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Abstract 

 
This thesis investigates the potential benefits of reducing DRAM refresh rates to improve the 

performance of Machine learning and Neural Network inference workloads. The increasing 

integration of ML and NN models in various industries makes it necessary to optimize these 

models to efficiently use computing resources, particularly in devices with limited capabilities. 

To maintain data integrity, DRAM requires periodic refresh cycles, which has a substantial 

impact on power consumption and system efficiency. Thus, DRAM refresh rates can be lowered 

for performance purposes. While this study does not add any additional components to the 

memory controller, other proposed approaches had hardware or software overhead. Preliminary 

findings indicate that NNs have a remarkable tolerance to data loss, caused by reduced refresh 

rates. Results show that DRAM refresh rates can be reduced by up to 15-150 times the usual 

refresh rate without significant impact on NN accuracy. Additionally, NNs showed 2.7% faster 

inference and consumed 5.6% less power at refresh rate of 1 second.  
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Chapter 1 – Introduction 

 

Neural Networks (NN) and Machine Learning (ML) are one of the leading technological 

breakthroughs that emerged as an irreplaceable tool across a wide range of industries, including 

healthcare, finance, and automotive industry. For real-time AI applications, it is becoming more 

and more important to integrate ML and NN models onto a variety of devices, ranging from 

mobile gadgets to a high-end server [1]. However, deploying such computationally complex 

models on devices with limited resources presents considerable problems, especially in terms of 

processing power and energy efficiency. 

Despite the recent advances in ML field that resulted in more efficient algorithms and compact 

models, these solutions still require significant processing resources. The challenge is particularly 

noticeable in mobile devices, which are limited by processing power and energy consumption 

even if they are widely available [2]. Addressing these limitations is critical for achieving the full 

potential of on-device AI applications, demanding novel optimization strategies that can enhance 

speed while preserving model accuracy and user experience. 

One potential area for optimization is Dynamic Random Access Memory (DRAM), an essential 

element of computing systems that stores data and program instructions for processors. DRAM is 

noted for its high density at low cost, making it an ideal choice for quick memory storage in a 

wide range of devices. However, DRAM's reliance on tiny capacitors to store data causes charge 

leakage over time, necessitating periodic refresh operations to ensure data integrity [3]. These 

refresh procedures consume a large fraction of the system's power, affecting overall performance, 

particularly in systems that require high efficiency. 
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Some researches suggests that DRAM refresh rates can be significantly reduced to improve both 

performance and power consumption [4]. By adjusting the DRAM refresh rate, it is possible to 

reduce the overhead associated with refresh operations while retaining the accuracy and 

reliability of NN inferences. This method has the potential to increase the deployment of 

advanced NN models on a wider range of devices, especially those in which power efficiency and 

computing constraints are particularly hard. NNs are more suitable for this approach compared to 

ML algorithms due to their distributed architecture with nodes and weights that make the network 

more robust.  

The objective of this research is to explore the potential for improving Neural Network 

performance through the reduction of the DRAM refresh rate, examining how decreased refresh 

intervals might impact the accuracy and power efficiency of NNs during inference. The 

hypothesis is that Neural Networks are inherently error-tolerant to some extent, thus allowing 

them to manage small data loss from reducing the DRAM refresh rate.  
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Chapter 2 - Background 

2.1. DRAM Overview 

 

2.1.1 DRAM organization 

 

Dynamic Random Access Memory (DRAM) is an essential component of modern computing 

systems, acting as the primary volatile memory used by the CPU (Central Processing Unit) to 

store data during operation. DRAM offers significantly faster access thus its architecture strikes 

an optimal balance between density, speed, power consumption, and cost. DRAM has an internal 

hierarchy of ranks, chips and banks at the high-level organization. Within a DRAM rank, there 

are several chips as in Figure 1 that further consist of banks. Banks have rows and columns of 

DRAM cells that are organized in a 2D array. The typical length of one DRAM row is 8192 cells. 

 

 

Figure 1.  DRAM Rank organization [5] 

 

From Figure 2b single DRAM cell is a simple circuit constructed from a capacitor and transistor. 

Capacitor is the main element in a cell, it stores the charge which symbolizes a single bit of 

binary information: charged capacitor represents 1, and discharged represents 0. The transistor 

operates as a switch, allowing the capacitor to be charged or discharged. Each DRAM cell is 

connected to the bitline and wordline. A bitline, which is responsible for binary data transport, 

connects cells vertically to columns. Horizontally, cells are connected to a row via a worldline, 

which activates the transistor; when a worldline is triggered, the bitline can access the cell. 
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Bitlines attach to row buffers or sense amplifiers, which can detect cell charge and then buffer 

binary data.  

  

a. Rows in a single bank                  b. Single cell 

Figure 2. DRAM Bank structure [6] 

 

2.1.2 DRAM Access 

To read/write DRAM bank 3 stages are involved:  

Initial Stage. During the initial stage, all cells are precharged and can be activated 

Row Activation & Sense Amplification. The worldline is triggered by an ACT (activation) 

command, thus connecting the cells to bitline, so that bitline voltage transfers to the cells or out 

of the cells depending on the initial charge in the cell's capacitor. The change of voltage in the 

bitline is sensed by a sense amplifier that subsequently amplifies the signal and latches it in a row 

buffer in a binary format. After this row buffer is ready to be accessed. In DDR4 [7] standards, 

time spent on this stage is called activation latency and is defined as tRCD. 

Read/Write. Data in the row buffer can be accessed by READ/WRITE commands, with 

column access times denoted as tCL for reads and tCWL for writes. After or during this stage 

cells are restored to their initial state, it is called restoration latency tRAS. 
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Precharge. In the last stage, the precharge command (PRE) is used to access the different 

rows. This command deactivates the worldline, and thus disconnects the cell from bitline. Bitline 

voltage is normalized and is ready to sense different row voltages. Time spent on this stage is 

called precharge latency tRP [8].  

 

2.1.3 DRAM Refresh 

 

The most important aspect of DRAM for this work is DRAM refresh. In Figure 2b 

DRAM cell is depicted to have a capacitor. In reality, the capacitors in DRAM cells are 

manufactured to be very small, the average capacitance of DRAM cell is 25 fF [9]. However, this 

leads to the drawback of tiny capacitors called leakage current. Due to the natural properties of 

small capacitors the charge stored in the capacitor tends to leak over time, so the data stored in 

DRAM cell can be lost. 

 
Figure 3. Refresh timings in DRAM [10] 

 

To tackle this problem DRAM cells need to be periodically refreshed. The minimum time at 

which a cell can hold the charge in the capacitor is described as retention time. Thus refresh 

operation has to be performed on each row every retention time tRET or tREFW. However due to 

the large number of rows in each bank refresh commands are distributed throughout all rows 

periodically during retention time. Refreshes are performed via the Auto-Refresh (AREF) 

command. The retention time parameter is declared for every DRAM by the Joint Electron 

Device Engineering Council (JEDEC) which develops unified standards for the microelectronics 
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industry [11]. According to JEDEC [7] standards minimal retention time of a DRAM cell is 64ms 

at temperatures <85°C and 32ms at  >85°C. There are 8192 row-groups in a bank, thus there are 

8192 AREF commands that need to be performed within 32ms. This refresh period is called 

tREFI and is calculated by (2.1). 

 

 𝑡𝑅𝐸𝐹𝐼 =  
64 𝑚𝑠

8192
= 7.8 𝜇𝑠      (< 85°𝐶)                                    (2.1) 

 𝑡𝑅𝐸𝐹𝐼 =  
64 𝑚𝑠

8192
= 3.9 𝜇𝑠      (> 85°𝐶)                                    (2.2) 

 

Some of the DRAM timings proposed in this section and additional useful timings can be 

summarized:  

 

Table 1. DRAM timings 

 

Timing Description 

tREFW Period to refresh every row in a DRAM bank. 

tCKE Stabilization time for the clock before actions. 

tFAW Allowed activation period for rows across four banks. 

tPRDI Reactivation time from low power mode. 

tRAS Duration a row stays active before precharging. 

tRCD Delay from row activation to read/write. 

tREFI Average interval between refreshes. 

tRFC Time to finish a row's refresh operation. 

tRP Time to deactivate a row before accessing another. 

tRRD Minimum gap between activating different rows. 

tRTP Interval from reading to row precharging. 

tWTR Wait time from a write to the next read. 

tZQI  Frequency of ZQ calibration for impedance 
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2.2. Neural Networks 

Neural networks (NN) are a collection of algorithms used to detect patterns in data that are 

presented to them. They are modeled after the human brain’s neurons and neural connections to 

mimic the brain's ability to adapt to new information. Neural networks are built from neurons that 

are interconnected with each other in a network-like structure as seen in Figure 4. In a software 

representation of NN neurons are called nodes and the links between nodes are called weights.  

 

Figure 4. Basic Neural Network structure [12] 

 

 The basic structure of the Neural Network can be observed in Figure 4. It includes 3 main layers 

[12]: i) Input Layer where the data is fed to the system to be categorized and passed to the next 

layers. ii) Hidden Layers process the information from the input layer with mathematical 

functions and pass it to other layers within the hidden layer. There can be many hidden layers and 

millions of nodes in them. iii) Output Layer provides the final result of computations. The output 

layer can have one or multiple nodes depending on the task. 
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There several types of Neural Networks that are suitable for different tasks due to their unique 

structures. Feedforward Neural Networks (FNNs) process the data through one forward way and 

use feedback to improve through iterations [13]. Convolutional Neural Networks (CNNs) use 

convolution functions to process data, and thus are ideal at grid-based data processing, such as 

image recognition and medical image recognition [14]. Recurrent Neural Networks (RNNs) excel 

at sequential data analysis like speech and text recognition, and used widely in natural language 

processing (NLP) .  

Training stage is done to teach the Neural Network to perform a task specifically in a way the 

user needs it. During the training phase, NN is exposed to a large amount of labeled or unlabeled 

data to identify patterns and make predictions of the output. This stage is called forward pass. 

Next, a backward pass or backpropagation creates the feedback loop to improve the predictions 

by updating weights.  

After training Neural Networks can be used for inference. Inference is the process when trained 

NN is utilized to make predictions on unseen data. This stage is less computationally intensive 

compared to training; it uses the weights generated during training. However, NN inference is 

still resource resource-heavy operation that uses a lot of computational power, especially for 

large models. The major difficulty in inference is to keep the balance between accuracy and 

efficiency. 
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Chapter 3 – Literature review 
 

There is a substantial body of research regarding the reduced refresh rate DRAM field. Some 

works cover the DRAM latency mitigation techniques, and some focus on special low latency 

architectures. In the core all studies are connected to the DRAM timings and most importantly 

tREFW or retention time. The retention time set in JEDEC [7], [8], [11] standards is 64ms, all 

cells are refreshed with 64ms periodicity, however according to Liu et al. [4] only 0.00000001% 

of cells from 1011cells have retention time less than 256ms. Leaky cells or weak cells are the 

terms used to describe cells that have low retention time.  

3.1. Low Latency DRAM 

Regarding the mitigation of DRAM latency several methods are proposed and can be divided to 3 

main categories: i) Retention aware ii) Row-level and  iii) Refresh schedules.  

3.1.1.  Retention aware 

An  innovative method for DRAM memory optimization is presented by [4]. RAIDR uses 

mechanisms to lower the refresh energy of DRAM by intelligently adjusting each cell's retention 

characteristics to determine the refresh rate. In this approach DRAM rows are separated into bins 

where cells are profiled and classified according to their retention time. RAIDR lowers the 

refresh frequency for bins with high retention time, which account for the vast majority of cells 

and saves more frequent refreshes for bins with leaky rows. RAIDR shows energy used for 

DRAM refresh can be significantly lowered, which would improve system performance overall, 

especially on multi-core systems as DRAM capacity keep rising. This approach shows refresh 
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rate reduction by 74.6% for only a 0.3% loss in data integrity, however it comes with storage 

overhead of 1.25 KB in memory controller . 

In RAPID [15] the variance of retention time of DRAM cells through the rank is utilized. This 

method prioritizes the the pages with longer retention time, so that by using only them a single 

longer refresh period could be used. In this approach no hardware overhead is present, because it 

is a software-based solution. RAPID manages to reach 83% - 95%  in refresh energy saved for 

various setups.  

3.1.2.  Row level 

ESKIMO [16] uses the information about used and freed space from memory controller. During 

the time when specific memory region is not used this approach do not refresh the unused 

memory region. By performing this task average of 39% of energy is saved. 

[17] proposes the technique that simultaneously prolongates the refresh latency and targets rows 

with weak cells with periodic read commands. By constant read requests weak cells data in them 

is preserved. The result of such technique is in 66% improvement of refresh enery usage and 

31.8% of DRAM energy consumption. To setup this solution no hardware modifications are 

needed, only an additional weak row buffer in the memory controller, resulting in a highly 

efficient and practical solution with low overhead. 

3.1.3.  Refresh schedules 

A framework called Elastic Refresh [18] aims to reschedule the refresh commands by still 

following the JEDEC standards. During 1 refresh cycle of 64ms up to 9 x tREFI refresh 

commands can be postponed and performed at the end of the cycle. Authors of elastic refresh 

utilize this opportunity to hold the refreshes during the access or use of DRAM, and then quickly 
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burst the refresh operations when memory is no longer active, so that refresh operations do not 

clash with refresh operations. This method shows 10-41% of performance improvement 

depending on workloads.  

AL-DRAM [19] is the low latency architecture  that has the adaptive latency function. This 

method dynamically modifies the settings based on the history of cell accesses. This adaptivity 

allows it to boost performance and improve energy efficiency. Since the retention time in DRAM 

cell is not uniform AL-DRAM can make more flexible memory operations. 

The stability of DRAM cells are studied under various voltages in [20]. Study is discovering a 

untrivial link between supply voltage, access patterns and cell failure rates. According to Khan et 

al. lower voltages can cause more cell failures, but some access patterns can reduce them. Most 

importantly this study forces the scientific community in DRAM field to show more attention to 

DRAM voltage levels and access patterns for DRAM dependencies.  

VAMPIRE (Validating and Modeling Power Issues in Real Environments) [21] conduct an 

experiment on DRAM power models, showing the differences between existing models and real-

world observations. Study provides a more accurate and precise power model for DRAM, which 

is useful for simulation credibility. 

Summarizing the overview of different approaches that change the refresh latency, there are 

many unique and effective ways of optimizing the DRAM refresh rate to increase performance. 

However, all these approaches and developed techniques have a common drawback. All of them 

use additional software/hardware/memory controller modifications that create hardware or 

software overhead. This means that most of the suggested solutions will not be implemented in 

real DRAM device, because DRAM manufacturers squeeze the maximum capacity possible in all 
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dram ranks, and they cannot afford to add overhead on DRAM circuit or in memory controller. 

Software solutions are easier in implementing; however, they still add on top of the memory 

controller software. Contrary the approach chosen for this thesis does not need any software or 

hardware add-ons, simply changing the timing parameters is all needed to do. The uselessness of 

more sophisticated algorithms is explained by the high error tolerance of Neural Networks.  

Chapter 3.2 NN error tolerance 

This section is devoted to the error tolerance of Neural Networks. Substantial amount of literature 

is provided looking into the limits of error that can be induced on NN, also provides 

methodologies that improve error tolerance of NN.  

Scientists explore means of upgrading ANN for classifying challenges to make them more 

tolerant of failures [22]. Both carry out simulating seeding networks and fault tolerance 

algorithms along with training algorithms. The experiment demonstrates that supplying some 

excess resources and changing the way the training algorithms are implemented can really aid in 

PFT. However, surprisingly, brute force method obtains better record in high PFT 

implementation when compared to fault-tolerant gradient descent technique. The research 

emphasizes 3 main areas for optimizing fault tolerance: network size, first PFT, and the number 

of times the PFT is repeated. Moreover, the study reveals the effects of network node congestion 

on the distribution of incoming data. 

The paper [23] argues that by resorting to resistive RAM-Based binarized neural networks 

(BNNs) for energy constrained embedded artificial intelligence and studying their tenacious bit 

error tolerance, exciting advances can be made. A study found that BNNs were able to withstand 

synaptic weights in the order of up to 10^-4 bit errors, and with the use of certain training 
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protocols, up to 4 × 10^-2 were successfully handled when they were implemented on circuit 

hardware that had errors (MNIST and CIFAR10). This exceptional neuroplasticity must have 

profound implications for memory devices' development and the optimization of the course of the 

devices' running on neural networks. RRAM cell variability and bit error rates could endure 

considerable increment in device scaling employing programming energy efficiency, achieving 

the area-error rate product superior by the factor of thirty turned out to be possible. BNNs are 

recognized as one of the powerful computing schemes that are capable of handling hardware 

constraints. Due to their robustness and adaptability, they can be employed in AI-related 

embedded applications that are deep energy efficient.  

The ramifications of achieving bit error tolerance in NNs due to the use of aggressive parameter 

tuning which leads to bit errors is explored in [24]. The authors stress that the approach used at 

present to get bit error tolerance by training bit flip is very expensive, and it is also difficult to 

scale. They state their need for different procedures leading to bit error tolerance and, on the 

other hand, describe the lack of knowledge of principles of an NN bit error tolerance. The paper 

investigates two metrics for understanding the internal changes caused by bit flip training in 

binarized neural networks (BNNs): the neuron-level bit error tolerance metric and the inter-

neuron bit error tolerance metric. The study proves the theoretical result that the accuracy over 

BER, the neuron-level bit error tolerance is closely related to BNNs. Besides that, the work 

introduces novel neuron importance metric and explores its role in understanding how neurons 

work together in making BNN more error tolerant. The results imply that BNNs of different sizes 

can be accounted for by the proposed metrics providing a way for inventing new techniques for 

achieving the bit error tolerance in NN and thus saving energy. 
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[25] is focused on improving power efficiency of numerical linear algebra procedures (i.e., 

implement fault-tolerant matrix decompositions on heterogeneous platforms with GPUs, and 

optimize matrix-matrix multiplication on GPUs). It also investigates iterative methods fault 

tolerance, deep neural networks compression methods and machine learning fault tolerance. The 

authors present the novel algorithm-based fault-tolerance (ABFT) schemes to save convolutional 

neural networks (CNN) inference processes against soft errors, proposing FT-CNN, a fault-

tolerant framework for CNNs with low overhead. We conduct our experiments on ImageNet with 

CNN models including AlexNet, VGG-19, ResNet-18, and YOLOv2 which are popular. 

Experimental results show that our implementation can cope with soft errors with about 4%-8% 

additional runtime in both error-free and error-injected scenarios. 

Chapter 3.3 NN and DRAM 

There are some approaches trying to optimize Neural Network performance with different types, 

methods, and modifications of DRAM. [26] describes the MViD architecture of Recurrent Neural 

Networks (RNNs), which significantly speeds up the Recurrent Neural Networks (RNNs) 

computations by proceeding them inside a computationally complex DRAM. MViD exploits data 

sparse matrices formation, quantization, and MAC units (multiply-add) within the DRAM banks 

enabling simplified computational operations Results prove that the accelerated systems engaged 

record a heightened throughput performance compared to the baseline systems, thus leading to 

increase in both capacity and energy efficacy gains with the sparsity level in the matrices. The 

architecture is able to do request processing efficiently from processors in MV-banks, by using 

commands like p-PRE, s-PRE and r-PRE compared to regular PRE command. The suggested 

architecture mitigates the power constraints, space usage and energy requirements, thereby giving 

a possible solution for improving performance and energy efficiency. 
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Some papers touch upon the topic of the energy accuracy tradeoffs in smart camera systems, 

approximate computing techniques proposed for deep learning neural networks, error propagation 

in deep learning applications, and the use of memory system optimizations for deep learning 

applications. It plans an adventurous ZEM [27] unit for refresh less DRAM in deep learning, 

which lessens error rates, improves performance, and enhances energy efficiency. Van ZEM via 

the usage of zero-error approach encoding scheme provides not the risk of the error introduction 

that in result cannot be acceptable. The experimental results show that ZEM can provide very 

good accuracy as well as successful power consumption when compared existing works so it can 

be applicable to many deep learning applications and indicates its potential for future DRAM 

generation. 

 

One of the difficulties DRAM systems have with is refresh operations that degrade performance 

as DRAM chip density increases which is explained in the article. The book proposes HiRA [28] 

Memory Controller (HiRA-MC) and Hidden Row Activation (HiRA) which would help to 

mitigate or eliminate this issue. The DRAM chips remain unaltered while the refresh operation 

delay is hidden by the performing the operation alongside the accessing or refreshing of a 

different row in the same bank. According to the achievements of the experiment, the HiRA 

method reduces latency per 51,4%. The next generation (HiRA-MC) of the DRAM chips can 

boost performance, as compared to its counterparts, by 12.6%, and as much as 3.73 times in 

preventing Row Hammer induced failures. 

 

 

[29] article explains the problem in teaching deep neural networks (DNNs) with the help of metal 

oxide resistive random access memory (RRAM) because of their inability to advance the 
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backpropagation (BP) or weight updating operations. The paper proposes a Times in Memory 

training architecture (TIME) based on RRAM (Resistive RAM) for its implementation as well as 

peripheral circuits design. Due to the adoption of TIME technique, NN training on RRAM is no 

longer a problem and the utilization of peripheral circuit re-usage is also optimized while 

nonideal factors that restrict the implementation of RRAM is addressed using optimization 

strategies. Computational data revealed the much higher existing energy efficiency than the 

conventional ones and can be enhanced if tuning costs is reduced. 

 

The literature explains a technique of cutting power consumption in DNN systems through period 

extension using ECC for DRAM refresh. VECC [30] technique, which is a combination of voting 

mechanisms and ECC, detects and corrects any weight data errors that could occur during the 

retention process. Comparison to traditional methods indicates VECC to make the saving of 93% 

refresh power with 0.5% accuracy loss and 0.5% check bit overhead for AlexNet, ResNet, and 

VGG19 CNNs models trained on ImageNet. Moreover, RRAM tuning technologies can be 

significantly reduced. 

 

 

How DRAM refresh cycles create a bandwidth bottleneck in the memory read intensive tasks is 

investigated in this work. It introduces DR RAM [31] that improves read throughput by 

permitting overlap of the read and refresh operations. DR RAM mainly covers device renewal 

and data recovery, with the latter also allowing data recovery during the refresh. Under just 

simulated situations, DR nearly eliminates the overhead refresh, resulting in up to 12% extra read 

bandwidth and 50-60% latency improvement for NN than current DRR4 devices. 

 

 



20 
 

ADROIT (Adaptive Dynamic Refresh Optimization Toolkit) [32] is an open dynamic framework 

that offers dynamic refresh optimization for general purpose DNNs and a variety of processing 

platforms. During the ADROIT training process, the refresh rate is dynamically adjusted at 

runtime by evaluating the loss feedback from the data, which considers data idle time, lifetime, 

and size, to reduce the amount of refresh operations. Simulation results demonstrate that training 

for DNN can save up to 98.9% on refresh energy and 24.7% on the entire DRAM energy while 

holding accuracy constant. ADROIT lets to automatize applications for DNNs, supported by 

different hardware platforms and without any manual configuration.  

 

St-DRC [33], which is an elastic DRAM refresh manager, efficient DNN computing utilization, 

taken as a priority. St-DRC utilizes DNNs' resistance to inconsequential bit errors via the parity 

bits employed to correct the critical bits that the constant refresh periods lately result in. It incurs 

energy expenditure for DRAM refresh in both training and inference phases thus preserving the 

DNN performance. Simulators with symmetric upgrade potential for both graphic and main 

memories during training have been demonstrated at roughly 23%/12% DRAM energy savings 

and acceleration of 0.43~4.12% in training time. 

 

The innovative DRAM refresh method resolves the problem of DRAM refresh by delivering read 

and refresh operations simultaneously. This method is named DR DRAM [34] an efficient 

hardware architecture that allows DR refreshing. Unlike the conventional approaches, the DR is 

focusing on updating selected devices, which in return enhances read efficiency by getting the 

unattainable data. Additionally, Hybrid Refresh Main Memory (HRMM) is introduced that can 

be customized based on the refresh scheme. Planned benefits include application scalability, 

covering SPEC CPU2006, CNN, LLT, and PageRank tasks. 
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Next work [35] is concerning observing a method for creating neural networks deep measurement 

device examination of test vector. By means of reinforcement machine learning technique, the 

method takes in stimuli representing the input devices and outputs the corresponding pin numbers 

for covering the designated circuit. The approach adopted is focused on looking for the best 

solution using policy gradient approaches with several tools like Å-nearest neighbor search, 

transfer learning, and replay buffer. The test vectors created have full coverage on fifteen blocks 

of circuit configuration of the design file with a compress ratio of only 7% as compared to those 

created by human. 

 

To improve the energy efficiency and performance of DNN inference systems, authors [36] 

propose using approximation DRAM, which runs with a lower supply voltage and access latency, 

resulting in significant energy savings and evaluation time. EDEN (Energy-efficient, Deep neural 

network Engine) is a star of their approach; it is a novel system developed to precisely balance 

energy efficiency and inference accuracy, all while adhering to the user's preset DNN accuracy. 

EDEN can also save up to 40% of energy while maintaining the adequate accuracy levels of 

CNNs and RNNs that are common DNN models. EDEN demonstrates the practical benefits of 

approximating DRAM in real-world DNN applications, leading the way to a creation of more 

energy-efficient and high-performance computing systems. 

 

[37] introduces an approximate memory architecture designed to reduce DRAM refresh power 

consumption in deep learning systems by exploiting their tolerance to minor errors. By 

organizing data storage in a transposed manner and varying refresh rates based on data 

significance, the architecture achieves a significant reduction in power usage (69.68%) with 
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minimal impact on accuracy. Tested on GoogleNet and VGG-16 models, this method offers a 

promising approach for energy-efficient computing in error-resilient applications. 

 

RTC comes as an [38] approach that is used to increase the energy efficiency of Convolutional 

Neural Network (CNN) accelerators by optimizing the DRAM refreshes. DRAM refresh can 

make up to 40% of total energy consumption alone. RTC has two basic ways to eliminate 

needless refresh operations: access to remote data whenever and wherever RTT is needed and the 

use of the partial array auto-refresh (PAAR). RTT can skip certain refresh operations due to 

predicted behavior of CNN’s access patterns. PAAR contrary removes refreshes for the part of 

DRAM memory that is left with no use at all. Moreover, authors came up with novel method: 

instead of the traditional way of treating DRAM refreshes, systems have fixed refresh intervals 

which will mainly focus on weak rows with frequent read operations for data retention. This kind 

of technology can reduce refresh energy usage to third or even half and drop DRAM energy 

consumption to 31.8%.  

 

Retention-Aware Neural Acceleration (RANA) architecture for optimizing energy usage in CNN 

accelerators with Embedded DRAM (eDRAM) is proposed in [38]. Recognizing that eDRAM's 

periodic refresh cycles for data integrity considerably contribute to energy consumption, RANA 

takes use of the fact that refreshes are unnecessary when data lives are lower than eDRAM 

retention times. It includes retention-aware training, dynamic calculation pattern selection using 

an energy model, and a refresh-optimized eDRAM controller to reduce refresh operations. 

RANA reduces eDRAM refresh energy by up to 99.7%, resulting in up to 66.2% system energy 

savings over typical SRAM-based accelerators without sacrificing precision. This method 
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presents a novel solution for increasing the energy efficiency of hardware accelerators for neural 

networks by tackling the refresh cost in eDRAM storage.  
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Chapter 4 – Methodology 

To study the impact of DRAM refresh rate on various parameters of Neural Networks including 

accuracy, power consumption, runtime and general performance the following methodology is 

proposed. It will be divided into 3 stages: Simulation stage to study the impact of data loss in 

DRAM on NN performance in terms of accuracy. The hardware simulation stage is devoted to 

testing NN power consumption and runtime with a reduced DRAM refresh rate on ideal 

simulated hardware. Finally, hardware implementation stage is devoted to testing NNs on various 

refresh rates on a physical setup with a real-world environment. 

4.1. Simulation 

To begin the study of Neural Networks' behavior at reduced DRAM refresh rates, we should 

prove the tolerance of NN to data losses in DRAM. During the inference, Neural Networks have 

already pre-trained weights, thus only a forward pass is necessary. This entails that NNs store 

only model parameters and weights in DRAM during inference [39]. Therefore, mimic the data 

loss in DRAM, weights of the pre-trained NN model can be disturbed. Representing the weights 

in binary format and flipping random bits with value “1” to “0”  during inference will closely 

simulate the real behavior of leaking DRAM cells. Goal is to evaluate the effect of such produced 

bit flips which are similar to DRAM leaks on the accuracy of NNs. 

For this task, Convolutional Neural Network models were chosen because they are most suitable 

for computer vision and image recognition tasks that are very popular on devices with limited 

computational power. Also, CNNs are very popular, have developed frameworks and large sets 

of pre-trained models.  
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In total 8 large models were chosen that were trained on the ImageNet dataset: ResNet50, 

ResNet101, ResNet152, AlexNet, DenseNet121, InceptionV3, MobileNetV3, and 

WideResnet101. The reason to pick large models is to maximize the number of weights to closely 

simulate the minor data loss in DRAM.  

ResNet or Residual Network is convolutional neural network (CNN) architecture introduced in 

2015 by He et al. [40], outperforms traditional CNNs such as VGG. It uses shortcut connections 

to solve the vanishing gradient problem. ResNet 50 has a bottleneck design with 1x1 

convolutions for faster training and consists of 48 convolutional layers, 1 MaxPool layer, and 1 

average pool layer. ResNet 101 is an extension of ResNet 50 with more convolutional layers. 

ResNet 152 is a further scaled version of ResNet 50 with 152 layers.  

 

DenseNet (Dense Convolutional Network) [41] is a variant of ResNet that addresses the 

vanishing gradient issue by establishing dense connections between layers, so that every layer is 

connected to every other layer by feed-forward method ensuring maximum information flow. 

Unlike traditional networks, every layer in DenseNet receives direct inputs from all preceding 

layers, improving parameter efficiency and facilitating better feature extraction for computer 

vision tasks.  

 

Another version of ResNet is WideResNet [42] which surpasses ResNet because it can adjust 

network width without efficiency drops. Introduced in 2016, this technique solved the problem of 

vanishing gradients in deep networks. WideResNet shows that instead of deepening networks one 

can also just broaden them and achieve better results. It is Batch Normalization - ReLU - Conv 

structure, where ResNet blocks contains convolutional groups, which is depending on network 
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width. Tuning settings such as the style of convolution, the number of convolutions per block, the 

width of residual blocks, and dropout layers can be implemented to meet different needs. Wide 

ResNet makes it possible to boost the accuracy for image recognition tasks and improves the 

performance. 

 

AlexNet [43], released in 2012, is by far the deep learning technique that completely reshaped 

this part of the field by winning the ImageNet Large Scale Visual Recognition Challenge 

competition. Its architecture has eight layers, including five convolutional layers and three fully 

connected layers with ReLU activation and dropout regularization. AlexNet adopted the use of 

GPUs for speeding up the training process through the introduction of local response 

normalization and overlapping pooling to enhance generalization. It created effective models for 

deeper neural networks and embraced the application of convolutional neural networks (CNNs) 

in various vision-related problems.  

 

InceptionV3 [44] is a deep CNN (Convolutional Neural Network) architecture intended for the 

image classification and recognition tasks. This update of Inception model was done with the aim 

of improving computational efficiency and accuracy. InceptionV3 also has a unique architecture 

with multiple parallel convolutional pathways. The pathways are called "inception modules" 

depending on the ability to detect the objects at various scales. It involves approaches such as 

batch normalization and factorized convolutions to minimize the contributions and maximize 

efficacy. InceptionV3 remains popular nowadays as either feature representation or fine tuning 

for variety of computer vision applications. 
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MobileNetV3 [45] is a lightweight convolutional neural network (CNN) optimized for mobile 

and embedded devices that operate with constrained computational resources. It aims to ensure 

high level of precision and Productivity comparing the other versions. MobileNetV3 utilizes the 

depth wise separable convolutions, inverted residuals, and linear bottlenecks simultaneously to 

slim down parameters and computations and still impart good performance. The new architecture 

has introduced the functionality of hard sigmoid activation function and the squeeze and excite 

module for better feature representation and model capacity enhancement. MobileNetV3 

demonstrated state-of-the-art performance on categories of image classification tasks and has 

become the standard choice for AI tasks in resource constrained edge devices. 

 

All models are pretrained on ImageNet-1k at resolution 224x224 and accessed from the PyTorch 

library and simulation tests will be running on Python. The simulation setup is constructed from 5 

steps. 

The first step is to run a validation for all models using the original weights that were pre-trained 

on the ImageNet dataset. Next, all the weights are converted to binary. All weights in Pytorch are 

stored in float32 format, so a single weight is equal to 32 bits of data. All weights are converted 

to binary format and randomly bits will be flipped from 1 to 0. The random bits in this setup are 

chosen with rand() function without random seeding. It is explained by the random distribution of 

weak cells in the DRAM bank [46]. It is not possible to locate the individual weak DRAM cells, 

thus random function is chosen in this case.  
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Figure 5. Retention time for DRAM cells [47] 

After flipping the random bits, all of the weights are converted back to float32 format. Finally, 

validation is performed for all models again, however this time with modified weights. The 

number of bits that will be flipped in NN’s weights corresponds to real-world DRAM behavior at 

reduced DRAM refresh rates [4]. For example, [47] shows that at 4 times the normal refresh rate 

tREFW =256ms, only 0.00000001% of cells lose charge. At tREFW =256ms, 0.00000218% of 

cells appear to be weak. Looking at this behavior in Figure 5 it is decided to assign a number of 

bits to flip to be 10,100,1000 and up to 10000000 to test the limits of NN accuracy. The 

pseudocode of the setup developed for this experiment can be found in Figure 5.  

https://sci-hub.se/10.1109/LED.2009.2023248
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Figure 6. Pseudocode for simulation 

4.2. Hardware simulation 

Power consumption and Runtime parameters of NN can be obtained by either testing on a real 

system or testing on a virtual hardware system that closely simulates the behavior of real systems. 

The hardware simulation root is more suitable for initial proof of concept due to its flexibility and 

availability. To run validation of Neural Networks in simulation cycle-accurate CPU and DRAM 

model is needed.  

Gem5 [48] is chosen as a platform for CPU simulation, because it supports multiple architectures 

and CPU models, also with good accuracy. For the DRAM model, the DRAMsim3[49] simulator 
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is chosen due to its speed and accuracy validated on real models. The setup is presented in Figure 

7. Unfortunately, none of the current DRAM simulators can simulate the behavior of memory 

loss at reduced refresh rate, they act as cells with ideal capacitors with no leaking current. 

Therefore, this stage of the experiment is used to showcase the power consumption and 

performance gains from reducing DRAM refresh rate. The parameter that will be altered to 

change the refresh rate tREFW is tREFI. The basic tREFI is 9360ns or 9.36 us. tREFI will be 

increased exponentially to capture various scenarios of DRAM refresh rate. 

 

Figure 7. Hardware Simulation setup 

The setup and configurations are set as in Table 2. 

Table 2. Gem5 and DRAMsim3 parameters 
 

Model Parameters 

Gem5 Architecture - X86  
CPU - AtomicSimpleCPU, 2GHz, 8 core 

 

 
DRAMsim3 

DRAM: DDR4-8GB-x8-2400  

tCK = 0.83 
tRCD = 17 
tRP = 17 
tRAS = 39 
tRFC = 420 
tREFI = 9360* 

tRRD_S = 4 
tRRD_L = 6 
tWTR_S = 3 
tWTR_L = 9 
tFAW = 26 
tWR = 18 
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In terms of NN, the simulated processor in gem5 is slow compared to the real processor, thus 

models from section 4.1 cannot be used. Additionally, AtomicSimple CPU supports only syscall 

binary executables that are generated by C/C++. Following this, the simple single-layer neural 

network was chosen [50]. This network is pre-trained on MNIST and will be validated on 1000 

MNIST images because the ImageNet dataset is too complex for the simulated processor. 

 

4.3. Hardware implementation 

 

For the hardware implementation, the Xilinx FPGA Artix-7 [51] platform was chosen due to 

availability. The reason behind choosing a Field-Programmable Gate Array (FPGA) board is its 

flexibility, hardware can be adapted to specific computational tasks, making it ideal for 

prototyping and testing neural networks. Artix-7 board is equipped with an external 1GB DDR3 

rank suitable for our research. The FPGA board does not have SoC in it, thus a MicroBlaze soft 

processor core will be used for executing NNs. Microblaze is a soft processor developed for 

Xilinx meaning that it will be implemented from FPGA fabric. 

 

Figure 8. System block design in Vivado 

DDR3 memory is controlled by the MIG memory controller [52]. MIG uses AXI bus to connect 

to external memory which in this case is DDR3 rank. Memory controller is responsible for 

managing the refresh operations by sending REF commands. Modifying the MIG controller to 
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reduce the refresh rate will allow to test NNs in realistic conditions. Development software for 

Xilinx boards is Vivado HLS, the testing setup is built using the mentioned components and can 

be observed in Figure 7. The NN will be implemented via Xilinx SDK in C++ language.  

  



33 
 

Chapter 5 – Results and Discussion 

5.1. Results 

 

5.1.1 Software 

 

The results from software stage describe the outcome of validation tests that were performed on 8 

different Neural Networks using original and modified weights. Each NN model was validated 

with original weights and with 7 different weights that were modified by flipping 10, 

100,1000,10000,100000,1000000,5000000 bits within the weights. Since the fixed amount of bits  

from overall number of bits present in weight file were flipped, it did not account for different 

number of weights in each NN. Thus the percentage of flipped bits in each NN model is 

calculated and then matched to the real DRAM refresh rate according to Figure 5. In Table 3 

number of weights for each NN model is presented, along with the number of bits in each weight 

file. The number of bits are calculated by NumBits=NumWeights*32 since weights are stored in 

float32, thus 1 weigth is equal to 32 bits.  

Table 3. Percentage of bits flipped in each NN model. 

NN Num weights Num bits 
% bits flipped 

10 100 1000 100000 1000000 5000000 

AlexNEt 61100840 1955226880 5.11*E-07 5.11E-06 5.11E-05 5.11E-03 5.11E-02 2.56E-01 

inceptionv3 27161264 869160448 1.15E-06 1.15E-05 1.15E-04 1.15E-02 1.15E-01 5.75E-01 

densenet121 7978856 255323392 3.92E-06 3.92E-05 3.92E-04 3.92E-02 3.92E-01 1.96E+00 

resnet50 25557032 817825024 1.22E-06 1.22E-05 1.22E-04 1.22E-02 1.22E-01 6.11E-01 

resnet101 44549160 1425573120 7.01E-07 7.01E-06 7.01E-05 7.01E-03 7.01E-02 3.51E-01 

resnet152 60192808 1926169856 5.19E-07 5.19E-06 5.19E-05 5.19E-03 5.19E-02 2.60E-01 

wide_resnet101 126886696 4060374272 2.46E-07 2.46E-06 2.46E-05 2.46E-03 2.46E-02 1.23E-01 

mobilenet_v3 5483032 175457024 5.70E-06 5.70E-05 5.70E-04 5.70E-02 5.70E-01 2.85E+00 
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Table 4. % of flipped bits and corresponding tREFW. 

ResNet152  Wide ResNet101  MobileNetV3 

% Bits 

flipped 
tREFW (s)  

% Bits 

flipped 
tREFW (s)  

% Bits 

flipped 
tREFW (s) 

5.19E-07 0.63  2.46E-07 0.41  5.70E-06 1.10 

5.19E-06 0.90  2.46E-06 0.95  5.70E-05 1.70 

5.19E-05 1.50  2.46E-05 1.80  5.70E-04 2.52 

5.19E-04 2.32  2.46E-04 2.00  5.70E-03 4.77 

5.19E-03 4.57  2.46E-03 3.40  5.70E-02 11.40 

5.19E-02 11.20  2.46E-02 8.90  5.70E-01 95.00 

2.60E-01 25.20  1.23E-01 16.20  2.85E+00 2192 

 

Table 5. % of flipped bits and corresponding tREFW. 

DenseNet121  ResNet50  ResNet101 

% Bits 

flipped 
tREFW (s)  

% Bits 

flipped 
tREFW (s)  % Bits flipped tREFW (s) 

3.92E-06 0.64  1.22E-06 0.48  7.01E-07 0.46 

3.92E-05 1.20  1.22E-05 0.89  7.01E-06 0.72 

3.92E-04 2.10  1.22E-04 1.49  7.01E-05 1.40 

3.92E-03 4.10  1.22E-03 3.10  7.01E-04 2.47 

3.92E-02 9.40  1.22E-02 6.00  7.01E-03 5.10 

3.92E-01 0.55  1.22E-01 18.23  7.01E-02 13.00 

1.96E+00 690.00  6.11E-01 104.00  3.51E-01 44.50 

 

Table 6. % of flipped bits and corresponding tREFW. 

AlexNet   InceptionV3 

% Bits 

flipped 
tREFW (s)   

% Bits 

flipped 
tREFW (s) 

5.11E-07 0.43   1.15E-06 0.49 

5.11E-06 0.70   1.15E-05 0.82 

5.11E-05 1.30   1.15E-04 1.47 

5.11E-04 2.12   1.15E-03 3.00 

5.11E-03 4.37   1.15E-02 5.90 

5.11E-02 11.00   1.15E-01 17.65 

2.56E-01 25.00   5.75E-01 89.15 
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Cumulative failure probability in Figure 5 corresponds with % of bits flipped in Table 4,5,6. With 

this, corresponding tREFW (retention time in Figure 5) can be filled in Tables 4,5,6 for each NN 

model. 

 

Figure 9. Simulation flow example for single weight. 

Since the simulation setup uses random function to flip bits, the validation process has been 

performed 30 times for each model and each set of weights to obtain more credible results. The 

example of this flow is described in Figure 9. The accuracies obtained from these tests are plotted 

together with corresponding realistic refresh rates for each NN model.  

 

(a) AlexNet                                              (b)   DenseNet121 
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(c) InceptionV3                                        (d)   MobileNetV3 

 

(e) ResNet50                                           (f)   ResNet101 

 

 

(g) ResNet152                                        (h)   WideResNet101 

Figure 10. Validation accuracies for 8 NN models with tREFW 
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To compare the effect of data loss across all neural networks cumulative validation accuracies are 

plotted in Figure 9. Each NN model has a darker line representing the average value, and all the 

different values are depicted within the respected colored area.  

 

Figure 11. Cumulative validation accuracies for 8 NN models 

5.1.2. Hardware Simulation 

 

A single layer Neural Network is validated with 1000 MNIST images using a syscall emulation 

mode in gem5 for various tREFI refresh rate values. To use the results obtained from this 

experiment tREFW timing needs to be calculated using tREFI. A DRAM rank used for this setup 

in DRAMsim3 is DDR4-8GB-x8-2400. It has 8 banks and 65536 rows in total across all banks. 

Also the standart tREFI valuse is 9.36 us. tREFW can be calculated with formula (2.1). Fisrt the 

number of AREF commands is equal to 65536/8=8192.  

𝑡𝑅𝐸𝐹𝑊 = 9.36 𝜇𝑠 ∗ 8192 = 76677.12 𝜇𝑠 = 0.076 𝑠                         (5.2) 

Now DRAMsim3 power consumption is plotted in Figure 10a and the time taken to run the 

validation at each refresh rate is in Figure 10b. 
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(a) DRAM power consumption                               (b)   Gem5 simulation time 

Figure 12. Results for hardware simulation 

5.1.3. Hardware Implementation 

 

System design proposed in a Methodology section was successfully implemented and FPGA 

board was functioning as a processor with external DRAM connected to it. Subsequently, simple 

NN described in Section 4.2 was used for initial testing. The verilog files of MIG memory 

controller were modified to change the tREFI parameter from standard 7.8us. However, after 

several validation runs with various refresh rates no difference was observed in system 

performance or power consumption. It appears to be that the Xilinx proprietary memory 

controller MIG overrides all the changes that violates the JEDEC standards. According to JEDEC 

standards [11] DDR3 can have a tREFI timing only in the range of 3.9 us-7.8 us. This standard 

was set due to the vulnerability of DRAM to cyberattacks. The most notable attack that exploits 

the DRAM properties is called Rowhammer attack. Rowhammer is an attack that repeatedly 

accesses the row, sending read/write commands faster than refresh rate so that adjacent rows can 

have bit flips caused by disturbance errors [53] This attack can gain kernel privileges on a real 

systems, thus making the manufacturers avoid the bit flips in DRAM. In the case of Xilinx FPGA 

the only way to reduce the DRAM refresh rate is to create an independent memory controller that 
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supports AXI bus and can be modified despite the JEDEC protocols. Such task is implemented 

by a group of developers [54] and is out of the scope of this research.  

 

5.2. Discussion 
 

Reviewing the simulation results reveals that neural networks are capable of withstanding 

disturbances brought on by weight data loss. Figure 8 displays many NN models with accuracy 

levels that remain at the initial level for a large number of flipped bits in weights. It seemed that 

ResNet 152 was the least susceptible to bit flips; the accuracy began to decline significantly only 

when 100,000 bits were flipped. MobileNetV3 had the lowest performance in terms of accuracy 

drop per bit flipped, with accuracy beginning to degrade after 100 flipped bits. This can be 

explained by the smallest number of overall weights amongst all models chosen in this 

experiment. Thus, we should look at the accuracy performance with respect to the according 

refresh rate. Each graph in Figure 8 has a vertical line that signifies the edge adequate accuracy of 

NN models with respect to flipped bits. This vertical line also intersects the refresh rate tREFW, 

meaning that this number of bits will be flipped at this tREFW parameter and NN will have an 

accuracy lying on the vertical line. After studying all NN models it appears that the edge of 

adequate accuracy happens in the range of tREFW from 100 to 101 seconds. This suggests that 

the DRAM refresh rate for Neural Network Inference can be reduced by raising the refresh time 

from tREFW = 0.064s to tREFW = 1-10 seconds, which is 15-150 times faster than the present 

DRAM refresh rate in most devices. 

Next, the results from hardware simulation show the decrease of power consumption as the 

refresh rate is increased. Also, the simulation time steadily decreases with rising tREFW. There is 

also an interesting observation in Figure 10a, where power consumption of DRAM stabilizes at 

about tREFW=5s and keeps steady as the refresh rate is increased.  
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       Figure 13. Power and Simseconds with optimal accuracy 

The results from simulation and hardware simulation were analyzed together. Power and 

simulation time graphs are combined and overlapped with the outcomes from simulation stage. 

Figure 11 presents the range of tREFW from 100 to 101 where the optimal NN accuracy was 

found. At this range there is a noticeable performance improvement in terms of power and 

runtime. From Figure 11, the minimum tREFW from the range can be chosen to fulfill the 

accuracy level for all chosen models. Thus, tREFW=1s can be suggested as a safe DRAM refresh 

rate that can be used for Neural Network Inference. At refresh rate of 1s there is a 2.7% faster 

inference and 5.6% less power consumed.  

Our results show that NNs can withstand minor data errors caused by slower refresh rates with 

remarkable resilience while preserving performance. We showed thorough simulations and 

hardware evaluations that it is possible to significantly reduce DRAM refresh rates without 

sacrificing NN accuracy. Notable gains were made in system performance and energy efficiency 

due to this decrease in refresh frequency. These findings highlight the viability of using lower 

refresh rate DRAM in practical neural network applications, opening a promising path for 
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resource-constrained device optimization. The study's conclusions advance ongoing efforts to 

increase computational efficiency and open the door for more advanced NN models to be used on 

a variety of platforms. Future research needs to explore the applications of lower DRAM refresh 

frequencies in real world scenarios, thus extending findings to a larger pool of DRAM 

technologies and system configurations. Also, it is important to test on variety of devices from 

embedded systems to large computational machines. Although decreasing the refresh rate poses a 

safety concern, this method may find application in specialized devices that need just neural 

network inference, such as image recognition systems.  It is also important to test the 

compatibility of this method with new DRAM standards like DDR5 and DDR6 in future.  
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