
CNN performance analysis with different GPU
libraries and Attention optimization on GPU using

Tensor Core WMMA API
by

Zhumakhan Nazir
Submitted to the Department of Computer Science

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

at the
NAZARBAYEV UNIVERSITY

June 2024
© Nazarbayev University 2024. All rights reserved.

Author .
Department of Computer Science

April 24
Certified by. .

Jurn Gyu Park
Professor

Thesis Supervisor
Certified by. .

Minho Lee
Professor

Co-supervisor
Certified by. .

Zhanat Kappassov
Professor

External Examiner
Accepted by .

Yelyzaveta Arkhangelsky
Dean, School of Engineering and Digital Sciences

2

CNN performance analysis with different GPU libraries and

Attention optimization on GPU using Tensor Core WMMA

API

by

Zhumakhan Nazir

Submitted to the Department of Computer Science
on April 24, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

Deep Learning has been very effective in tasks related to texts, images or time series
data. With increased efficiency, demand for hardware and software capabilities has
increased as well. Nvidia GPUs are the main hardware type that is used to both
train and serve DL models of various sizes. It comes with high performance linear
algebra (cuBLAS), deep neural networks (cuDNN) libraries and inference engines
(TensorRT) which are used to accelerate computations. In addition to these, CUDA
parallel programming software allows users to devise their own custom kernels for
specific cases. This work consists of two parts. In the first part, three different im-
plementations of Yolo, a convolutional neural network model, using cuBLAS, cuDNN
and TensorRT were evaluated. By collecting the GPU performance metrics such as
compute utilization and memory throughput, the most important metrics that greatly
affect the performance of kernel from these libraries were identified. In the next part,
we discussed the attention mechanism from Transformers architecture. The standard
attention mechanism is bottlenecked by memory bandwidth since intermediate ker-
nels need to read from and write to global memory. FlashAttention2 addressed this
issue by fusing all kernels into one using cuTLASS library. It improved the efficiency
of attention operation by several magnitudes. This work used TensorCore WMMA
API to implement the similar CUDA kernel and explored potential improvements by
selecting proper Q,K and V tile sizes. As a result, latency of the FA2 kernel was
improved by 10%-40% percent on A100 and RTX3060 GPUs respectively.

Thesis Supervisor: Jurn Gyu Park
Title: Professor

Co-supervisor: Minho Lee
Title: Professor

3

External Examiner: Zhanat Kappassov
Title: Professor

4

Acknowledgments

Big thanks to Professor Jurn Gyu Park for constant help, for discipline and for the

spirit of a researcher. My sincere gratitude to Nazarbayev University for providing

the best conditions for studying and living. And thanks to my family and friends for

unconditional love and support.

5

6

Contents

1 Introduction 13

1.1 Background . 13

1.2 Motivation and Contribution . 14

2 Part1. CNN Performance Analysis 15

2.1 Motivationa and Contribution . 15

2.2 Related Works . 17

2.3 Methodology . 18

2.3.1 Phase I: Hierarchical Three-step Analysis 18

2.3.2 Phase II: Interpretable ML enhanced Performance Analysis . . 18

2.4 Results . 19

2.4.1 Experimental Setup . 19

2.4.2 Results and Analysis . 22

3 Part2. Attention Optimizations on GPU 27

3.1 Motivation and Contribution . 27

3.2 Related Works . 29

3.3 Methodology . 31

3.3.1 Algorithm and Design . 31

3.3.2 Async vectorized loads bypassing register 33

3.3.3 Padding to avoid shared memory bank conflicts 34

3.3.4 Row-max and -sum in registers using shuffle instructions . . . 35

3.3.5 Effects of Q_size and KV_size 36

7

3.4 Results . 37

3.4.1 Experimental Setup . 37

3.4.2 Results and Analysis . 37

4 Conclusion 41

A Figures 43

8

List of Figures

2-1 Average Elapsed Time (us) per layer. 16

2-2 Overview of Our Methodology. 17

2-3 Layer Fusion Illustration in TensorRT. [29] 19

2-4 Elapsed time for convolutional layers. 23

2-5 GPU kernels in layer 3. 24

2-6 Gradient Boosting Regression feature weights. 26

2-7 Decision Tree Classification. 26

3-1 Speedup over pytorch implementation [8] 28

3-2 Methodology diagram. 31

3-3 Visual diagram of the algorithm. 33

3-4 Global to shared data movement prior (on the left) and after (one the

right) Ampere. 34

3-5 Mapping of 16x16 matrix into wmma::fragment in Ampere. 𝑇 𝑗
𝑖 means

𝑗-th element of 𝑖-th thread in a warp. 34

3-6 Finding maximum across 4 threads 36

3-7 Global memory throughput. 38

3-8 Speed (TFLOPs/s) of our kernel for batch size=4, #heads=12, #to-

kens, and head dimension=64 on A100(SXM4-40GB)GPU. 38

3-9 Speed (TFLOPs/s) of our kernel for batch size=4, #heads=12, #to-

kens, and head dimension=64 on laptop RTX3060 GPU. 39

A-1 Yolov4-tiny architecture . 44

9

10

List of Tables

2.1 Geforce GTX 1050 Ti Specifications. [28] 20

2.2 Dataset Features. 21

2.3 Layers with Fast(top5), Slow(bottom5), and Intermediate(rest) laten-

cies according to cuBLAS results. 23

2.4 Structures of convolutional layers 3 and 20. 23

2.5 Performance of Regression Models. 24

2.6 Performance of Classification Models. 24

3.1 Fused GPU kernel implementations for SDPA. 31

3.2 Mapping of rows of 16x16 matrix into banks of shared memory after

padding. 35

3.3 Number of register used in the kernel. Red color means a register spill. 36

3.4 GPU specifications . 37

3.5 Latency (ms) of our kernel for batch size=4 #heads=12, #tokens=25K

and head dimension=64 on A100(SXM4-40GB) GPU. 37

11

12

Chapter 1

Introduction

1.1 Background

Deep Learning (DL) methods are very effective in vision and language related tasks

[9, 48]. In general, high performing DL models have large sizes. State-of-the art

vision models that won ImageNet challenge have high computational demands and

even combine Transformer archecture with CNNs [25, 37]. One common application

of vision models is related to real-time, such as autonomous robots and surveillance.

Large Language Models on the other hand, served in server environment. However

training and serving LLMs like LLAMA2 produces several hundreds tons equivalent

of CO2 [40]. Even small improvements in efficiency of these models can meaningfully

contribute to both the user experience and the environment.

Currently, GPUs are extensively used to train and deploy DL models. Nvidia

have produced several generations of GPU, like Turing, Ampere, Hopper and etc,

that can be employed for DL model training and serving. They also have provided

linear algebra (cuBLAS), deep neural network (cuDNN) specific libraries and inference

engines which contain very efficient GPU kernels [5, 26, 29]. In addition to that, users

can write their own custom kernels for their need using GPU programming platform

and model called CUDA [26].

13

1.2 Motivation and Contribution

This work consist of two parts. First will focus on CNN models and performance of

their implementations using different GPU libraries. Second part addresses issues in

the Transformer architecture and current solutions [41]. Also, we develop our own

custom CUDA kernel to improve efficiency of Transformer architure and benchmark

it against current state-of-the-art implementations.

14

Chapter 2

Part1. CNN Performance Analysis

2.1 Motivationa and Contribution

CNNs in academia and industry are successfully deployed due to the accuracy im-

provements in various applications of image classification [18] [36] [14], object detec-

tion [4], natural language processing [45], voice recognition [1], etc.

However, one of the most challenging problems is optimizing inference time with-

out significant accuracy degradation. Most recent state-of-the-art models achieve

high accuracy at the cost of the performance time [46] [39] especially in computer

vision domains, while some fast CNNs experience a significant accuracy degrada-

tion as trade-offs [15] considering mobile system domains. One of the recent practi-

cal/popular solutions is YOLOv4/VOLOv4-Tiny [4], which focuses on faster object

detection, but does not experience a drastic loss in accuracy.

The main point of this work is that CNN inference (and object detection) time is

highly dependent on GPU libraries used to implement it and it is possible to accelerate

its performance even further by using more optimized ones. Therefore, we adopt and

compare three different types of libraries: cuBLAS [26], cuDNN [5], and TensorRT

[29]. The cuBLAS library implements basic linear algebra subprograms (BLAS) on

top of the NVIDIA CUDA runtime and provides optimized functions/methods for

standard CNN operations. While cuDNN GPU-accelerated library primitives are

highly tuned for the deep learning domain. TensorRT is an SDK for deep learn-

15

Figure 2-1: Average Elapsed Time (us) per layer.

ing inference with computational graph optimizer by layer fusion and quantization

methods.

Considering deep CNN models, notoriously complicated GPU programming imple-

mentations, and the hidden property of the libraries, we introduce two combinational

approaches for this comparative study: 1) the use of profiling approaches such as

nvprof [31] or/and Nsight [30] and 2) performance evaluation using interpretable ML

models, based on the profiled data.

Therefore, this paper makes the following contributions:

• Compare CUDA cuBLAS, cuDNN, and TensorRT Libraries in terms of inference

time and GPU kernel usage on YOLOv4-Tiny.

• Propose an interpretable ML-enhanced performance comparison and analysis

method using a dataset collected from a profiling tool (nvprof).

16

Figure 2-2: Overview of Our Methodology.

• Interpret and explain effects of GPU kernel profiling metrics on execution time

using feature importances from the interpretable ML models.

The rest of the paper is organized as follows: Section II describes the motivation

and related work. Section III presents our methodology for a systematic comparative

study. Section IV shows and analyzes our results. Finally, Section V concludes with

future work.

2.2 Related Works

Several works have experimental studies on CNNs implementations with different

GPU libraries and frameworks. Wang et al. [43] propose their own framework, which

is significantly faster than cuDNN on average, but the source code of their work

could not be found. Kim et al. [17] show that cuDNN can improve the performance

of different CNN implementations, but they do not compare different GPU libraries.

Li et al. [22] provide a comprehensive comparison of different frameworks over a wide

range of parameter configurations and investigate potential performance bottlenecks

while pointing out a number of opportunities for further optimization. However, there

is currently no comparison of different GPU libraries.

Regarding different CNNs with object detection, Felzenszwalb et al. [10] proposed

a sliding window approach, where the classifier runs at evenly spaced locations over

the entire image. However, this approach is slower and less accurate than YOLO.

Girshick et al. [12] introduced a model where R-CNN uses region proposal methods

17

(bounding boxes), but complex pipelines are slow and hard to optimize. Therefore, we

adopt YOLOv4-Tiny , as it provides a good trade-off between accuracy and inference

time, targeting real-time/embedded systems. Its architecture is given in Appendix

(Figure A-1) for a reference.

2.3 Methodology

As shown in Figure 2-2, the workflow of our methodology is divided into two phases:

1) the analysis phase, which is divided into three parts, and 2) the interpretable ML

enhanced performance evaluation using the feature importance metrics.

2.3.1 Phase I: Hierarchical Three-step Analysis

The first phase begins with 1) the network analysis step, where overall performance

in all layers of three frameworks is compared. We mainly focus on the convolutional

layers rather than pooling and fully connected layers, since they are the core part

consuming most time in the inference of CNN frameworks. Next, in the second step of

2) layer analysis, representatively important layers are chosen and compared based on

the performance time. These usually include layers with the largest and smallest per-

layer inference time. And finally, 3) the GPU kernel analysis step is done by analyzing

kernels on the chosen representative layers. The analysis of different frameworks is

completed through the nvprof [31] profiling tool.

2.3.2 Phase II: Interpretable ML enhanced Performance Anal-

ysis

By repeating the first phase we capture sufficient data to create a dataset. It includes

the name of the library/framework, recorded metrics, and execution time of each

iteration. Some implementations of convolution operation launch several consecutive

GPU kernels (e.g. cuBLAS launches im2col –image to column conversion, followed

by sgemm –general matrix multiplication). In such cases, we combine metrics from

18

these kernels by weighting them proportionally to their running times. For example, if

im2col takes 1ms and sgemm 4ms, to get the final metrics for the current convolutional

layer, we multiply the results of im2col by 0.2 and sgemm by 0.8 and add them.

Figure 2-3: Layer Fusion Illustration in TensorRT. [29]

On a completed dataset, three classification models predict the used framework

from metrics and three regression ML models predict latency from collected metrics.

Frameworks are cuBLAS, cuDNN, or TensorRT. The class labels were transformed

to numerical values where class 0 is TensorRT, class 1 is cuBLAS, and class 2 is

cuDNN. The algorithms for classification are Decision Tree Classifier (DT), Logistic

Regression (LR) and Random Forest Classifier (RFC). For the regression estimators,

we use Decision Tree Regressor (DT), Gradient Boosting Regressor (GBR) and Linear

Model Tree (LMT) algorithms. To evaluate the performance of the models on the

dataset, the Mean Absolute Percentage Error (MAPE) metric is used.

Through the process of training and testing based on these ML models, we are

able to select and interpret the most important metrics.

2.4 Results

2.4.1 Experimental Setup

We use GeForce GTX 1050 Ti on Ubuntu 20 with CUDA version 11. The technical

specifications are shown in Table 2.4.1.

19

SM CUDA cores Clock rate
Shared
Memory

Number of
Registers

6 128 per SM 1.39 GHz 48 Kb 65k per block

Table 2.1: Geforce GTX 1050 Ti Specifications. [28]

Dataset

In this experiment, one image [2] was tested for 10 repeated inferences and their per-

formance results were recorded. Single image is used instead of a set of images since

the main focus of this paper is the latency of convolutional layers. These results from

Phase I are grouped to create the new dataset with profiled (using nvprof) metrics as

features. The new dataset consists of 262 samples each having 21 variables. Although

the variable names are self-descriptive, the detailed definitions of each variable can

be found in Nvidia Profiler User’s Guide [31]. Table 2.2 shows the value range of

each metric. The framework and performance time is used as target variables for

classification and regression models respectively. The results of these interpretable

models will be used to analyze and select the most important performance metrics.

The collected dataset can be found in [24].

Frameworks

For our experiment, the three frameworks were used to run the model using GPU ac-

celeration: cuBLAS(version 11) [26], cuDNN (version 8.4) [5], and TensorRT (version

8.2) [29]. The Darknet [35] repository provides cuBLAS and cuDNN implementa-

tions of the YOLO model, while TensorRT implementation is taken from tkDNN [42]

repository.

The cuBLAS is Nvidia’s GPU-accelerated implementation for basic linear algebra

subprograms (BLAS). The CUDA deep neural network library (cuDNN) is a GPU-

accelerated library of primitives for deep neural networks. cuDNN provides highly

tuned implementations for standard routines such as forward and backward convolu-

tion, pooling, normalization, and activation layers.

The NVIDIA TensorRT, achieving state-of-the-art performance, is a high-performance

20

Feature Range

warp_execution_efficiency [1]
gld_efficiency [0.54; 0.94]
gst_efficiency [0.57; 1]

stall_inst_fetch [0.03; 0.12]
stall_exec_dependency [0.08; 0.32]

stall_memory_dependency [0.1; 0.5]
stall_sync [0.08; 0.22]

stall_pipe_busy [0.01; 0.06]
shared_efficiency [0.37; 0.77]

achieved_occupancy [0.25; 0.4]
l2_utilization [0.13; 0.29]

shared_utilization [0.3; 0.63]
ldst_fu_utilization [0.16; 0.27]
cf_fu_utilization [0.1]

special_fu_utilization [0.02; 0.16]
tex_fu_utilization [0.18; 0.22]

single_precision_fu_utilization [0.21; 0.86]
double_precision_fu_utilization [0]

dram_utilization [0.37; 0.89]
type [0; 2]
time [259.53; 986.71]

Table 2.2: Dataset Features.

deep learning inference optimizer that delivers low latency and high throughput for

inference applications. TensorRT is optimized by kernel auto-tuning, layer and tensor

fusion, INT8 and FP16 quantization aware training, and post-training quantization,

as shown in Figure 2-3.

Profiling Tools

The nvprof [31] profiling tool is NVIDIA’s graphical profiler that allows performing a

thorough analysis of the model by collecting and viewing profiling data. The visual

profiler displays the GPU activity of the application on a timeline including kernel

execution, memory transfers, memory set, and CUDA API. The output of profiling

can be displayed on the command line or saved in a separate file by –log-file command.

There are different metrics involved in profiling, such as the number of calls, name

of the kernel, minimum, maximum, and average execution times, and either specific

21

metric could be chosen or all metrics could be displayed using –metrics all command.

To control the profiling and limit it to particular layers, specific instructions named

cudaProfilerStart() and cudaProfilerStop() are used to indicate the start and the end

of the profiling.

For the second phase (Phase II), the analysis results will be grouped to form a

dataset with the execution time of each kernel, framework types, and total running

time. The dataset set will be used in two tasks: regression and classification. In the

regression tasks, execution time is the predicted value, while framework type is the

label class for classification.

2.4.2 Results and Analysis

Network analysis

To perform network layer analysis, the execution times of all convolutional layers are

compared for each framework. The execution time for all layers is obtained through

the nvprof profiling tool and only results from convolutional layers are selected. As

depicted in Figure 2-4, TensorRT (with both FP32 and INT8 implementations) is the

fastest along all layers, while cuDNN is in the middle and cuBLAS is the slowest.

However, despite being the fastest one, the INT8 version of TensorRT results in a

significant accuracy drop.

It can be seen that some layers take more time to execute while others take less,

for example, the 3rd and 20th convolutional layers are slow. Even though Figure

2-4 provides some information on elapsed time for each layer, it doesn’t tell why the

particular layers are slower, and in order to check the reasons behind such results,

each layer should be analyzed independently.

Layer analysis

Convolutional layers have different execution times, which can be caused by kernels

used in the framework, and by the architecture of the network itself. According to

Table 2.3, all the slowest layers have 3x3 filters, while fast layers mostly have 1x1

22

Figure 2-4: Elapsed time for convolutional layers.

Filter Size
3x3 1x1

Number of
Input Filters

< 128 1,4,5,8,9,2,3 6
>= 128 7,12,13,17, 11,15,20 10,14,16,18,19,21

Table 2.3: Layers with Fast(top5), Slow(bottom5), and Intermediate(rest) latencies
according to cuBLAS results.

ones. Also, faster layers tend to have more than 128 output filters as well. Slow

layers can have both more and less than 128 filters. While this does not mean that

all layers with 3x3 filters will be slow, in combination with the kernels these layers

use, this factor could be influential. Convolutional layers that are considered in this

work are 3 and 20, their architectures are given in Table 2.4

GPU kernel analysis

The convolutional layers 3 and 20 are the slowest in execution time, and it is necessary

to check which kernels are used and compare their performances. Figure 2-5 shows

the third convolutional layer’s kernels for each framework. cuDNN and TensorRT

each launch single kernel (maxwell_scudnn_winog

layer# filters filters/stride/pad input output
3 64 3x3/1/1 104x104x64 104x104x64
20 256 3x3/1/1 26x26x384 26x26x256

Table 2.4: Structures of convolutional layers 3 and 20.

23

Model Test MAPE Important Feature 1 Important Feature 2 Important Feature 3

Decision Tree 0.0094 gld_efficiency shared_utilization shared_efficiency
Gradient Boosting 0.0088 gld_efficiency stall_memory_dependency achieved_occupancy
Linear Model Tree 0.0079 stall_exec_dependency stall_sync gld_efficiency

Table 2.5: Performance of Regression Models.

Model Test Accuracy Important Feature 1 Important Feature 2 Important Feature 3

Decision Tree 100% gld_efficiency achieved_occupancy -
Logistic Regression 100% gld_efficiency shared_efficiency shared_utilization

Random Forest 100% ldst_fu_utilization stall_exec_dependency gld_efficiency

Table 2.6: Performance of Classification Models.

Figure 2-5: GPU kernels in layer 3.

rad_128x128_ldg1_ldg4_mobile_relu_tile148t_nt_v0 and trt_maxwell

_scudnn_winograd_128x128_ldg1_ldg4_relu_tile148n_nt_v0 accordingly) to per-

form both convolution and ReLU operations. By speculating kernel names, since it

is a closed-source implementation, they are based on Winograd’s minimal filtering

algorithm [44]. The algorithm reduces the number of multiplications by using extra

addition operations. It is the most efficient convolution implementation when the

filter size is 3x3 and the batch size is small [17]. In the case of convolutional layer

20, the filter size is 3x3 and the batch size is 1. cuBLAS, on the other hand, launches

24

fill_kernel, im2col_gpu_kernel_ext, and sgemm_32x32x32_NN_vec kernels to per-

form convolution operations. The first two GPU kernels are designed to reduce con-

volution operation to matrix multiplication and solely memory bandwidth bounded.

SGEMM kernel does matrix multiplication and it utilizes both memory and compute

units in balance. In contrast, Winograd’s minimal filtering-based kernels consume

more static shared memory and registers.

Dataset

Before performing any classification or regression, the dataset was modified first. Ac-

cording to Table 2.2, three features do not change their value throughout the dataset

(warp_execution_efficiency, cf_fu_utilization, and double_precision_fu_utilization).

Therefore, they were removed from the model building, as they did not provide any

essential information, and this could result in more noise. Also, the time values were

divided by 1000, so they could be in the range [0; 1].

Regression

The regression task focused on predicting the execution time of each iteration. Table

2.5 shows that the average MAPE is less than 0.01 for each model. The Linear Model

Tree shows a slightly lower result. The feature importance was calculated using

scikit-learn’s built-in Gini importance metric [33]. gld_efficiency appears as one of

the most important metrics in all of the interpretable models used. Other metrics

appear only once, and their importance is usually significantly lower. Therefore, it

can be concluded that according to the regression models, gld_efficiency is one of the

most important metrics as shown in Figure 2-6.

Classification

Classification models predict the used framework based on the provided metrics. Each

model has 100% accuracy on the used dataset, which is shown in Table 2.6. Such

high accuracy is due to the small size of the dataset, which uses only 3 classes for

classification, and has a low level of noise. Similar to the regression, the feature

25

Figure 2-6: Gradient Boosting Regression feature weights.

Figure 2-7: Decision Tree Classification.

importance is calculated using scikit-learn’s calculations of the Gini importance as

shown in Figure 2-7. In Logistic Regression, however, we use the coefficients of the

features in the decision function, as this model does not have feature importance by

itself. Our interpretation is that the larger the absolute value of the coefficient, the

more important the feature is. Again, gld_efficiency is the most important metric in

two out of three classifiers, followed by ldst_fu_utilization. These features, as well

as shared_utilization, shared_efficiency, and stall_exec_dependency appear in both

classifiers and regressors.

26

Chapter 3

Part2. Attention Optimizations on

GPU

3.1 Motivation and Contribution

GPU is the main accelerator hardware that is being used to train and serve deep

learning models. The main advantages of GPU over other hardware are high memory

and compute bandwidth and versatility. Current state-of-the-art Large Language

Models (LLM) have up to 540 billion parameters [48]. For example, to train LLAMA2

model almost 3 million A100 GPU hours were spent [40].

The Scaled Dot Product Attention (SDPA) introduced by Waswani et. al is the

key building block of all these LLMs [41] and it is formulated as below:

𝑆𝐷𝑃𝐴(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√
𝑑

)𝑉 (3.1)

where 𝑄,𝐾, 𝑉 are matrices with rows each representing the embedding of a particular

token. Usually, embedding size is upto 1024 while the number of tokens can be as large

as 100K. This means that temporary matrix 𝑄𝐾𝑇 can have 100K by 100K dimensions.

For this reason Attention has quadratic memory and runtime complexity in terms of

number of tokens. Memory bandwidth becomes the bottleneck while under-utilizing

the compute units of a GPU.

27

Instead of performing 𝑚𝑎𝑡𝑟𝑖𝑥-𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (matmul), then 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

and then again 𝑚𝑎𝑡𝑚𝑢𝑙, the single GPU kernel fusing all these operations into one

could solve the above issue. Kernel fusion is among the widely used techniques in

libraris such as cuDNN and TensorRT [5, 29].

FlashAttention (FA1) and its improvement FlashAttention2 (FA2) employ the

kernel fusion technique on SDPA and provide the pytorch compatable, IO-aware, fused

GPU kernels for both forward and backward passes [8, 7]. FA1 is 𝑥7.6 faster than

default pytorch implementation. FA2 uses cuTLASS library to utilize TensorCores

and it is 𝑥2 faster than its predecessor [8, 7].

Figure 3-1: Speedup over pytorch implementation [8]

FA2 is optimized for A100 GPU and uses cuTLASS to utilize TensorCores. WMMA

API has also been succesfully used in many DL TensorCore optimizations recently

[11, 47, 13]. This is the main point we considered as a motivaton to our work:

• Apply further optimizations for consumer-level GPUs like RTX series by select-

ing proper Q,K,V tile sizes using WMMA API

In this work, we implement a very similar fused kernel for SDPA using CUDA

Tensor Cores WMMA API for Ampere (SM80) and go through all optimizations

techniques used [26].

Our contributions are here:

28

• Implement SDPA using TensorCore WMMA API

• Explore effects of tiles sizes for Q, K and V matrices

• Improve the latency of SDPA kernel by 10%-40% with respect to FA2 in Ampere

based GPUs.

• All the codes are available at: https://github.com/zhumakhan/flash-attention-

wmma.git

3.2 Related Works

Rabe et al [34] observed that SDPA does not need 𝑂(𝑛2) memory. They replaced

softmax operation with 𝑙𝑎𝑧𝑦 softmax [16]. Given query vector 𝑞, key and value

matrices 𝐾 and 𝑉 (scaling part is omitted):

𝑠𝑖 = 𝑑𝑜𝑡(𝑞,𝐾𝑖), 𝑠*𝑖 = 𝑒𝑠𝑖 , 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞,𝐾, 𝑉) =

∑︀
𝑖 𝑉𝑖𝑠

*
𝑖∑︀

𝑗 𝑠
*
𝑗

(3.2)

With this formulation, calculating only a chunk of 𝑠*𝑖 at a time is sufficient to calcu-

late the full attention. Jax and Pytorch implementations of the algorithm that use

𝑂(
√
𝑛) memory are also provided in this work. Following this, Xformers library de-

veloped a specialized GPU kernel to avoid intermediary memory transfers and kernel

launch overheads [21]. This is known as a 𝑚𝑒𝑚𝑜𝑟𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 in Pytorch

framework.

PagedAttention is introduced as an efficient attention inference operation that

avoids GPU memory fragmentation by keeping key-value cache as a separate list of

vectors instead of a matrix [20]. In standard inference more than 30% of DRAM is

filled by key-value cache and at each iteration it needs to be recomputed. However, the

only difference between the key-value cache of current iteration and previous iteration

is an additional column vector. PagedAttention avoids re-computation by preserving

previous values and adding a new vector to the list. vLLM is an inference engine

built on top of PagedAttention [19]. It increased the throughput by 𝑥2-4 without

29

increasing the latency with respect to state-of-the-art systems like FasterTransformer

and Orca.

FlashAttention is a GPU kernel for SDPA and it also uses 𝑜𝑛𝑙𝑖𝑛𝑒 𝑙𝑎𝑧𝑦 softmax [8,

23]. Within a single thread-block, in the outer loop tiles of K and V are loaded

into shared memory and in the inner loop a tile of Q is loaded. Then partial SDPA

calculated and stored in global memory. The number of heads in multi-head attention

and number of batches define the grid size of the kernel.

FlashAttention2 is the improved version of FlashAttention algorithm [7]. Inner

and outer loops are swapped. Outer loops is parallelized over multiple thread blocks.

It is implemented using the cuTLASS library to utilize the TensorCore units that are

available in new generations of GPU like Ampere [26]. As a result, it doubled the

speed.

There are several GPU compilers that can to certain extent fuse operations into

single GPU kernel. OpenAI/Triton implementation of FA2 has comparable speed

with FA1 and Xformers’ implementation of memory efficient attention [38]

Colflax is an implementation of FA2 using cuTLASS library for Hopper (SM90)

architecture. It utilizes Hopper specific features such as Tensor Memory Accelerator

(TMA) and Warpgroup Matrix-Matrix-Accumulate (WGMMA). It also explores and

selects optimal tile size for Q, K and V matrices balancing register pressure and shared

memory utilization. It achieved 20%-50% speedup over FA2 which is optimized for

Ampere (SM80) [3].

ByteTransformers is another work that implements fused kernel for SDPA [47].

Number of tokens or context length could have varying sizes within the batch and

common solution is to pad to make them all have the same length. ByteTransformers

address that issue by implementing a CUDA kernel that accepts varying size inputs.

Current state-of-the-art SDPA implementation on Ampere is FA2 and on Hopper

is Colflax.

30

HW Core Software QKV tile Speed

mem multi Tensor cuTLASS n/a slow

eff. [34]

FA1 [8] multi Cuda plain CUDA n/a slow

FA2 [7] Ampere+ Tensor cuTLASS 32x128 fast

Triton [38] Hopper+ Tensor cuTLASS n/a slow

Colflax [3] Hopper+ Tensor cuTLASS 64x128 fast

Byte cuTLASS

Transfor Apmere+ Tensor WMMA API 16x64 slow

mers [47]

Ours Ampere Tensor WMMA API 32x64 fast

Table 3.1: Fused GPU kernel implementations for SDPA.

3.3 Methodology

In this section, we discuss details of the algorithm and effects of Q, K and V tile sizes

on performance. Overall methodology diagram is given in Figure 3-2.

Figure 3-2: Methodology diagram.

3.3.1 Algorithm and Design

The main difference between FA1 and FA2 is that outer and inner loops are swapped

and FA2 utilizes TensorCores. We use the same algorithm as FA2 [7] and its diagram

31

is given in Figure 3-3.

Adopted FlashAttention2 algorithm [7]

Given Q, K, V: ∈ R𝑁×𝑑 matrices in HBM, block sizes 𝐵𝑐, 𝐵𝑟

1. Partition Q into 𝑇𝑟= 𝑁
𝐵𝑟

blocks 𝑄1,...,𝑄𝑇𝑟 of size 𝐵𝑟 × 𝑑 each. Divide K,V into

𝑇𝑐 =
𝑁
𝐵𝑐

blocks 𝐾1,...,𝐾𝑇𝑐 and 𝑉1,...,𝑉𝑇𝑐 , of size 𝐵𝑐 × 𝑑 each.

2. for 1 ≤ i ≤ 𝑇𝑟 do

3. Load 𝑄𝑖 from HBM to on-chip SRAM

4. On chip, initialize 𝑂
(0)
𝑖 =(0)𝐵𝑟×𝑑 ∈ R𝐵𝑟×𝑑,

𝑙
(0)
𝑖 = (0)𝐵𝑟 ∈ R𝐵𝑟 , 𝑚(0)

𝑖 = (−∞)𝐵𝑟 ∈ R𝐵𝑟

5. for 1 ≤ j ≤ 𝑇𝑐 do

6. Load 𝐾𝑗, 𝑉𝑗 from HBM to on-chip SRAM

7. On chip, compute 𝑆
(𝑗)
𝑖 = 𝑄𝑖𝐾

𝑇
𝑗 ∈ R𝐵𝑟×𝐵𝑐

8. On chip, compute 𝑚
(𝑗)
𝑖 =max(𝑚(𝑗−1)

𝑖 , rowmax(𝑆𝑗
𝑖)) ∈ R𝐵𝑟 ,

𝑃
(𝑗)
𝑖 =exp(𝑆(𝑗)

𝑖 −𝑚
(𝑗)
𝑖)∈ R𝐵𝑟×𝐵𝑐 ,

𝑙
(𝑗)
𝑖 =𝑒𝑚

(𝑗−1)
𝑖 −𝑚

(𝑗)
𝑖 𝑙

(𝑗−1)
𝑖 + rowsum(𝑃 𝑗

𝑖) ∈ R𝐵𝑟

9. On chip, compute 𝑂
(𝑗)
𝑖 =diag(𝑒𝑚

(𝑗−1)
𝑖 −𝑚

(𝑗)
𝑖)−1𝑂

(𝑗−1)
𝑖 +𝑃

(𝑗)
𝑖 𝑉𝑗.

10. end for

11. On chip, compute 𝑂𝑖=diag(𝑙(𝑇𝑐)
𝑖)−1𝑂

(𝑇𝑐)
𝑖

12. Write 𝑂𝑖 to HBM as i -th block of O.

13. end for

14. Return the output O.

32

Figure 3-3: Visual diagram of the algorithm.

Each iteration in outer loop is matched to a single thread block of CUDA. Inner

loop is parallelized using the threads within the single thread block. On chip SRAM

is a register file in our implementation. Tiles of 𝐾 and 𝑉 are loaded into shared

memory first, then copied into registers to utilize TensorCore.

In next sections, a background on optimization techniques and effects of tiles on

number of registers are given.

3.3.2 Async vectorized loads bypassing register

Prior to Ampere architecture, loading from HBM to shared memory was a two-step

process: first data is loaded into registers, then to shared memory. Starting from

Ampere, memory loads can bypass registers and directly go to shared memory as

shown in Figure 3-4. This can be achieved by using the asynchronous data movement

instructions. We used inlined cp.async PTX instruction [6]. cp.async.cg instruction

33

indicates caching at L2 level and not at L1 level. Whereas cp.async.ca instruction

caches a data at all levels up to the L1 cache.

Figure 3-4: Global to shared data movement prior (on the left) and after (one the

right) Ampere.

3.3.3 Padding to avoid shared memory bank conflicts

The mapping between row-major 2-D matrix and WMMA API’s fragment matrix

defines the padding size. All the elements of a fragment are stored in registers and

spread accross the threads of a warp. Also, this is architecture specific. Below is the

mapping for Ampere architecture:

Figure 3-5: Mapping of 16x16 matrix into wmma::fragment in Ampere. 𝑇 𝑗
𝑖 means

𝑗-th element of 𝑖-th thread in a warp.

In the mapping above, first four threads of a warp collectively store two rows (0-th

and 8-th) of a matrix. Next four threads store 1-st and 9-th rows, and so on. Thus,

to store 16 such rows 32 threads are enough.

34

Given any 64𝑥64 matrix 𝐴, it can be partitioned into 16𝑥16 matrices to be able

to use wmma fragments. Two adjacent elements of a matrix are stored in a single

shared memory bank, because elements should have ℎ𝑎𝑙𝑓 (16 bits) datatype while

one bank is 32 bits wide.

If matrix 𝐴 is stored in 64𝑥64 shared memory, then rows of any of 16𝑥16 sub-

matrices fall into the same 8 banks and each of its columns entirely fall into a single

bank. As illustrated in Figure 3-5, 4 different threads access the row while 8 different

threads access the column of 16𝑥16 matrix when loading from shared memory into a

fragment. This, in theory, causes 8-way shared memory bank conflict.

If 𝐴 is stored in 64𝑥72 shared memory with the padding of 8 elements at the end

of each row, we end up with row-to-bank mapping as in Table 3.2 below:

row 0 1 2 3 4 5 6 7 8 ...

bank 0-7 4-11 8-15 12-19 16-23 20-27 24-31 28-3 0-7 ...

Table 3.2: Mapping of rows of 16x16 matrix into banks of shared memory after

padding.

This padding size totally eliminates the bank conflicts when loading 16x16 matrix

from shared memory into wmma fragments. Similar technique can be applied for

different shapes of matrices as well.

3.3.4 Row-max and -sum in registers using shuffle instructions

Referring to Figure 3-5, each row is entirely stored in 4 threads collectively. For

example, to find the max value from the first row, max value of each thread is calcu-

lated first. Thus, maximum of red cells are stored in thread 0, maximum of blue cells

are stored in thread 1 and so on. Then, 𝑠ℎ𝑢𝑓𝑓𝑙𝑒 instruction is used to communicate

between threads of a warp [27]:

𝑓𝑜𝑟(𝑖𝑛𝑡𝑗 = 2; 𝑗 > 0; 𝑗 = 𝑗/2)

𝑚𝑎𝑥_𝑣𝑎𝑙 = 𝑚𝑎𝑥(𝑚𝑎𝑥_𝑣𝑎𝑙, __𝑠ℎ𝑓𝑙_𝑥𝑜𝑟_𝑠𝑦𝑛𝑐(𝑢𝑖𝑛𝑡32_𝑡(−1),𝑚𝑎𝑥_𝑣𝑎𝑙, 𝑗))

35

Figure 3-6: Finding maximum across 4 threads

The first iteration of above loop is depicted on the left and second iteration on

the right of Figure 3-6. Similarly, row-sum can be computed within the warp.

3.3.5 Effects of Q_size and KV_size

In the algorithm in Figure 3-3, increasing 𝑄_𝑠𝑖𝑧𝑒 and 𝐾𝑉 _𝑠𝑖𝑧𝑒 increase the register

pressure on the kernel. In contrary, increasing 𝑄_𝑠𝑖𝑧𝑒 will reduce the number of

thread blocks to launch. While 𝐾𝑉 _𝑠𝑖𝑧𝑒 acts as a tile size to copy from shared

memory into registers.

Q_size KV_size 32 64 128 160

16 80 91 106 116

32 128 148 192 202

64 217 255 255 255

Table 3.3: Number of register used in the kernel. Red color means a register spill.

In the experiments, the latency will be the main measurement criteria. In addition

to it, GPU performance metrics will be observed and discussed in relation to tile sizes

𝑄_𝑠𝑖𝑧𝑒 and 𝐾𝑉 _𝑠𝑖𝑧𝑒.

36

3.4 Results

3.4.1 Experimental Setup

These are the compiler flags used:

-Xptxas -O3,-v -maxrregcount=255 –expt-relaxed-constexpr -fmad=true -ftz=true -

prec-div=false -prec-sqrt=false

Name SM
Cuda
Cores

Tensor
Cores SM freq.

Shared
Memory

Number of
Registers HBM

A100 108 128 per SM 4 per SM 1.09 GHz 164 Kb 65k 40GiB
RTX3060 30 128 per SM 4 per SM 0.816 GHz 48 Kb 65k 6GiB

Table 3.4: GPU specifications

3.4.2 Results and Analysis

In GPUs with TensorCore, Bytes-to-Flops ratio is small [32]. Compute throughput

of our kernel with all different tile sizes is less 70%, while it is trivial to achieve full

memory bandwidth utilization. To put simply, memory bandwidth is a bottleneck in

most cases.

Decreasing 𝑄_𝑠𝑖𝑧𝑒 increases the grid dimension, hence puts more pressure on L2

cache per SM. This reduces the global memory throughput as shown in Figure 3-7.

In case of 𝑄_𝑠𝑖𝑧𝑒=64, high register pressure and register spill causes very high global

memory throughput. 𝑄_𝑠𝑖𝑧𝑒=32 and 𝐾𝑉 _𝑠𝑖𝑧𝑒={64,128} achieve balanced global

memory throughput and have low latency (Table 3.5).

Q_size KV_size 32 64 128 160

16 222.01 220.81 222.49 235.94

32 198.58 195.15 196.7 202.45

64 200.47 226.66 322.45 587.05

Table 3.5: Latency (ms) of our kernel for batch size=4 #heads=12, #tokens=25K

and head dimension=64 on A100(SXM4-40GB) GPU.

37

Figure 3-7: Global memory throughput.

OOM

GPT2 GPT3.5 GPT4

Figure 3-8: Speed (TFLOPs/s) of our kernel for batch size=4, #heads=12, #tokens,

and head dimension=64 on A100(SXM4-40GB)GPU.

38

OOM OOM

GPT2 GPT3.5 GPT4

Figure 3-9: Speed (TFLOPs/s) of our kernel for batch size=4, #heads=12, #tokens,

and head dimension=64 on laptop RTX3060 GPU.

Further, we use kernel with 𝑄_𝑠𝑖𝑧𝑒=32 and 𝐾𝑉 _𝑠𝑖𝑧𝑒=64 configurations to com-

pare with FA2. On A100 GPU, our kernel achieves more than 10% speedup over FA2

(Figure 3-8). As number of tokens increase, difference gets larger. On our laptop

RTX 3060 GPU, inference speedup improvement becomes 40% of FA2 (Figure 3-9).

This is because FA2 was solely optimized for A100 GPU and our kernel has more

flexibility.

39

40

Chapter 4

Conclusion

We have comprehensively investigated and compared three different GPU frameworks,

which improve the performance of CNNs. Applying these frameworks to the YOLOv4-

Tiny shows that TensorRT results in the most noticeable reduction in latency.

Using interpretable ML models in the classification and regression tasks shows

that gld_efficiency and ldst_fu_utilization provide the most information, and are

the most important metrics as a result. This deduction is supported by the fact that

all the used ML models show 100% accuracy in the classification and 0.0094 MAPE

in the regression tasks respectively.

Also, we have implemented FA2 GPU kernel using WMMA API and achieved

10% and 40% speedups on A100 and RTX3060 GPUs respectively. We have also

observed the effects of tile sizes, 𝑄_𝑠𝑖𝑧𝑒 and 𝐾𝑉 _𝑠𝑖𝑧𝑒, on memory throughput

and latency. Moreover, detailed optimizations techniques employing TensorCores is

covered. Currently our kernel does not support causal masking and head dimension

is limited to 64. These are considered for a future work.

41

42

Appendix A

Figures

43

Figure A-1: Yolov4-tiny architecture

44

Bibliography

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Ger-
ald Penn, and Dong Yu. Convolutional neural networks for speech recog-
nition. IEEE/ACM Transactions on audio, speech, and language processing,
22(10):1533–1545, 2014.

[2] Alexeyab. Test image used for performance comparison. https://github.com/
AlexeyAB/darknet/blob/master/data/dog.jpg, Sep. 2, 2016.

[3] Ganesh Bikshandi and Jay Shah. A case study in cuda kernel fusion: Imple-
menting flashattention-2 on nvidia hopper architecture using the cutlass library.
arXiv preprint arXiv:2312.11918, 2023.

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Op-
timal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934,
2020.

[5] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for
deep learning. arXiv preprint arXiv:1410.0759, 2014.

[6] NVIDIA Compute. Ptx: Parallel thread execution isa version 2.3. Dostopno na:
http://developer. download. nvidia. com/compute/cuda, 3:1–203, 2010.

[7] Tri Dao. Flashattention-2: Faster attention with better parallelism and work
partitioning. arXiv preprint arXiv:2307.08691, 2023.

[8] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashatten-
tion: Fast and memory-efficient exact attention with io-awareness. Advances in
Neural Information Processing Systems, 35:16344–16359, 2022.

[9] Shi Dong, Ping Wang, and Khushnood Abbas. A survey on deep learning and
its applications. Computer Science Review, 40:100379, 2021.

[10] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEE trans-
actions on pattern analysis and machine intelligence, 32(9):1627–1645, 2010.

[11] Daniel Y. Fu, Hermann Kumbong, Eric Nguyen, and Christopher Ré. FlashFFT-
Conv: Efficient convolutions for long sequences with tensor cores. 2023.

45

https://github.com/AlexeyAB/darknet/blob/master/data/dog.jpg
https://github.com/AlexeyAB/darknet/blob/master/data/dog.jpg

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
580–587, 2014.

[13] Mohammad Hafezan and Ehsan Atoofian. Improving energy-efficiency of capsule
networks on modern gpus. IEEE Computer Architecture Letters, 2024.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[16] Hanhwi Jang, Joonsung Kim, Jae-Eon Jo, Jaewon Lee, and Jangwoo Kim. Mn-
nfast: A fast and scalable system architecture for memory-augmented neural
networks. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 250–263, 2019.

[17] Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Lee. Performance
analysis of cnn frameworks for gpus. In 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 55–64. IEEE,
2017.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):84–
90, 2017.

[19] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody
Yu, Joey Gonzalez, Hao Zhang, and Ion Stoica. vllm: Easy, fast, and cheap llm
serving with pagedattention, 2023.

[20] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory
management for large language model serving with pagedattention. In Proceed-
ings of the 29th Symposium on Operating Systems Principles, pages 611–626,
2023.

[21] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio
Caggiano, Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick
Labatut, Daniel Haziza, Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov.
xformers: A modular and hackable transformer modelling library. https://
github.com/facebookresearch/xformers, 2022.

46

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers

[22] Xiaqing Li, Guangyan Zhang, H Howie Huang, Zhufan Wang, and Weimin Zheng.
Performance analysis of gpu-based convolutional neural networks. In 2016 45th
International conference on parallel processing (ICPP), pages 67–76. IEEE, 2016.

[23] Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for soft-
max. arXiv preprint arXiv:1805.02867, 2018.

[24] Z. Nazir. Cnn cuda libraries performance. https://github.com/zhumakhan/
CNN_Cuda_libraries_performance/blob/master/dataset.csv, 2022.

[25] Kien Nguyen, Clinton Fookes, Arun Ross, and Sridha Sridharan. Iris recogni-
tion with off-the-shelf cnn features: A deep learning perspective. IEEE Access,
6:18848–18855, 2017.

[26] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89,
2020.

[27] NVIDIA Corporation. Nvidia profiler user’s guide. https://developer.
nvidia.com/blog/faster-parallel-reductions-kepler/, Feb. 13, 2014.

[28] NVIDIA Corporation. Nvidia geforce 10 series graphics cards. https://www.
nvidia.com/en-eu/geforce/10-series/, Nov. 15. 2015.

[29] NVIDIA Corporation. Nvidia tensorrt, Nov. 15, 2015.

[30] NVIDIA Corporation. Nsight graphics. https://docs.nvidia.com/
nsight-graphics/UserGuide/, Nov. 1, 2022.

[31] NVIDIA Corporation. Nvidia profiler user’s guide. https://docs.nvidia.com/
cuda/profiler-users-guide/index.html#metrics-reference, Dec. 8, 2022.

[32] Hiroyuki Ootomo and Rio Yokota. Reducing shared memory footprint to lever-
age high throughput on tensor cores and its flexible api extension library. In
Proceedings of the International Conference on High Performance Computing in
Asia-Pacific Region, pages 1–8, 2023.

[33] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the
Journal of machine Learning research, 12:2825–2830, 2011.

[34] Markus N Rabe and Charles Staats. Self-attention does not need 𝑜(𝑛Θ2) memory.
arXiv preprint arXiv:2112.05682, 2021.

[35] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.
com/darknet/, 2013–2016.

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

47

https://github.com/zhumakhan/CNN_Cuda_libraries_performance/blob/master/dataset.csv
https://github.com/zhumakhan/CNN_Cuda_libraries_performance/blob/master/dataset.csv
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://www.nvidia.com/en-eu/geforce/10-series/
https://www.nvidia.com/en-eu/geforce/10-series/
https://docs.nvidia.com/nsight-graphics/UserGuide/
https://docs.nvidia.com/nsight-graphics/UserGuide/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

[37] Siddharth Srivastava and Gaurav Sharma. Omnivec: Learning robust repre-
sentations with cross modal sharing. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 1236–1248, 2024.

[38] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate
language and compiler for tiled neural network computations. In Proceedings
of the 3rd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, pages 10–19, 2019.

[39] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. Training data-efficient image transformers &
distillation through attention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[42] Micaela Verucchi, Gianluca Brilli, Davide Sapienza, Mattia Verasani, Marco
Arena, Francesco Gatti, Alessandro Capotondi, Roberto Cavicchioli, Marko
Bertogna, and Marco Solieri. A systematic assessment of embedded neural net-
works for object detection. In 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), volume 1, pages 937–
944. IEEE, 2020.

[43] Leyuan Wang, Zhi Chen, Yizhi Liu, Yao Wang, Lianmin Zheng, Mu Li, and Yida
Wang. A unified optimization approach for cnn model inference on integrated
gpus. In Proceedings of the 48th International Conference on Parallel Processing,
pages 1–10, 2019.

[44] S. Winograd. Arithmetic complexity of computations. Siam, volume 33, 1980.

[45] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study
of cnn and rnn for natural language processing. arXiv preprint arXiv:1702.01923,
2017.

[46] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini,
and Yonghui Wu. Coca: Contrastive captioners are image-text foundation mod-
els. arXiv preprint arXiv:2205.01917, 2022.

[47] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang Zhang,
Zizhong Chen, Xin Liu, and Yibo Zhu. Bytetransformer: A high-performance
transformer boosted for variable-length inputs. In 2023 IEEE International

48

Parallel and Distributed Processing Symposium (IPDPS), pages 344–355. IEEE,
2023.

[48] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of
large language models. arXiv preprint arXiv:2303.18223, 2023.

49

	Introduction
	Background
	Motivation and Contribution

	Part1. CNN Performance Analysis
	Motivationa and Contribution
	Related Works
	Methodology
	Phase I: Hierarchical Three-step Analysis
	Phase II: Interpretable ML enhanced Performance Analysis

	Results
	Experimental Setup
	Results and Analysis

	Part2. Attention Optimizations on GPU
	Motivation and Contribution
	Related Works
	Methodology
	Algorithm and Design
	Async vectorized loads bypassing register
	Padding to avoid shared memory bank conflicts
	Row-max and -sum in registers using shuffle instructions
	Effects of Q_size and KV_size

	Results
	Experimental Setup
	Results and Analysis

	Conclusion
	Figures

