clear relationship

between the deviation of Mach number and pressure. Consequent analysis of the accretion

is a promising topic of further quantitative research.

To sum up, IDEFIX is an efficient code for doing CCSN simulations with relatively

smaller computational power. The versatility and portability of the code makes the

development and changes in the model convenient, which allowed us to obtain new results.
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