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Abstract

A Brain-Computer Interface (BCI) system enables communication and control between
a user and an external device without relying on peripheral and muscular activity.
Effective control of such a device hinges on accurately recognizing and decoding
intricate brain activity patterns generated by the user. The goal of this PhD
project is to develop a robust model for predicting human mental intentions using
electroencephalography (EEG) signals. EEG, a widely used non-invasive method for
monitoring brain activity, is considered due to its ethical considerations, relatively low
cost, and its ability to provide a high temporal resolution of received signals. The
robustness of the system is verified based on the classification accuracy with respect to
the previously unknown subjects such that the performance of subject-independent (SI)
BCI system could be evaluated. An essential challenge in BCI research is developing
a classifier capable of interpreting users’ mental states from EEG data collected from
independent subjects. The focus on SI classification is justified because it can lead to
BCIs that eliminate the need for individual calibration processes. Over the past few
years, deep neural networks (DNNs) in general, and in particular Convolutional Neural
Networks (CNNs), have shown impressive training efficiency and performance, leading
to the development of state-of-the-art architectures for accurate EEG classification.
In this Thesis, to further enhance the performance of the CNN in SI classification,
multi-subject ensemble CNN (MS-En-CNN) models are designed. These are the
ensembles of CNN classifiers where each base classifier is built using data aggregated
from multiple subjects. Based on the distribution of subject-specific data for training
and tuning the base learners of the ensemble, three design strategies for MS-En-CNN
are introduced: Subject-Specific Training and Model Selection (SS-TM), Subject
Pairs Training and Model Selection (SP-TM), and Delete-a-Subject-Jackknife (DASJ)
approach. The predictive performance of the proposed techniques is evaluated across
two BCI paradigms, namely motor imagery (MI) and P300, using various publicly
available datasets. Empirical results show that with any of the presented strategies
constructing MS-En-CNN leads to a significantly better SI classification performance
with respect to the average performance of the base CNN classifiers. Moreover, MS-
En-CNN notably enhances average classification accuracy compared to a single CNN
trained on pooled data from training subjects. Among the three strategies, the latter
approach, a jackknife-inspired deep learning technique, emerges as the most promising
one. It is then benchmarked against state-of-the-art methods, highlighting its superior
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performance in single-trial SI classification. While these results show potential for
datasets with a small number of subjects, addressing computational requirements for
large-scale datasets involves extending this approach through the consideration of K-
fold cross-validation (CV). In this extended approach, instead of deleting a single subject
to form a jackknife sample, a group of K subjects is set aside. On one of the largest
MI datasets a K-fold CV-based MS-En-CNN demonstrated a statistically significant
improvement (p < 0.001) over the best previously reported results. In addition to
MS-En-CNN, proven as a simple yet effective method to enhance the performance
of existing CNN models, a new adaptive boosting strategy on the basis of CNN base
classifiers (AdaBoost-CNN) with iterative oversampling is proposed. This innovative
approach is contrasted with the conventional sample reweighting method, showcasing
its potential. Encouraged by promising results, the AdaBoost-CNN warrants further
investigation. Overall, this study highlights the effectiveness of MS-En-CNN and
AdaBoost-CNN and offers valuable insights that pave the way for further advancements
in SI classification within BCI applications.
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Chapter 1

Introduction
1.1 What is a Brain Computer Interface (BCI)?

1.1.1 Short Overview

Brain Computer Interface (BCI) has emerged as a cutting-edge technology with the
aim to establish an alternative communication channel between humans and computers
or control devices, bypassing the need for peripheral or muscular engagement [1].
Effectively operating the device requires the BCI system to precisely identify complex
brain activity patterns generated by the user and convert them into actionable commands
[2].

1.1.2 Applications

The original idea behind developing BCIs was related to medical applications and
assistive technology. They were originally conceived as a means to help individuals
with severe motor disabilities or neurological conditions regain communication and
control abilities. The primary focus was on developing technology that could enable
people who are paralyzed or unable to communicate through traditional means to
interact with the world using their brain activity. Currently, BCI systems find their
applications in various domains beyond medicine. This include neuromarketing and
advertisement [3, 4, 5], education [6] and emotional intelligence [7, 8], games and
entertainment [9, 10, 11], and security and authentication [12, 13].

BCIs could provide real-time feedback on a user’s emotional state, helping
individuals recognize and manage their emotions more effectively [14]. This could be
particularly beneficial for individuals dealing with conditions like anxiety, depression,
or stress. In the area of education, emotional states could be monitored for the BCIs to
adapt learning materials and approaches based on the learner’s emotional engagement.
This has the potential to optimize learning experiences and outcomes [15].

1.2 Brain Signal Acquisition

Process of brain signal acquisition is a fundamental part of any BCI system. Throughout
the years numerous techniques for acquiring the signals have been investigated. These
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1. Introduction

techniques could be generally divided into two categories: invasive and non-invasive
methods. Invasive methods required the electrodes to be surgically implanted either
within the user’s brain or placed on the outer surface of the brain. On the other hand,
non-invasive technologies involve measuring brain activity using external sensors,
without the need for any surgical procedures [1].

1.2.1 Invasive

The main benefit in utilizing the invasive methods for brain signals recording lies in
their high temporal and spatial resolution, which in turn enhances the quality of the
acquired signal and its signal-to-noise ratio. However, such a great advantage cannot
compensate the issues these techniques imply. The primary concerns revolve around
the requirement for surgical intervention and its potential impact on the patient, such as
the risk of infections, bleeding, and tissue damage.

Intracortical (IC) acquisition

The most intrusive method of data acquisition is referred to as the intracortical (IC)
technique, where the electrode (or arrays of electrodes) is surgically inserted under
the cortex surface of the brain. Placing the electrodes at specific locations restricts the
coverage area, while the process of adjustment of the electrodes after their implantation
is challenging. Moreover, long-term electrode stability is questionable as the brain
tissue around the placed electrodes may undergo changes, for example due to cell death
or elevated tissue resistance.

Due to involved risks, there are limited number of IC-based studies, most of which
consider monkeys as the subjects of the experiments [16]. A study involving human
subjects while employing IC acquisition was conducted by Pandarinath et al. [17], who
developed a high-performance communication system with point-and-click commands.
The system allowed patients with amyotrophic lateral sclerosis (ALS) to control a cursor
by recording the motor intention from 96-channel microelectrode array.

Electrocorticography (ECoG)

A less invasive means of capturing brain signals is electrocorticography (ECoG). It
involves the implantation of the electrodes over the cortex surface, thereby retaining
potential risks from surgical procedure. Being placed relatively close to the source of
the signal, electrode strips allow to capture a signal with high resolution. In [18] ECoG
(along with electroencephalogram-based) signals were used for motor-imagery-based
BCI. It was shown that while distinguishing signals from healthy people is relatively
straightforward, it is hard to classify the signals from paralyzed patients (using the
same methods). Elghrabawy and Wahed [19] considered finger flexion classification
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Brain Signal Acquisition

problem using ECoG signal. They employed shift invariant wavelet decomposition and
multi-taper frequency spectrum for feature extraction and multilayer perceptron and
pace regression for classification. Wang et al. using Naive Bayes and Support Vector
Machines (SVMs) predicted the semantic information from ECoG [20].

1.2.2 Non-invasive

Invasive techniques require surgical intervention, thereby entailing significant risks.
In contrast, non-invasive acquisition techniques provide a safer and more accessible
approach to interfacing with the brain. These non-invasive methods encompass a
range of technologies such as electroencephalography (EEG), functional magnetic
resonance imaging (fMRI), and magnetoencephalography (MEG), offering promising
opportunities for advancing BCI research and applications. The fMRI and fNIRs
methods record metabolic signals, while the EEG and MEG capture electrical and
magnetic signals, respectively.

Magnetoencephalography (MEG)

MEG measures magnetic fields resulting from inherent electrical currents in the brain
[1]. MEG signals have the potential to be affected by external magnetic fields like
the Earth’s, necessitating a controlled laboratory setup with shielding and dedicated
equipment. In contrat to electric fields, MEG signals experience lower distortion from
the skull layer.

Functional magnetic resonance imaging (fMRI)

The fMRI-based method monitors the neural activity by detecting the changes in blood
flow. It relies on the principle that any engagement of a brain area necessitates an
augmented inflow of blood. When neural activity increases, it initiates the changes in
blood circulation and oxygen levels, resulting in modifications to the blood-oxygen-
level-dependent (BOLD) response. The brain images are acquired using a specialized
scanner that generates magnetic fields, which is not only expensive but also heavy and
lacks portability. While the temporal resolution is low in fMRI, there is a very good
spatial resolution which allows measuring signals from deep regions within the brain.

Functional near-infrared spectroscopy (fNIRS)

Similar to fMRI, fNIRS captures the metabolic type of the signal. However, in this case,
the near-infrared range of light (as opposed to the magnetic method utilized in fMRI)
is used to measure the dynamics of blood flow. Specifically, fNIRS operates based
on the idea that oxygenated hemoglobin and deoxygenated hemoglobin have higher
light absorbance compared to skull and scalp. A limitation of fNIRS is its inability

3



1. Introduction

Table 1.1: Summary of the characteristics of various brain signal acquisition methods.

Method Invasive Risk Signal Resolution SNR Portability CostSpatial Temporal
IC Yes High Electrical Very high High High Mediate High
ECoG Yes High Electrical High High High Mediate High
EEG No Low Electrical Low Mediate Low High Low
fNIRS No Low Metabolic Mediate Low Low High Low
fMRI No Low Metabolic High Low Mediate Low High
EOG No Low Electrical Low Mediate Mediate High Low
MEG No Low Magnetic Mediate High Low Low High

to measure cortical activity beyond a depth of 4 cm within the brain, which is due to
restrictions in light emitter power and spatial resolution [21].

Electroencephalogram (EEG)

The first human EEG signal was recorded by Berger [22] in 1924 [23]. Currently, it is
the most frequently employed non-invasive method for measuring brain activities. EEG
is a technique used for electrophysiological monitoring of the electrical activity inside
the brain by placing electrodes on the scalp. Monitoring method records the voltage
fluctuations that occur from ionic current within the neurons of the brain. EEG-based
data acquisition method has strong temporal resolution, but is limited by its low spatial
resolution and signal-to-noise ratio (SNR).

1.2.3 Summary

The summary of the characteristics of various brain signal acquisition methods is
presented in the Table 1.1 [1, 21]. In short, due to the risks involved, invasive BCIs are
generally restricted to carefully selected patients and research participants, while the
non-invasive methods (EEG and fNIRS, in particular) are the most practical and are
widely used for various applications.

As a part of this Thesis only EEG based datasets were considered as EEG carries no
clinical risk and can be measured using portable and cost-effective devices.

1.3 Subject-Independent Classification for BCI: Why?

The majority of current research focuses on subject-dependent scenarios, where both
training and test data involve the observations from the same individual. Consequently,
a calibration session becomes necessary before a BCI system can be used by a new user.
This calibration process is time-consuming and requires individual recalibration for
each new subject and each usage. In contrast to this, it is highly desirable to develop the
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subject-independent system, which involves training using data from known subjects
and applying it directly to new users without prior adaptation.

1.4 Problem Statement

Given the same experimental framework, EEG signals exhibit substantial variability not
only among different subjects, but even within the same user across recording sessions.
Thus, developing an accurate subject-dependent system is challenging, not to mention
the subject-independent scenario.

This Thesis aims to explore and develop novel approaches for subject-independent
BCIs. The research investigates the design and training ensemble classifiers to create
robust BCI systems that can effectively handle subject-independent data.

1.5 Hypothesis

Hypothesis behind this study is that in classifying an individual’s mental intention based
on EEG waveforms, the discriminative features of collected measurements lie in a latent

space that is captured by some classifiers trained using measurements collected from
previous trials of the same individual and/or other subjects.

1.6 Organization of the Thesis

This Thesis is organized as follows:

• Chapter 1 was the introduction to the study, presenting the concept of BCI, its
applications, different methods of brain signal acquisition, and highlighting the
importance of conducting the research in the subject-independent scenario. It
also formulated the hypothesis behind the current study.

• Chapter 2 provides the general background on EEG-based BCI paradigms.

• Chapter 3 documents the literature review that summarizes previous CNN
architectures and ensemble methods based works in the context of EEG
classification in general, and subject-independent classification in particular.

• Chapter 4 outlines the methodologies employed in this study and introduces the
datasets utilized to validate the proposed designs.

• Chapter 5 defines the base classifiers that constitute the proposed ensemble.

5



1. Introduction

• Chapter 6 presents the idea of multi-subject ensemble CNN and its possible
strategies for implementations. This chapter shows both, the designed approaches
and the experimental results that were achieved on publicly available datasets.

• Chapter 7 demonstrates the performance of the jackknife-inspired approach with
the state-of-the-art base classifiers.

• Chapter 8 shows the promising K-fold cross-validation approach for large
datasets.

• Chapter 9 explores an alternative ensemble approach featuring sequentially
trained CNN base classifiers, specifically referred to as AdaBoost-CNN.

• Chapter 10 offers discussion and summary of the achieved results.

• Chapter 11 is dedicated to the conclusions and possible future work.

6



Chapter 2

EEG-based BCI
In the realm of EEG-based BCI research, various paradigms are explored to decode
neural signals and establish effective communication pathways between the brain
and external devices. Examples of such paradigms include event-related potentials
(ERPs), event-related synchronization/desynchronization (ERS/ERD), error potentials,
sensorimotor rhythms, slow cortical potentials, steady-state visual evoked potential,
etc. This Thesis focuses on two commonly used BCI paradigms: P300, which is an
important component of ERP and motor imagery (MI), which is closely related to ERD,
particularly concerning the mental rehearsal of motor actions. These paradigms are
associated with the endogenous process, which is the internally generated cognitive
or mental activities that are initiated and controlled by the individual, rather than
being driven by external stimuli. Notably, although both are associated with the
endogenous process, P300 is an evoked type of activity, while MI is spontaneous. This
distinction arises from the fact that P300 is elicited by external stimuli, whereas MI
occurs independently, without any external trigger. Further elaboration on these brain
activity patterns will be provided in the subsequent sections, where first the general
characteristics of EEG are considered and the main principles of the work of EEG-based
BCI are presented, followed by the discussion of P300 and MI paradigms.

2.1 General Principles

2.1.1 EEG characteristics

EEG activity has quite small signal intensity that is measured in microvolts. According
to the signal frequency, the EEG waves are categorized into five groups: delta, theta,
alpha, beta, and gamma rhythms [24]. The summary of the EEG rhythms with
corresponding frequency subbands and behavioral states is demonstrated in Table
2.1. In addition to these five basic groups of brain waves there is also mu rhythm, which
is the EEG rhythm with the signal amplitude and frequency of approximately 50 µV
and 10 Hz, respectively. Although the mu rhythms are in the similar frequency range
as alpha waves, the nature of these two waves is physiologically different. There is a
strong correlation between the motor activities and mu waves, which are predominantly
present in the motor cortex region of the cerebral cortex.

7



2. EEG-based BCI

Table 2.1: Rhythms of EEG signals and corresponding behavioral states

EEG
rythms

Frequency
subbands

EEG behavioral states

Delta 0-4 Hz Deep/Restful sleep
Theta 4-8 Hz Visual imagery, light sleep, deep meditation
Alpha 8-12 Hz Low level of stimulation: relaxed awake or

drowsy states without focused attention or
vigilance (mindless states)

Beta 12-30 Hz High level of stimulation: awake alert states
with the focus or attention on the problem
solving;
dream or rapid eye movement sleep phases

Gamma >30 Hz State of perception and consciousness
Mu around 10 Hz States of motor activities

2.1.2 Basic framework for EEG-based BCI

The general process involved in EEG-based BCI is illustrated in Fig.2.1. First, the
EEG signals are recorded by placing the electrodes on the user’s head. The acquired
signals are then preprocessed with the aim of eliminating noise, artifacts, and unwanted
frequencies. This improves the clarity and accuracy of the data. Next is the feature
extraction stage, where specific patterns are extracted from EEG data. These patterns are
associated with distinct paradigms, such as P300 and MI. For example, when extracting
the features for P300-based applications, the main focus is on identifying the specific
neural response occurring around 300 milliseconds after the presentation of stimulus.
For this, the temporal and amplitude features of EEG are analyzed. In the context of
MI-based classification problems, the feature extraction process centers on isolating
and quantifying patterns associated with the mental rehearsal of motor actions without
actual execution. This involves examining changes in spectral power, particularly in mu
and beta frequency bands, over the sensorimotor cortex. The analysis captures the ERD

Figure 2.1: General scheme for EEG-based BCI
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P300 based BCI

phenomenon, intricately linked with imagined movements. ERD is characterized by
a decrease in the amplitude of specific frequency bands, such as mu and beta, in the
sensorimotor cortex. For example, when an individual envisions moving their hand,
there is often a reduction in the amplitude of these neural oscillations.

The next step is to classify the extracted features using machine learning algorithms.
For this, the classification models are trained to interpret the brain signals and
associate them with intended actions or commands. Once the intended action is
classified/recognized it is translated to the command for the external device. This
can be controlling a cursor on a screen, selecting letters for communication, or moving
a prosthetic limb. In addition to above mentioned steps, feedback mechanisms could be
integrated into BCI system to inform the user about the decoded results of his intentions.
By receiving certain feedback the user can be aided to modulate brain activity, therefore
improving the performance of BCI.

The focus of the current study is on designing the classification algorithms that are
aimed to accurately decode the P300 and MI-based brain activity patterns. The proposed
algorithms are tested on publicly available EEG data. In a binary classification scenario
involving P300-based brain activity patterns, the goal is to distinguish between two
neural responses: those correlated with the occurrence of the P300 event (target) and
those lacking the P300 event (non-target). Regarding MI-based brain activity patterns,
the objective is to differentiate between distinct types of imagined motor actions or
tasks. The system is trained to identify and categorize various patterns of brain activity
linked to specific intended motor imagery tasks, such as discerning between left-hand
movement and right-hand movement.

There are standardized methods for positioning of electrodes on the scalp based on a
percentage of head circumference and specific skull landmarks [25]. The 10-10 and
10-20 systems are commonly used electrode placement techniques. The key difference
between the two lies in the number of electrodes used and the coverage they provide.
Electrodes are placed at locations determined by dividing the head into regions, each
representing either 10% or 20% of the total distance between specific landmarks. The
10-10 system is an expansion of the 10-20 system, incorporating additional electrode
positions. The positions of most commonly used EEG electrodes are illustrated in
Fig.2.2.

2.2 P300 based BCI

P300-based BCI is a type of technology that utilizes the ERP of the human brain for
communication and control. ERPs are brain reactions triggered by external sensory,
motor, or cognitive events, detected as small changes in voltage within EEG. These
responses have been the main focus for creating non-invasive BCI systems. Specifically,
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2. EEG-based BCI

Figure 2.2: EEG electrode positions [25].

the analysis of P300-waveforms has been extensively explored in the majority of BCI
research. P300 is a prominent component of ERP, which is observed as a positive
voltage change in the brain occurring approximately 300 milliseconds after a person is
presented with a stimulus.

One of the widely recognized and popular applications within the realm of EEG-
based BCI technology is P300 speller. It was developed by Farwell and Donchin in
the 1980s and therefore is also known as Farwell & Donchin style visual speller [26].
The typical visual stimuli character matrix used to evoke P300 ERPs is demonstrated in
Fig.2.3. The rows and columns of the grid flash systematically. The user’s task is to
focus the attention on the desired character. As a result, when the selected character’s
row or column is flashed, the P300 response is elicited, which can be detected in the
user’s EEG signals. This way, the person can spell out words or convey messages by
selecting characters on the visual matrix using only their brain activity.

2.3 Motor Imagery (MI) based BCI

In the MI-based BCI paradigm, individuals are asked to imagine performing a particular
movement without actually engaging in physical action. This mental rehearsal of
movement involves activating and simulating brain regions associated with the execution
of the intended movement. MI is used as a method for users to control external devices
or applications using their brain activity.

While specific details of experimental procedure (such as the number of sessions,
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Figure 2.3: Farewell & Donchin style P300 speller.

Figure 2.4: Procedure for MI-based BCI.

their duration, number, and types of mental states) may vary, the general protocol for
MI-based experiments typically follows a standard format. The subject/user is placed
in front of a computer. The user is tasked with mentally envisioning certain movements
in response to a visually displayed cue stimulus. The idea of the experimental design is
illustrated in Fig.2.4 [27, 28]. Assuming the focus of the experiment is on distinguishing
between two mental states, the cue in Fig.2.4 is represented by a left or right arrow,
indicating either left-hand or right-hand movement. Each trial is of a fixed duration and
it is started with a displayed fixation cross at the center of the monitor. This is followed
by a short beep sound, after which a visual cue is demonstrated (for approximately 4
seconds). There are several trials within one session which are repeated after resting
period. The whole experiment consists of several sessions, which might be held on the
same or different days.
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Chapter 3

Literature Review
Various techniques exist for feature extraction, feature selection, and classification in
EEG-based BCI systems. Nonetheless, current studies in the BCI domain demonstrate
the trend of moving towards employing deep learning methodologies. This shift is driven
by the capability of deep learning to execute a sequence of procedures for processing
raw input data within one block. This chapter presents a summary of research works
that have presented approaches for EEG-based BCI applications. The focus is on deep
learning (in particular on Convolutional Neural Networks) and ensemble methods. The
last section is dedicated to the methods that have been proposed in the context of
subject-independent (SI) classification of EEG.

3.1 Deep Learning for EEG-based BCI

Deep learning (DL) proved to be successful in complex data processing [29]. A
number of DL architectures that allow effective preprocessing, feature extraction and
classification have been developed for applications related to the images and signals
in the form of audio, video and text [30]. However, talking about the EEG-related
applications, in the past there was a certain degree of incredulity among the research
community that deep learning is the optimal tool for it [30]. The skepticism regarding
DL tools in the area of BCI was mostly due to the availability of EEG data and its
characteristics [30]. Due to challenges associated with EEG data collection [31],
EEG-based datasets are considerably smaller compared to the extensive sample sizes
commonly utilized for training purposes in fields such as computer vision and natural
language processing [30]. This limitation arises due to the restricted number of recorded
trials available for each participant. Moreover, low SNR of the data is another significant
problem in the EEG data classification. As a result, it was thought that the performance
of the readily available machine learning algorithms might be significantly affected
[31], making them inapplicable for EEG processing [30]. Nevertheless, this has not
prevented the investigation and eventually, in the last few years, remarkable progress in
deep learning research for designing accurate BCIs has been witnessed with the results
highlighting the significant potential of DL.
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Convolutional Neural Networks (CNNs) for EEG classification

3.2 Convolutional Neural Networks (CNNs) for EEG
classification

One of the most frequently used DL architectures for EEG-based applications is the
convolutional neural network (CNN). This is due to its regularization framework and
its ability to learn the discriminative features from the input data [32]. A number of
CNN-based techniques have been recently applied for the purpose of improving the
performance of BCI systems. A summary of the EEG-based BCI studies that leverage
the advantages of CNNs is provided in Table 3.1, where the following details are
given: the proposed architecture designs, the datasets (name of the dataset, type of the
BCI paradigm, number of subjects Ns) that were used to verify them, and reported
performance.

CNN proved to be an effective method for single-trial ERP detection that combines
spatial filtering and classification stages. Cecotti et al. [33] presented several CNN-
based designs for P300 classification problem. Among these designs, four of the
classifiers are single architectures and three multiclassifiers. All of the designs represent
variations to the same architecture with two convolutions, subsampling layer and fully
connected (FC) layer. The variations are mostly in terms of the input data that is
used to train the classifier and base classifiers of the multiclassifier. The authors of
[34] proposed a parallel convolutional-linear neural network that combines the static
and dynamic energy classification of MI-based EEG through multilayer perceptron
(MLP) and CNN, respectively. Schirrmeister et al. [35] explored various options in
crafting CNN-based structures to interpret tasks involving imagination and execution
using unprocessed EEG data. Among the proposed designs, two architectures, namely
DeepConvNet and ShallowConvNet, became later popular and were used in other
investigations as benchmarks for comparison.

Liu et al. [36] proposed the use of batch normalization in CNNs (BN3) to prevent
overfitting. Joshi et al. [37] designed Convolutional Long Short Term Memory
(ConvLSTM) network. In addition, the author represented the input EEG data in
the form of a 3D map and implemented CNN model for 3D data (CNN3D). Moreover,
the proposed CNN models, along with the BN3 were used as the base classifiers for the
ensemble with simple averaging.

Lawhern et al. [38] designed a CNN-based architecture called EEGNet. It is a
robust architecture that is able to learn a wide range of features for accurate decoding of
ERP, as well as oscillatory data (movement-related cortical potential and sensory-motor
rhythm signals). The structure comprises three categories of convolutional layers: a
traditional layer, a depthwise layer, and a separable layer. The results of the study
demonstrated that the EEGNet system does not require augmentation of data for proper
performance across different datasets. An instance of CNN architecture with data
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Table 3.1: A summary of CNN-based designs for EEG-based BCI. Ns is the number of subjects that participated in the BCI
experiment to collect the data for a given dataset. Different performance measures indicate the average values (with the standard
deviation in some cases) across all of the subjects and across different folds, where the cross-validation has been done.

Study Dataset
Type of EEG Signals

Architecture Performance measures

Cecotti et al. [33],
2010

ERP: BCI III 2 (Ns = 2)
[46]

CNN-1:
Conv + Conv + Subsampling + FC
Multiclassifier MCNN:
5 CNN-1 classifiers are trained on different
database
Decision making: average for fusing the
output of each classifier

CNN-1:
5/15-epoch RR: 70.00% / 94.50%
5/15-epoch ITR: 12.69 / 8.08
MCNN-1:
5/15-epoch RR: 69.00% / 95.50%
5/15-epoch ITR: 12.40 / 8.25

Cecotti et al. [47],
2014

ERP:
RSVP1 (Ns = 8)
RSVP2 (Ns = 10)
RSVP3 (Ns = 10)

CNN is used as a preprocessing method for
several classifiers: BLDA, MLP, SVM

AUC:
86.10 ± 7.3% (RSVP1 using
MLP+CNN)
85.00 ± 6.10% (RSVP2 using
BLDA+CNN)
81.90 ± 5.5% (RSVP3 using
SVM+CNN)

Sakhavi et al.
[34], 2015

MI: BCI IV 2a (Ns = 9) CNN ∥ MLP
3-layered MLP for static energy features +
CNN for dynamic energy features (Dropout
and ReLU activation functions are used)
CNN Configuration: Parallel {Conv in time
+ Avg. Pool + Conv in time + Avg. Pool
+MLP} + Concatenation + MLP
Decision making: max value of each class
from MLP and CNN

Acc: 70.60%
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Table 3.1: Continued

Study Dataset
Type of EEG Signals

Architecture Performance measures

Tabar et al. [48],
2016

MI:
BCI IV 2b (Ns = 9) [49]
BCI II 3 (Ns = 1) [50]

CNN-Stacked AE:
1 conv. layer + 6 × AE + output layer

Subject-Specific:
Acc: 77.6 ± 2.1% (BCI IV 2b)
Kappa: 0.547 ± 0.083 (BCI IV 2b)
Acc: 90.00% (BCI II 3)
Kappa: 0.800 (BCI II 3)
Session-to-session:
Acc: 75.10% (BCI IV 2b)

Schirrmeister et
al. [35], 2017

MI:
BCI IV 2a (Ns = 9) [51],
BCI IV 2b (Ns = 9) [49],
High Gamma Dataset
(HGD) (Ns = 14) [35],
Mixed Imagery Dataset
(MID)

(1) DeepConvNet inspired by architecture
of AlexNet [52]:
4 convolution-max-pooling blocks + dense
softmax classification layer
(2) ShallowConvNet is inspired by FBCSP
[40, 41, 42]:
1 convolution-max-pooling block + dense
softmax classification layer
(3) hybrid CNN - fusion of deep and shal-
low CNN after the final layer;
(4) Residual CNN is based on ResNet [53]

DeepConvNet:
Acc: 70.9% (BCI IV 2a)
Acc: 92.5% (HGD)
Acc: 72.2% (MID)
Kappa: 0.598 (BCI IV 2b)
ShallowConvNet:
Acc: 73.7% (BCI IV 2a)
Acc: 89.3% (HGD)
Acc: 67.7% (MID)
Kappa: 0.899 (BCI IV 2b)

Lawhern et al.
[38], 2018

ERP: P300 (Ns = 18),
ERN (Ns = 26), MRCP
(Ns = 13);
MI: SMR (Ns = 9)

EEGNet inspired by FBCSP [40, 41, 42]:
Temporal Convolution + BN + Depthwise
convolution + BN + ELU + Avg. Pooling
+ Dropout + Separable convolution + BN +
ELU + Avg. Pooling + Dropout + Flatten +
Dense

AUC: 90.54% (P300)

Liu et al. [36],
2018

ERP (P300): BCI III 2
(Ns = 2) , BCI II 2b
(Ns = 1)

BN3:
BN + Conv + Conv + ReLU + FC + tanh +
Dropout + FC + tanh + Dropout + Sigmoid

F-1 Score: 0.54
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Table 3.1: Continued.

Study Dataset
Type of EEG Signals

Architecture Performance measures

Joshi et al. [37],
2018

ERP (P300): BCI III 2
(Ns = 2)

ConvLSTM:
Recurrent convolution + tanh + Dropout
+ Recurrent dropout + BN + Recurrent
convolution + BN + Dropout + FC layer
+ Sigmoid
CNN3D - CNN for 3D data:
Conv + ReLU + BN + Dropout + Conv +
ReLU + BN + Dropout + Avg. pool + BN
+ Dense + Sigmoid
Ensembles of CNNs

F1-score:
0.54 (ConvLSTM)
0.50 (CNN3D)

Sakhavi et al.
[44], 2018

MI: BCI IV 2a (Ns = 9)
[51]

Feature extraction by FBCSP
Channel-wise CNN (CW-CNN):
Convolution + ReLU + Convolution +
ReLU + Linear+ ReLU + Linear + Log-
SoftMax
Channel-wise convolution with channel
mixing (C2CM):
same as CW-CNN with additional convolu-
tion for channel mixing

CW-CNN:
Acc: 73.07%
Kappa: 0.641
C2CM:
Acc: 74.46%
Kappa: 0.659

Tang et al. [54],
2019

MI: BCI IV 1 (Ns = 4)
[50]

Sparse AE - CNN:
Single Sparse AE + 1 conv. layer+ Pooling
+ logistic regression layer

Acc: 92%
MSE: 0.575

Zhu et al. [45],
2019

MI:
MI data (Ns = 25) [45]
BCI IV 2b (Ns = 9) [49]

Separated Channel convolutional
network (SCCN)

Acc: 73.00% (MI data)
ITR: 3.33 (MI data)
Acc: 64.00% (BCI IV 2b)
ITR: 0.83 (BCI IV 2b)
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Table 3.1: Continued.

Study Dataset
Type of EEG Signals

Architecture Performance measures

Qiao et al. [55],
2019

MI: BCI IV 2a (Ns = 9)
[51]

IncepCNN-BGRU:
Inception module (incorporates 4 levels of
convolutional kernels) + Conv + ReLU +
Conv + ReLU + Pooling + Conv + ReLU
+ Conv + ReLU + Pooling + FC +BGRU +
Softmax

Acc: 76.62%

Dai et al. [56],
2019

MI:
BCI IV 2b (Ns = 9) [49]
BU data (Ns = 5) [56]

CNN-VAE:
1 conv. layer + ReLU+ max pool + FC

Kappa: 0.564 ± 0.065 (BCI IV 2b)
Kappa: 0.603 ± 0.067 (BU data)

Zhang et al. [57],
2019

MI: BCI IV 2a (Ns = 9)
[51]

CNN-LSTM:
For each time window (5 time windows):
{one-versus-rest FBCSP for feature extrac-
tion + Conv +Max Pool + Conv +Max Pool
+ Conv +Max Pool+ Dropout + Reshape} +
LSTM

Subject-specific:
Kappa: 0.8
Merged data:
Acc: 84.00%
Kappa: 0.81

Ingolfsson et al.
[58], 2020

MI: BCI IV 2a (Ns = 9)
[51]

EEG-TCNet inspired by EEGNet [38]:
EEGNet + TCN + FC

Acc: 77.35 ± 11.57%

Dai et al. [39],
2020

MI:
BCI IV 2a (Ns = 9) [51],
BCI IV 2b (Ns = 9) [49]

HS-CNN: Three filter banks + Convolution
in time + Convolution in space + Max-pool
+ Flatten + Fully Connected (FC) + FC

Acc: 91.57 (BCI IV 2a)
Acc: 87.6 (BCI IV 2b)

Musallam et al.
[59], 2021

MI: BCI IV 2a (Ns = 9)
[51],
HGD (Ns = 14)

TCNet-Fusion inspired by EEG-TCNet:
concatenation of the outputs from EEGnet
and TCN

Acc: 83.73 ± 9.79% (BCI IV 2a)
Acc: 94.41% (HG)

Bang et al. [60],
2022

MI: BCI IV 2a (Ns = 9),
BCI IV 2b (Ns = 9), KU
data (Ns = 54)

3D-CNN: 3D conv layer + 3D conv layer +
FC (ReLU activation)

Acc:
BCI IV 2a: 87.15% ± 7.31%
BCI IV 2b: 75.85% ± 12.80%
KU data: 70.37% ± 17.09%

17



3. Literature Review

augmentation method is illustrated by Dai et al. [39], who designed a hybrid scale
(HS) CNN. ShallowNet and EEGNet are some examples of the architectures that were
inspired by the Filter Bank Common Spatial Patterns (FBCSP) method [40, 41, 42],
which is the extension of the Common Spatial Pattern (CSP) algorithm [43]. Other
examples of CNN-based studies with the use of FBCSP/CSP include [44], [45].

More recently, Bang et al. [60] designed a 3D convolutional layers-based framework
with spatio-spectral feature representation. Other examples of CNN-based classification
methods for EEG-based BCI are [61]. Unlike most of the common CNN-based designs,
Cecotti et al. [47] considered CNN as a preprocessing method to evaluate different
classifiers (Bayesian Linear Discriminant Analysis (Bayesian LDA), MLP, Support
Vector Machines (SVMs)).

Besides purely CNN-based architectures, hybrid models incorporating CNN and
other deep structures are extensively used for the EEG signal interpretation and
classification. Such an example is presented by Tabar et al. [48], who classified
the MI EEG signals by investigating the combination of CNN and stacked autoencoders
(AE). A combination of CNN architecture with sparse autoencoder (SAE) is exploited in
[54]. Other examples of hybrid CNN models include integration of CNN and variational
AE [56], CNN and Bidirectional Gated Recurrent Unit (BGRU) [55], convolutional
layers and structure of long-term short-term memory (LSTM) network [62, 37, 57].

In addition to regular CNN architectures, nowadays temporal convolutional networks
(TCNs) are getting a lot of attention in various applications. Recently, being inspired
by the architecture of EEGNet, Ingolfsson et al. [58] designed the EEG-TCNet, which
represents the combination of regular convolutional layers, as in EEGNet, (temporal,
depthwise and separable convolutions) and TCN with its causal and dilated convolutions,
and residual blocks. Such an architecture allowed to improve the performance of its
predecessor (EEGNet) on average by 4.95%, while preserving its compactness (in
fact, EEG-TCNet requires 1.6 times more number of trainable parameters, but 6.3
million less (twice less) multiply-accumulate (MAC) operations per inference). The
performance of EEG-TCNet, was further improved by Musallam et al. [59], who
concatenated the outputs of EEGNet and TCN.

3.3 Ensemble Methods for EEG-based BCI

The concept of ensemble learning is renowned for its ability to exhibit enhanced
generalization and performance by combining a collection of individual models. In this
section the research works that have been conducted in the area of EEG-based BCI on
ensemble techniques are summarized. Although the focus of the current study is on the
CNN-based ensemble methods, for comprehensiveness of the literature review here the
designs for non-CNN based designs are presented as well. This will give an idea of the
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general methods that are used to ensemble different models. The summary of the works
is presented in Table 3.2.

The first attempts to demonstrate the effectiveness of the ensemble over the single
classifier in the context of EEG classification were presented by Rakotomamonjy et al.

[63] and Sun et al. [64]. The former study used the ensemble of linear SVMs, while
the latter evaluated bootstrap aggregation (bagging), adaptive boosting (AdaBoost),
and random subspace techniques with the k-Nearest Neighbors (KNN), decision tree,
and SVM-based base classifiers. To ensure diversity of the ensemble Ramos et al.

[65] considered different learning paradigms of Probabilistic Neural Networks (PNN),
SVM with linear and quadratic kernels, Radial Basis Function Network (RBF), LDA
with different discriminant functions, and KNN with the euclidean and mahalanobis
distances, cosine and correlation metrics. Rakotomamonjy and Guigue [66] performed
bagging of SVM models. Later, on the same dataset, another research group [67]
analyzed CNN-based bagging approach, in addition to the bagging ensemble of SVMs.
However, the former method (with SVM base classifiers) demonstrated superior 5-
trial and 15-trial recognition rates. Other examples of using SVMs as a part of the
ensemble can be found in [68], [69]. Salvaris and Sepulveda [70] combined simple
linear classifiers, namely Fisher’s linear discriminants (FLDs), that are trained on a
different partition of the training data. Fazli et al. [71, 72, 73] considered various
gating functions to combine the outputs of the base classifiers (CSP with matching
LDAs). This included the commonly used way of averaging the outputs of individual
classifiers (mean), employing different classification methods (KNN, LDA, SVM,
Linear Programming Machine (LPM)), quadratic regression with l1 regularization, and
least squares regression.

Ebrahimpour et al. [74] using MLPs as the base classifiers have shown that mixture of
experts as an ensemble technique outperforms simple averaging and decision templates
and stacked generalization. Datta et al. [75] performed a comparative study on different
types of ensemble architectures, which combined KKN classifier trained with different
parameters, different classifiers (KNN, SVM, Naive Bayes (NB)), classifiers of one kind
trained on different features. The latest approach with KNN base classifier demonstrated
the best performance on a motor imagery task. In [76], Subasi and Qaisar have used
Multiscale Principal Component Analysis (MSPCA) for denoising and Wavelet Packet
Decomposition (WPD) for feature extraction. The extracted features are further reduced
in dimensionality and fed to a classification algorithm. Six different algorithms, namely
KNN, C4.5 Decision Tree (C4.5 DT), REP Tree, SVM, Random Tree (RT), and RF,
were considered. For each of the above-mentioned algorithms, a separate ensemble is
formed on the basis of Rotation Forest (RoF) and Random Subspace Method (RSM).
On average (among 5 subjects) the best classification performance was demonstrated
by the RoF with KNN base classifier.
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Table 3.2: Examples of research works on ensemble learning for EEG-based BCI.

Study Dataset Base Classifiers Ensemble Performance measures
Sun et al. [64],
2007

MI (Ns = 3), 3
classes

KNN, decision tree (C4.5),
SVM

Bagging, AdaBoost, ran-
dom subspace (RanSub)

Acc:
KNN: 53.12% (Bagging);
51.90% (AdaBoost); 56.35%
(RanSub)
C4.5: 55.98% (Bagging);
55.49% (AdaBoost); 56.13%
(RanSub)
SVM: 46.47% (Bagging);
57.20% (AdaBoost); 55.20%
(RanSub)

Fazli et al. [71],
2008

ERD/ERS data
(Ns = 45)

Predefined filter-bank of
temporal filters

Mean (other considered
options: highest absolute
value, majority vote, me-
dian)

Loss (mean):
25%-tile: 3.6
median: 11.2
75%-tile: 30.7

Rakotomamonjy
et al. [66], 2008

ERP (P300): BCI
III 2 (Ns = 2)

SVM Bagging 5-trial RR: 73.5%
15-trial RR: 96.5% (MCCP)

Alzoubi et al.
[78], 2008

MI: BCI III 3a
(Ns = 3)

DT AdaBoost, bagging, stack-
ing, RF

Target hit rate: 57.31%

Fazli et al. [72],
2009

MI (Ns = 45) CSP+LDA classifiers Mean of the outputs and
various forms of regression
(l1 regularization)

Loss: 26.70% (l1 regularized
regression)

Fazli et al. [73],
2009

MI (Ns = 83) Subject-dependent
CSP+LDA

mean, quadratic regression
with l1 regularization, least
square regression, classi-
fication algorithms (LDA,
SVM, KNN, LPM)

Loss (SVM): 28.7%
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Table 3.2: Continued.

Study Dataset Base Classifiers Ensemble Performance measures
Salvaris et al.
[70], 2009

ERP: BCI II 2b
(Ns = 1), BCI III
2 (Ns = 2)

FLD trained on different
data segments

Sum of the each base clas-
sifiers scores

RR: 100% (BCI II 2b)
5-trial RR: 71.5% (BCI II 2)
15-trial RR: 95% (BCI II 2)

Ebrahimpour et
al. [74], 2012

MI: BCI 2005 3a
[94]

MLP Simple averaging, decision
templates, mixture of ex-
perts, stacked generaliza-
tion

Acc: 77.91% (mixture of ex-
perts)

Chaurasiya et al.
[69], 2016

ERP: Devanagari
script based P300
(Ns = 9)

SVMs trained on sequen-
tially partitioned training
data

Weighted ensemble of
SVMs

5-trial RR: 72.4%
15-trial RR: 91.9%

Ramos et al.
[65], 2017

MI (Ns = 3) PNN, SVM linear, SVM
quadratic, RBF, LDA lin-
ear, LDA quadratic, LDA
Mahalanobis, KNN eu-
clidean, KNN mahalanobis,
KNN cosine and KNN cor-
relation

Majority voting, weighted
majority voting

Acc: 95.50%

Kundu et al.
[68], 2018

ERP: BCI II
(Ns = 1), BCI III
2 (Ns = 2)

SVM;
LDA

Weighted average of
SVMs; Weighted average
of LDAs;

RR: 100% (BCI II);
5-trial RR: 72% (BCI II 2)
15-trial RR: 98% (BCI II 2)
(SVM-ensemble)
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Table 3.2: Continued.

Study Dataset Base Classifiers Ensemble Performance measures
Joshi et al. [37],
2018

ERP (P300): BCI
III 2 (Ns = 2)

Various combinations
of CNN models: BN3,
CNN3D, ConvLSTM

Simple averaging F1-score:
0.51 (BN3 + CNN3D + Con-
vLSTM)

Barsim et al.
[67], 2018

ERP (P300): BCI
III 2 (Ns = 2)

SVM;
Different variants of CNNs
(conventional CNN, Incep-
tion, Xception, and IGC
modules)

Bagging of SVMs;
Bagging of CNNs

5-trial RR: 76.5%
15-trial RR: 98.5% (SVM-
ensemble)

Datta et al. [75],
2018

MI: BCI II 3
(Ns = 1)

KNN with different param-
eters, different classifiers
(KNN, SVM, NB), differ-
ent features using one of
the classifiers (KNN, SVM,
NB)

Majority voting, mean Acc: 82.86 % (MV)

Zhu et al. [95],
2021

SSVEP:
(Ns = 11)

EEGNet (with different
kernel numbers)

Averaging Acc: 79.56 ± 15.40%

Subasi et al.
[76], 2021

MI: BCI III 4a
(Ns = 5)

MSPCA + WPD + classi-
fication algorithm (KNN;
C4.5 DT; REP Tree; SVM;
RT; and RF)

RoF (average combination
method) and RSM (major-
ity voting) ensemble meth-
ods with different classifi-
cation algorithms

Acc: 94.83% (RoF with
KNN)
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There is a number of other non-CNN based ensembles that can be found in the
literature. Cavrini et al. [77] for instance presented a fuzzy integral ensemble method.
Other examples of ensembles include the works that consider the following base
classifiers: DTs [78]; stepwise LDA (SWLDA) [79]; SVMs [80, 81]; feed forward
neural network (FFNN) [82]; LDA and Nearest Neighbor [83]; LDA, SVM and DT
[84]; decision stump and KNN [85]. Comparative analysis of ensemble methods
(bagging, boosting) are conducted by [86, 85, 87]. The latter two considered different
feature extraction methods (autoregression (AR), power spectrum density (PSD), and
CSP, discrete wavelet transform (DWT)). Different implementations of AdaBoost were
demonstrated by [88, 89, 90, 91, 92, 93].

Talking about the CNN-based ensemble learning, Zhu et al. [95] trained EEGNet
models and combined them by averaging strategy. Extensive reviews on the usage of
ensembles in BCI can be found in [96].

3.4 Subject-Independent (SI) Classification in BCI

This section presents the overview of the approaches that have been proposed and tested
so far for SI BCIs. Here, various paradigms, including those tested in the current study,
namely MI and ERP, as well as others, such as visual imagery (VI) and mental imagery,
are considered to give a full picture of the current state of the subject-independent
classification problem in the BCI field. The summary from different studies is presented
in Table 3.3, while a brief description of each work is provided below.

Before deep learning became so popular in EEG classification, Lotte et al. [97]
compared the performance of LDA, quadratic discriminant analysis (QDA) and
Gaussian mixture model (GMM) with different feature extraction methods and
concluded that linear classifiers are the most suitable choice for constructing MI-based
BCIs. Using LDA with multi-resolution (MR) decomposition based FBCSP feature
extraction method the average accuracy of almost 71% was achieved. As a baseline,
Lotte et al. [97] also considered knowledge from neurophysiology and evaluated SI
performance on MI data without machine learning. For this, logarithmic band-power
(BP) for mu and beta bands for electrodes in motor cortices region was computed, then
the features were produced by averaging these BP over electrodes in left and right motor
cortices separately, where the difference between the obtained features indicates the
class. This a-priori knowledge-based approach demonstrated an average SI accuracy of
64.2%.

Fazli et al. [72] trained a set of subject-dependent (SD) CSP filters and LDA
classifiers and combined the outputs to check the performance of the approach on the
unseen data. The authors [72] sparsified the ensemble with quadratic regression with l1
regularization. A similar idea has been tested on a different MI dataset in [73]. Here,

23



3. Literature Review

in addition to the LDA classifier Fazli et al. [73] tested other classification methods
such as KNN, SVM and LPM. An alternative to commonly used CSP features has
been proposed by Reuderink et al. [98], who have employed the second-order baseline
(SOB) covariance features. The SOB approach used a pre-trial baseline to adaptively
normalize the covariance of the EEG channels. With a standard SVM classifier, the
mean accuracy of 67.3% (across 51 test subjects) was achieved, which is on average
higher than that with the CSP features (given the same classification algorithm) by 9%.

Lotte et al. [99] examined different ideas to suppress the calibration times required
for the operation of BCI, one of which was a SI approach. In regard to SI classification,
two designs have been considered. One is the pooled-data approach (the data for all
but the test subject is pooled together and used for training) that was used to train
CSP filters and an LDA classifier (from the earlier work [97]). The second design is
the ensemble technique (similar to [72]) that incorporates the outputs from separately
trained user-specific LDA classifiers with CSP filtering. The effect of using automatic
covariance matrix shrinkage (ACMS) for both SI designs was analyzed.

Kwon et al. [100] established one of the largest MI-based EEG databases that
involves 54 subjects, referred to as KU dataset. Based on this dataset, the authors
generated the sets of features that are formed by spectral-spatial filtering at predefined
frequency bands. Each set of features is fed through three convolutional layers, then
a spatial fusion technique is used to integrate spectral-spatial features from different
frequency ranges. Kwon et al. [100] analyzed the performance of the proposed method
with different kernel sizes and number of feature maps. On average (across all subjects)
the reported SI accuracy was 74.15 ± 15.83%.

Different feature extraction methods, such as Katz Fractal Dimension (Katz FD),
Sub band Energy, Log Variance and Root Mean Square (RMS), along with the LDA
classification algorithm have been tested by Joadder et al. [101]. Best performing
Katz FD method (on average) has been further analyzed in terms of different time
windows, frequency bands, and number of channels. Zhang et al. [102] proposed a
Convolutional Recurrent Attention Model (CRAM), which on a 4-class classification
MI problem outperformed the state-of-the-art methods with the mean accuracy and AUC
of 59.10 ± 10.85% and 81.86 ± 8.05%, respectively. While describing the adaptation
procedure (which is out of the scope of the current study) Hosseini et al. [103] reported
the SI accuracy of 68.4% on the first 20 trials of each test subject using SVM with
features from logarithms of variances of CSP channels.

Ghane et al. [104] conducted a comparative study on the performance of the
popular classification algorithms, such as LDA, SVM, classification and regression tree
(CART), and KNN, with power spectral density (PSD) based features in the context
of MI classification task. The effect of different number of training samples has been
investigated. It was concluded that with the relatively small sample size the best
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performing is LDA, while with the large number of training samples CART performs
the best.

Lee et al. [105] proposed subepoch-wise feature encoder (SEFE) that was integrated
as a part of popular CNN architectures, namely DeepConvNet [35], ShallowConvNet
[28], and EEGNet [38]. The idea was to incorporate an additional convolutional block,
which consists of two convolution layers with 64 and 32 1 × 1 filters separated by
the rectified linear unit (ReLU) activation function layer, before the dense layer of
the conventional architectures. On average, on a VI classification task this allowed to
improve the performance by 5% in comparison to the regular CNN models.

Abibullaev et al. [108] conducted a brute-force (BF) search model selection among 9
predefined CNN architectures to define a model for subject-independent evaluation. The
model selection procedure was based on leave-one-subject-out cross-validation (LOSO-
CV), which means that for each non-test subject out of nine architectures, one best was
selected and used in the test phase. Ayoobi and Sadeghian [109] used CSP [110] to
extract features from EEG signals and fed them to a supervised autoencoder, which
consists of an autoencoder network and a fully connected feed-forward binary classifier.
Lu et al. [106] used FLD to first train the set of subject-specific classifiers. These
multiple weak classifiers are then used to form a boosted classifier through the weighting
based on their confidence, which is measured according to the classifier consistency.
According to the authors [106], with such a boosting classification technique heavy
noise could be suppressed. This allowed to achieve a performance even better than that
of a subject-specific approach.

One of the most recent studies conducted by Jeon et al. [112] has considered
feature decomposition and feature enrichment techniques along with existing deep
neural network architectures to learn the subject-invariant and class-relevant features,
which showed promising results on two large MI datasets with DeepConvNet [35] and
EEGNet [38] architectures (approximate average accuracy of 73% with the standard
deviation of about 14%).
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Table 3.3: Summary of research works on subject-independent classification methods
for EEG-based BCI.

Study Type of
EEG Sig-
nals (Dataset)

Methods Performance mea-
sures

Lu et al.
[106],
2008

ERP (Ns = 10) FLD + Boosting Acc: > 95%

Lotte et al.
[97], 2009

MI: BCI IV 2A
(Ns = 9)

LDA, QDA, GMM with
different feature extraction
methods

Acc: 70.99% (MR
FBCSP with LDA)

Fazli et al.
[72], 2009

MI (Ns = 45) Ensemble of SD
CSP+LDA classifiers
with l1 regularization

Loss: 26.70% (l1 regu-
larized regression)

Fazli et al.
[73], 2009

MI (Ns = 83) Ensemble. Classification
algorithms: LDA, SVM,
KNN, LPM

Loss: 28.7%

Reuderink
et al. [98],
2011

MI (Ns = 109) SOB features + SVM Acc: 67.3 ± 13.4% (av-
erage across 51 test sub-
jects)

Lotte [99],
2015

MI: BCI IV 2A
(Ns = 9);
Workload
(Ns = 21);
Mental Imagery
(Ns = 20)

Pooled-data and ensem-
ble approaches [72] with
CSP+LDA with ACMS

Acc: ≈ 72.5% (pooled-
data);
≈ 69.5% (ensemble)

Joadder et
al. [101],
2019

MI: BCI III 4A
(Ns = 5)

Katz FD, Sub band Energy,
Log Variance, RMS + LDA

Acc: 84.35% (Katz FD)

Kwon et
al. [100],
2019

MI (Ns = 54) CNNs with concatenation
fusion technique

Acc: 74.15 ± 15.83%

Zhang et
al. [102],
2019

MI: BCI IV 2A
(Ns = 9)

CRAM Acc: 59.10 ± 10.85
AUC: 81.86 ± 8.05
NB: (MCCP)

Hosseini
et al.
[103],
2019

MI: BCI IV 2A
(Ns = 9)

Log Variance of CSP fea-
tures +SVM

Acc: 68.4% (tested on
first 20 trials)

Ghane et
al. [104],
2021

MI (Ns = 20) LDA, SVM, KNN, and
CART (PSD features)

Acc: 78.00 ± 2.00%
(CART);
73.00 ± 1.00% (LDA)
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Table 3.3: Continued.

Study Type of
EEG Signals
(Dataset)

Methods Performance mea-
sures

Zhang et
al. [107],
2021

MI: KU [27]
(Ns = 54)

DeepConvNet 84.19 ± 9.98

Lee et
al. [105],
2021

VI (Ns = 10) DeepConvNet [35], Shal-
lowConvNet [28], and
EEGNet [38] architectures
with SEFE

Acc: 72.00 ± 5.00%
(DeepConvNet [35]
with SEFE)

Abibullaev
et al.
[108],
2022

ERP: BNCI14
(Ns = 10),
BNCI15 (Ns =
10), ALS (Ns =
8), EPFL (Ns =
8)

CNNs with optimal hy-
perparameters selected
through BF-based LOSO-
CV model selection
procedure

Acc: 75.80%
(BNCI14);
61.00% (BNCI15);
69.47% (ALS);
59.43% (EPFL)

Ayoobi et
al. [109],
2022

MI: BCI IV 2A
(Ns = 9)

CSP features [110] + SAE Kappa value: 0.50

Salami et
al. [111],
2022

MI: BCI IV 2A
(Ns = 9)
MI: BCI IV 2B
(Ns = 9)
MI: KU [27]
(Ns = 54)

Inception Temporal Con-
volutional Network (EEG-
ITNet)

Acc: 69.44 ± 8.98%
(BCI IV 2A)
78.74 ± 9.40% (BCI IV
2B)
73.52% (KU dataset, 20
channels are used)

Jeon et
al. [112],
2023

MI: GIST [113]
(Ns = 52),
KU [27] (Ns =
54)

Feature decomposition and
feature representation en-
richment using deep learn-
ing network architectures
(DeepConvNet [35] and
EEGNet [38])

Acc: 73.32 ± 13.55%
(with DeepConvNet
[35] on KU dataset);
73.73 ± 13.75% (with
EEGNet [38] on GIST
[113])

Nouri et
al. [114],
2023

MI: KU [27]
(Ns = 54)

Convolutional Common
Spatial Pattern Network
(CCSPNet)

Acc: 74.28 ± 16.12%

Luo et
al. [115],
2023

MI: BCI IV 2A
(Ns = 9)
MI: BCI IV 2B
(Ns = 9)
MI: KU [27]
(Ns = 54, but
21 subject is
used)

Shallow Mirror Trans-
former

Acc: 52.31% (BCI IV
2A)
67.03% (BCI IV 2B)
77.18% (KU dataset,
leave 3 subjects out)
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Chapter 4

Materials and Methods
4.1 Ensemble Learning

An ensemble classifier is a machine learning model that incorporates multiple individual
models, known as base models or base classifiers [116, 96]. It takes advantage of the
collective knowledge and different perspectives of the base classifiers to enhance overall
prediction accuracy and robustness [117].

The ensemble learning techniques could be broadly categorized into parallel and
sequential ensembles. These categories differ in how they combine the predictions of
multiple base models. While most of this Thesis focuses on the parallel ensembles, there
will also be a discussion on the possible implementation of the sequential ensemble for
the EEG classification.

4.1.1 Parallel ensembles

In parallel ensembles, multiple base models are trained independently in parallel. Each
base model is typically trained on a given subset of the training data and the final
prediction is made by aggregating the individual predictions of these base models.

Consider a binary classification scenario where given an input p-dimensional feature
vector xi a classifier ψ(xi) assigns a binary label yi = 0, 1, where i = 1, ..., n with n
indicating the total number of observations. In other words, the classifier is a mapping
ψ : Rp → {0, 1} where ψ is defined as ψ (xi) = 0 when xi is in the set R0, and
ψ (xi) = 1 when xi is in the set R1, with R0 and R1 being the measurable sets that
divide the sample space.

An ensemble classifier ψE(xi) combines a group of M base models ψm(xi) with
m = 1, . . . ,M to produce a single prediction or probability distribution for classifying
observation xi. This is represented as

ψE(xi) = C
(

M⋃
m=1

{ψm(xi)}
)
, (4.1)

where C (.) is a specific mechanism known as a combination rule or a combiner that
operates in a function space.

Two commonly used approaches in ensemble learning for combining the predictions
of multiple base classifiers are hard voting and soft voting. A hard voting based
ensemble classifier ψE

HV (xi) relies on the class labels predicted by the base classifiers.
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The reliability of each base classifier ψm(xi) can be encoded using the weight wi, such
that the decision of ensemble classifier ψE

HV (xi) is formulated as

ψE
HV (xi) = arg max

yi∈{0,1}

M∑
m=1

wmI{ψm(xi)=yi} , (4.2)

where I{S} is 1 if statement S is true, zero otherwise [118]. In case all the base classifiers
ψm(xi) are given the same weight of wm = 1, the weighting combination rule in Eq.
4.2 is reduced to the basic majority vote (MV) combining scheme, such that ensemble
decision is determined based on the outputs of the majority of base classifiers [118].

In contrast to hard voting, in soft voting the ensemble classifier ψE
SV (xi) considers

the probability distributions assigned by the base classifiers for each class label.
These probability values are combined across the base classifiers to determine the
final prediction. With pmyi

denoting the estimate of the posterior probability for class
yi = 0, . . . , c − 1 (c = 2 in the context of binary classification) by classifier ψm(xi),
the ensemble’s decision based on soft voting [119] is

ψE
SV (xi) = arg max

yi∈{0,1}

1
M

M∑
m=1

pmyi
. (4.3)

In addition to the regular probability averaging combining scheme (soft voting
presented in Eq.4.3), the probabilistic classifier ensemble weighting (PCEW) voting
mechanism [118] is considered. In PCEW, the probabilities pmyi are weighted by the
estimated accuracies of the base classifiers ( ˆaccm) raised to the power of α, which
represents the degree of trust to the estimated accuracies. The ensemble classifier
ψE
PCEW (xi) assigns xi to the class that has the greatest sum of weighted probabilities

ψE
PCEW (xi) = arg max

yi∈{0,1}

M∑
m=1

ˆaccαmp
m
yi
. (4.4)

4.1.2 Sequential ensembles

Adaptive boosting (AdaBoost) is a specific type of ensemble method, where the base
models are generated sequentially. It is popular for its compatibility, high speed, and low
complexity [120]. Initially introduced in 1997 by Freund and Schapire [121], AdaBoost
has demonstrated notable practical success across a range of applications, including face
detection [122], human detection [123], hand tracking [124], brain-computer interface
[88], and image classification [125]. Over the past two decades, various versions of
AdaBoost have emerged, each exploring different base estimators and enhancements to
the boosting algorithms. Each variant of AdaBoost seeks to build upon its predecessor
by addressing specific limitations.

The sequential process of training ensures the transfer of acquired knowledge from
one model to the next. This knowledge transfer is achieved through the incorporation of
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sample weights. In the context of AdaBoost, these sample weights play a pivotal role in
highlighting the importance of specific observations in subsequent learning iterations.
Higher weights indicate that the subsequent classifier should allocate more attention to
the designated observations.

To construct AdaBoost, M base classifiers are trained sequentially. Unlike the
process described in subsection 4.1.1, here the output of a given base classifier ψm(xi)
has an effect on the subsequent learner ψm+1(xi). Consider a p-dimensional feature
vectors xi, where i = 1, . . . , n with n being the total number of observations. Each of
these observations is assigned a weight dmi , where m = 1, . . . ,M indicates the m-th
base estimator for which the weight is applicable [126]. A class label associated with
each observation xi is yi = 0, 1, 2, ..., c − 1 with c being the total number of classes.
The label is encoded in a c-dimensional vector form as:

yi =



[1,− 1
c−1 , . . . ,−

1
c−1 ]T , for class 0

[− 1
c−1 , 1, . . . ,−

1
c−1 ]T , for class 1

...

[− 1
c−1 , . . . ,−

1
c−1 , 1]T , for class c− 1

(4.5)

At the beginning, all of the data observations are initialized with the same weights
of d1

i = 1/n [126]. The weights for the next steps dm+1
i are updated based on

dm+1
i = dmi exp

(
−c− 1

c
yTi · log(pm(xi))

)
, (4.6)

where operation log(pm(xi)) produces the vector obtained by taking the logarithm
of each element in pm(xi), which is the output vector from the m-th base model
pm(xi) = [pmy0(xi), pmy1(xi), . . . , pmyc−1(xi)] showing the probabilities pmyi

(xi) that the
input is associated with particular class yi [126]. When the training sample is effectively
trained, meaning that the model’s output for this sample closely aligns with the label
vector, the weight dm+1

i is reduced due to the small value of the exponential function
in Eq.4.6. Subsequently, the process of adjusting sample weights is followed by
normalization, which is accomplished by dividing the sample weights by the total sum
of weights.

Each base classifier ψm(xi) is trained on the data with the corresponding weights
dm+1
i and the predictions of ψm(xi) are calculated as

ψm(xi) = (c− 1)
(

log(pmyi
(xi) − 1

c

c−1∑
k=0

log(pmk (xi))
)
. (4.7)

After all of the base classifiers are trained, the decision of the AdaBoost classifier
ψE
AB(xi) is a combination of individual outputs from the base classifiers [126]:

ψE
AB(xi) = arg max

yi∈{0,1}

M∑
m=1

ψm(xi). (4.8)
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4.2 Convolutional Neural Networks

Like any other neural network, a CNN is composed of different layers: an input layer,
an output layer, and several hidden layers in between. The hidden layers of a CNN
are specifically designed to incorporate convolutional layers. Convolutional layers
perform convolutions on a three-dimensional input tensor, which consists of elements
represented by Xi,j,k, where 1 ≤ i ≤ cX, 1 ≤ j ≤ hX, and 1 ≤ k ≤ wX, with cX, hX,
and wX being channels, height and width of the input, respectively. For the type of
data (recordings of EEG signals) used in this Thesis, in the first convolutional layer
there is one input channel (cx = 1, similar to a grayscale image); the height of the
input is represented by the number of electrodes (EEG channels) that were used to
record the data (see NE is Table 4.1 for each of the dataset); and the width of the
input is wx = fs × t, where fs is the sampling rate in Hz and t is the duration of
the signal segment is seconds. Each convolutional layer applies convolutions using
a multidimensional array of parameters called a kernel. The kernel is a small four-
dimensional tensor that slides over the input data during the convolution operation. At
each position, the kernel performs element-wise multiplication with the corresponding
portion of the input, so that a single value in the output feature map is generated. The
elements of the kernel are represented by Kl,i,j,k, where 1 ≤ l ≤ cY (number of output
channels), 1 ≤ i ≤ cX, 1 ≤ j ≤ hK < hX, 1 ≤ k ≤ wK < wX with wK and hK being
the height and width of the kernel.

The output from the convolution of the kernel Kl,i,j,k and input Xi,j,k is a three
dimensional feature map represented by:

Yl,m,n =
∑
i,j,k

Xi,j+m−1,k+n−1Kl,i,j,k , (4.9)

where 1 ≤ l ≤ cy, 1 ≤ m ≤ hx−hk+1, and 1 ≤ n ≤ wx−wk+1 with the summation
over all valid indices and assuming no padding, subsampling, bias term. This feature
map (or activation map) represents the response of the kernel at different parts of the
input image.

Another important type of layer in CNN is the pooling layer, which reduces the
spatial size of the feature map by summarizing the statistics of nearby outputs. The
most commonly used pooling function is max-pooling, which selects the maximum
value from the neighborhood.

To introduce non-linearity into the network, an activation function is applied. The
ReLU is commonly used in hidden layers, while the Softmax activation function is
typically used in the output layer. The output of the last convolutional or pooling layers
is usually flattened and fed into a fully connected (FC) layer. However, to reduce the
dimensionality and complexity of the architecture, the FC layer could be replaced with
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global average pooling. This approach reduces the number of trainable parameters and
speeds up training.

4.3 Datasets

The methods investigated in this Thesis were verified on the publicly available datasets,
that were collected using different experiments with the prescribed protocol. The type
of data includes EEG signals from ERP and MI-based experiments. Below is the general
description of the datasets. Table 4.1 presents a summary of information regarding
the type of the BCI paradigm (ERP or MI), the number of participants involved in the
experiments, the channel types used, and the task performed by the subjects to collect
particular datasets.

4.3.1 ERP-based datasets

The experiments conducted to collect the ERP-based datasets described below (BNCI,
ALS, EPFL) followed the Farwell and Donchin style paradigm.

BNCI dataset [127] represents a collection of ERP data from participants under
both overt and covert attention conditions using a P300 speller. In the context of this
study, only the data related to covert visual attention were considered. The participants,
specifically ten healthy females with a mean age of 26.8 ± 5.6, were presented with
a 6 × 6 grid of alphanumeric characters on a liquid crystal display monitor. EEG
signals were recorded using a 16-electrode setup. The reference electrode was placed
on the right earlobe, and the ground electrode was placed on the right mastoid. The
EEG signals were recorded at a sampling rate of 256 Hz using g.USBamp from g.tec
(Austria), and they were filtered with high-pass and low-pass cutoff frequencies of 0.1
and 20 Hz, respectively.

ALS dataset [128] comprises P300 evoked potentials data obtained from eight
participants diagnosed with ALS, including three women and five men with a mean
age of 58 ± 12. EEG signals were recorded with eight electrodes. The recording was
conducted at a sampling rate of 256 Hz using g.MOBILAB equipment from g.tec
(Austria). The reference electrode was positioned at the user’s right earlobe, while the
ground electrode was placed on the left mastoid.

During the experiment, the participants were instructed to use a grid of 6 × 6
characters presented through the P300 matrix speller. Their task involved spelling seven
predetermined words, each comprising five characters. For each character, each column
and row of the grid were flashed ten times, resulting in a total of 20 flashes per character
on the grid. This sequence was repeated for each character choice, constituting a trial.

EPFL dataset [129] was obtained from a total of eight participants, consisting of
four individuals with disabilities and four healthy subjects. All participants were male,
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with an average age of 30 ± 2.3. During the experiment, six images representing a lamp,
a television, a door, a window, a telephone, and a radio were presented in a random
sequence. Each image was flashed for 100 milliseconds, with a stimulus interval of
400 milliseconds between consecutive flashes. The same target image did not reappear
for a duration of 700 milliseconds. The experiment was conducted in two sessions on
one day and another two sessions on a different day for each participant. Each session
consisted of one run per stimulus image, lasting approximately 1 minute. EEG data
were collected using a set of 32 electrodes placed according to the international 10-20
system. The sampling frequency for recording the EEG signals was set at 2048 Hz.

These datasets are accessible through the MOABB tool [130]. Additional details
regarding the experimental protocols employed to collect these datasets can be found at
[127, 128] and [129].

4.3.2 MI-based datasets

BCI IV 2a dataset represents the data from the cue-based BCI experiment with nine
participants engaging in four different types of imagery tasks involving left-hand, right-
hand, both feet and tongue movements. The data were collected using 22 Ag/AgCl
electrodes placed according to the 10-20 system for electrode placement. The left
mastoid served as the reference electrode, while the right mastoid was used as the
ground electrode. The EEG signals were sampled at a frequency of 250 Hz, and
bandpass filtering was applied within the range of 0.5 Hz to 100 Hz. Further information
can be found in [29].

BCI IV 2B dataset consists of EEG data from nine healthy individuals who were
right-handed. During the experiment, the participants performed motor imagery tasks
involving two classes: left-hand and right-hand movements. The EEG data were
recorded at a sampling frequency of 250 Hz using three channels. The Fz electrode
was employed as the reference lead for the EEG, and bandpass filtering was conducted
within the frequency range of 0.5 Hz to 100 Hz. For more detailed information, refer to
[30].

In addition to above mentioned BCI competition MI-based datasets, one of the
largest publicly available EEG-based MI datasets collected by Lee et al. [27] was used.
This dataset is referred to as KU dataset.

KU dataset involved 54 participants (25 females and 29 males, aged from 24 to
35) who were free from any relevant diseases. Among them, 16 individuals had prior
experience with BCI experiments, while the remaining participants were new to BCI
usage. The dataset comprises EEG recordings from two sessions of BCI experiments
conducted with the same subjects and following identical protocols.

Each experiment session consisted of both a training phase (offline) and a testing
phase (online), with 100 trials in each phase. Half of the trials were specific to right-
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Table 4.1: Details about the datasets that are used in this study.

Dataset Subjects Channels Task
ERP-based datasets

BNCI
[127]

- 10 healthy female
- mean age: 26.8 ±
5.6

- 10–10 electrode
placement system
- NE = 16
(Ag/AgCl electrodes):
Fz, FCz, Cz, CPz, Pz,
Oz, F3, F4, C3, C4,
CP3, CP4, P3, P4,
PO7, PO8

Alphanumeric charac-
ters on a 6 × 6 grid (Far-
well & Donchin style)

ALS
[128]

- 8 participants (3
women and 5 men)
with amyotrophic
lateral sclerosis
(ALS)
- mean age: 58±12

- 10–10 electrode
placement system
- 8 electrodes: Fz, Cz,
Pz, Oz, P3, P4, PO7,
PO8

Spell 7 predefined
words consisting of 5
characters using the
grid of 6 x 6 characters
(Farwell & Donchin
paradigm)

EPFL
[129]

- 8 male (4 disabled
and 4 healthy sub-
jects)
- mean age: 30±2.3

- 10–20 placement
system
- 32 electrodes: Fp1,
AF3, F7, F3, FC1,
FC5, T7, C3, CP1,
CP5, P7, P3, Pz, PO3,
O1, Oz, O2, PO4, P4,
P8, CP6, CP2, C4,
T8, FC6, FC2, F4, F8,
AF4, Fp2, Fz, Cz

Six images: lamp, tele-
vision, door, window,
telephone, and radio

MI-based datasets
BCI IV
2a

- 9 participants - 10-20 placement sys-
tem
22 Ag/AgCl elec-
trodes

Four imagery tasks: left-
hand, right-hand, both
feet, and tongue move-
ments

BCI IV
2b

9 healthy partici-
pants

-3 electrodes: C3, Cz,
and C4

Left-hand and right-
hand movements

KU [68] - 54 healthy partic-
ipants (25 females
and 29 males)
- ages: 24 − 35

- 10-20 placement sys-
tem
- 62 Ag/AgCl elec-
trodes

Imagery task of grasp-
ing left or right hand
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hand imagery tasks, while the remaining half focused on left-hand imagery tasks. The
EEG signals were recorded using 62 Ag/AgCl electrodes at a sampling rate of 1000
Hz. A comprehensive description of the BCI experiment can be found in [27] and the
dataset itself can be downloaded from GigaDB webpage.

4.4 Preprocessing

One of the key advantages of deep learning is its ability to mitigate the need for
preprocessing or handcrafted features. Instead of relying on manually designed features,
deep learning models can learn relevant representations directly from the raw input data,
reducing the burden of feature engineering. In order to make the most of this benefit
and allow the CNNs to learn the discriminative features automatically without relying
on prior knowledge or extensive preprocessing, minimal preprocessing procedures were
applied to the above-mentioned datasets.

ERP datasets (BNCI, ALS, EPFL)

The pipeline for ERP preprocessing prepared by Farquhar and Hill [131] was followed.
The same has been followed in [132, 108]. The continuous EEG data were divided into
target and non-target trials, each lasting 600 ms, starting from the onset of the stimulus
event markers. To remove noise caused by slow drifts, which can be attributed to factors
like sweating or a weak sensor-to-head contact [133], any arbitrary offsets present in
the data were eliminated by subtracting the overall mean from each channel. The EEG
data trials underwent an artifact editing process using statistical thresholding. This
procedure aimed to eliminate trials that contained severe movement artifacts. Trials
whose mean absolute values exceeded three standard deviations from the median trial
were excluded. All channels were analyzed across the trials to identify electrodes that
exhibited excessive noise due to improper connection with the subject’s scalp. Channels
displaying abnormally high power were identified and removed from further analysis.
The removed channels were substituted with a single reference channel known as the
common averaged reference (CAR) channel, which is created by averaging the electrical
activity measured across all channels.

To perform spectral filtering on the EEG data, a bandpass filter was applied within
the range of 0.5-12 Hz using a Fourier filter [131]. Initially, the signal underwent
Fourier transformation, and then a weighting was applied to suppress and eliminate
undesired frequencies outside the desired frequency range. The weighted signal was
inverse Fourier transformed to obtain the filtered signal.
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BCI IV 2A and 2B datasets

To reduce electro-oculographic artifacts caused by eye movement, which are predom-
inant in EEG signals within the frequency band of 0.1 to 4 Hz, the high-pass filter
(namely fourth-order Butterworth Infinite Impulse Response (IIR) filter) was applied to
EEG waveforms with a cut-off frequency set at 4 Hz. Apart from this specific high-pass
filtering, as recommended by Schirrmeister et al. [35], in order to preserve the original
raw EEG data no low-pass filtering was used.

The continuous EEG recording was divided into separate segments corresponding to
left-hand and right-hand motor imagination trials. Each segment had a duration of four
seconds, starting from the onset of motor imagery. Bad trials and noisy channels were
excluded following the same procedure as for ERP datasets described above.

KU dataset

The EEG recordings were down-sampled to 250 Hz and an 8th order Chebyshev anti-
aliasing filter was applied [100, 114, 112, 107].

4.5 Dataset Partitioning and Model Evaluation

Partitioning dataset into training, validation, and test sets is a fundamental aspect in
machine learning [134]. The training set is used to train the model. It is utilized
to optimize the model’s parameters (weights and biases) through iterative learning
algorithms. During training, the model learns patterns and features from the data,
aiming to minimize the discrepancy between its predictions and the ground truth
labels. The validation set is crucial for assessing the performance of the model during
training and for tuning hyperparameters. The validation set helps in selecting the best
hyperparameters by evaluating the model’s performance on data that it hasn’t been
trained on. This helps to prevent overfitting, where the model performs well on the
training data but fails to generalize to unseen data. The test set is used to evaluate the
final performance of the trained model. It serves as an unbiased estimate of the model’s
performance on unseen data. The test set is separate from the training and validation
sets and is only used once the model has been fully trained and tuned. By dividing
the dataset into training, validation, and test sets, it is possible to train, fine-tune, and
evaluate the models in a systematic and robust manner. This process helps to ensure
that the model generalizes well to new, unseen data and performs optimally in real-
world applications. Given the interest in the subject-independent classification problem,
within this Thesis the way the data is allocated for the test set for model evaluation is
common across various methods following the idea of holding out one subject. This
process is elaborated in the subsequent subsection. After setting aside the test set, the
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remaining data is divided into training and validation sets depending on specific strategy.
This is discussed in Chapter 6 while presenting the proposed methods.

4.6 Subject-Independent Classification

In subject-independent evaluation of classifiers in EEG-based BCI, a commonly used
approach is Leave-One-Out Cross-Validation (LOO-CV) [105, 112, 99, 72, 108, 109,
73, 45], which is also aptly named as Leave-One-Subject-Out CV (LOSO-CV) as it
accurately reflects the underlying process it entails. In LOO-CV (LOSO-CV), for the
dataset consisting of N subjects, the trials associated with subject Si (where i ranges
from 1 to N ) are systematically excluded (left out). Then, a classifier is trained using
data from all other subjects except Si, and the excluded trials of Si are used to evaluate
the classifier’s performance. This ensures that the test subject Si is only used during
the final stage to evaluate the designed classifier, and is not involved in the training or
model selection phases. Throughout this Thesis, the LOSO-CV method is employed for
evaluating classifiers in an SI manner. Thus, considering data from N subjects in each
dataset, we are left with the observations from N − 1 subjects for training and model
selection. The distribution of these observations across the training and validation sets
varies across the proposed methods and therefore is discussed separately in each case.

4.7 Computational resources

The simulations and analyses presented in this Thesis were performed using different
computational resources. The choice of specific resources was based on their availability
during period when the work was conducted. Below is the summary of the resources
used so far:

• Windows workstation with Intel(R) Xeon(R) CPU E5-1650, (3.50 GHz)
processor, 16 GB of RAM, and NVIDIA TITAN RTX (RAM = 24GB)

• Remote access to NVIDIA DGX-1 server 1

• Remote access to NVIDIA DGX-2 server 1

All of the codes and analyses were implemented in Python. Mostly Pytorch deep
learning environment was utilized.

1provided by Institute of Smart Systems and Artificial Intelligence at Nazarbayev University
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Chapter 5

Base Classifiers: Convolutional
Neural Networks

Before delving into the proposed ensemble methods themselves, it is crucial to explore
the structure of utilized types of base classifiers, as these form the core of any ensemble.
Many research studies have already shown that CNNs are efficient in terms of training
time and effective at capturing latent features from raw EEG data (see Table 3.1, Chapter
3). The majority of these studies rely on well-established architectures (e.g. AlexNet
or ResNet), leverage domain knowledge to create the final architecture, or employ an
unclear strategy for model selection [135].

In this study, two cases for designing the base models for the ensemble are considered.
First, using the systematic model selection the aim is to demonstrate that even with
the limited domain knowledge the accurate classification models could be designed.
Second, with the state-of-the-art architectures being used for designing the base models,
the proposed methods can be viewed as simple, yet effective ways to improve the
classification performance of existing CNN architectures.

5.1 A Brute-Force CNN Model Selection

As one of the methods to define the base models for the ensemble, the principled
model selection, namely brute-force search, is considered. It is a straightforward and
exhaustive search algorithm that systematically explores and evaluates all possible
combinations within a given problem space. This, however, might entail significant
computational overhead (depending on the defined hyperparameter space). Nevertheless,
given the availability of computational resources, this method can serve as a tool to
devise an efficient solution even in cases of limited domain knowledge.

One of the first works on a brute-force CNN model selection for accurate EEG
classification has been presented in [135]. The evaluation of the approach has been
conducted on an independent MI dataset that was unseen during the architecture
selection phase. In [132], a systematic model selection was used for the classification
of P300 waveforms. A different approach for CNN parameter (kernel sizes and number
of convolutional nodes) selection, namely coordinate descent as a suboptimal method to
perform cross-validation for the network parameters, was used by Sakhavi et al. [44].
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In this work, the exhaustive (grid) search is used to tune the hyperparameters of each
base CNN classifier within the ensemble for SI classification of MI and ERP-based EEG.
For the purpose of model selection, the initial step involves defining a hyperparameter
space denoted as Θ. Within this space, an exhaustive search to determine the optimal
combination of hyperparameters is performed. Let θh ∈ Θ, where h takes values from
1 to H (being the cardinality of Θ), represent various combinations of hyperparameters.
For each θh, a classifier with a fixed set of hyperparameters using the training dataset
Strain is constructed. Subsequently, the accuracy of this classifier on the corresponding
validation set, denoted Sval, is assessed. This process results in the creation of a classifier
and its associated estimated accuracy, denoted ψθh,Strain,Sval and ˆaccθh,Strain,Sval , respectively.
Upon reaching the conclusion of this iterative process (h = H), the estimated accuracies
ˆaccθh,Strain,Sval are compared. The classifier exhibiting the highest estimated accuracy is

selected. This chosen classifier, along with its corresponding estimated accuracy, is
denoted as ψ∗

Strain,Sval and ˆacc∗
Strain,Sval

.

To search for the optimal hyperparameters, it is necessary to first define a limited
parameter space. For each base CNN model the following hyperparameters are used for
tuning: number of convolutional layers in the classifier, number of filters in different
layers, convolutional kernel sizes, and dropout rate. The possible search space of
hyperparameters is described below.

The CNNs with a minimum of 2 and maximum of 6 convolutional layers are used:
L = {2, 3, ..., 6}, where L is the total number of convolutional layers in the classifier.
Two cases to define the number of filters in j-th convolutional layer (fj) are considered:
2(L+3−j) and 2(L+4−j), where j = L, ..., 1 for expanding pattern and j = 1, ..., L, for
shrinking pattern. For example, when considering two-layered CNNs, four types of
CNNs are constructed: {f1 = 23, f2 = 24}, {f1 = 24, f2 = 25}, {f1 = 24, f2 = 23},
{f1 = 25, f2 = 24}. Two types of convolutional filters are employed: one with a fixed
size across all layers, including 3 × 3, 3 × 8, 3 × 24, 3 × 40, 5 × 5, and 7 × 7; and
the other with varying kernel sizes, such as 7 × 7 in the first layer, 5 × 5 in the second
layer, and 3 × 3 in the subsequent layers. As could be noticed above mostly structural
hyperparameters, which determine the overall structure of the network, were varied.
Most of the algorithmic hyperparameters, which govern how the network is trained and
how the learning algorithm operates, were set to fixed values. The only exception was
the dropout rate, for which two options were considered: 10% and 50%. All CNNs
were trained with Adam optimizer for 150 epochs with early stopping with a patience
of 30. The learning rate was set to 10−4 with a weight decay of 10−5. A batch size
of 32 was used. The loss function was cross-entropy. Consideration of structural and
algorithmic hyperparameters mentioned above results in 280 distinct CNN architectures,
which are used in the model selection process.
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5. Base Classifiers: Convolutional Neural Networks

5.2 State-of-the-art Architectures

Searching through a wide range of hyperparameters with the aim to construct a reliable
(base) classifier is a viable option. This, however, entails significant computational
expenses. An alternative approach involves designing a classifier based on an adaptation
of an existing deep neural Network (DNN) by incorporating domain knowledge. For
instance, domain expertise was originally applied in the development of EEGNet [38],
a CNN architecture that has demonstrated exceptional performance in diverse tasks
related to EEG classification. Nevertheless, integrating domain knowledge into the
architecture of a DNN remains a challenging process. Therefore, instead of conducting
an extensive search or attempting to incorporate domain-specific expertise, another
option is to adopt a preexisting architecture that has already proven its efficacy in
addressing the problems of interest. It is hypothesized that by employing certain
ensemble strategies, the performance of the given predefined well-performing model
could be further enhanced.

In the field of BCI, EEGNet stands out as a prominent CNN architecture. Another
noteworthy pair of models, ShallowConvNet and DeepConvNet, were introduced
by Schirrmeister et al. [35] before EEGNet’s inception. In this Thesis, these
three architectures (ShallowConvNet, DeepConvNet and EEGNet) are used as the
architectures of the base models within the ensembles. The implementation of the
CNN architectures was adopted from the work of Schirrmeister et al. [35]. The models
were downloaded using Braindecode. It is Python-based open-source toolkit designed
for using deep learning models to decode raw electrophysiological brain data. The
codes for the models are available on the GitHub1. A brief description of the CNN
architectures is presented below.

5.2.1 DeepConvNet

DeepConvNet is a deep CNN architecture that is comprised of four convolutional layers
and one dense softmax classification layer. The first layer is a special convolutional
layer performing split temporal and spatial convolutions. The number of filters follows
an expanding pattern, starting with 25 filters in the first layer (for both temporal and
spatial convolutions), then progressing to 50, 100, and 200 filters in the subsequent
layers. Following each convolutional step, except for the temporal convolution in the
first layer, batch normalization, an exponential linear unit (ELU) activation function,
max-pooling, and dropout with a 0.5 dropout rate are applied. Adam optimization
algorithm with decoupled weight decay for training [39] is employed.

1https://github.com/robintibor/braindecode/tree/master/braindecode/models
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5.2.2 ShallowConvNet

ShallowNet is a more shallow architecture with respect to DeepConvNet. It has also
demonstrated its ability to decode raw EEG signals without the need for hand-crafted
features. ShallowNet comprises two key blocks. The first block performs temporal
and spatial convolution, followed by batch normalization and a squaring non-linearity.
The second block incorporates average pooling with a logarithmic activation function,
culminating in classification through the Softmax function. Taking inspiration from
FBCSP, ShallowConvNet was designed to decode band power features.

5.2.3 EEGNet

The aim of designing the EEGNet [38] was to investigate whether it is possible to create
a single CNN architecture that can accurately classify EEG signals from various BCI
paradigms while also keeping the model as compact as possible. The compactness was
defined as minimizing the number of parameters in the model. EEGNet consists of
three blocks. Being also inspired by the FBCSP, the first block of EEGNet employs a
two-step convolution, resulting in feature maps across various band-pass frequencies.
Depthwise convolution, borrowed from computer vision applications, is applied to
create frequency-specific spatial filters. Each convolutional step is followed by batch
normalization, with an ELU nonlinearity as the activation function. The average pooling
layer reduces the signal’s sampling rate, and a dropout rate of 0.5 serves as a regularizer
to prevent overfitting.

In the second block, separable convolution (combining depthwise and pointwise
convolutions) is employed. This not only reduces the number of trainable parameters
but also allows for the decoupling of relationships within and across feature maps.
The dimension reduction is achieved through an average pooling layer. The final
block performs classification by directly feeding features into a Softmax function. By
removing the dense layer, the authors have effectively reduced the number of free
parameters in the architecture.
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Chapter 6

MS-En-CNN: Multi-Subject
Ensemble CNN for EEG-based

BCI
Despite the advantages associated with CNNs and ensemble learning, there has been a
lack of research on the effectiveness of ensemble CNN models in the broader field of
machine learning and, more specifically, in applications related to BCI. Table 6.1 shows
examples of studies that have employed ensemble CNNs in different applications.

The creation of a neural network ensemble can involve different approaches, such
as altering the network’s structure, modifying initial weights, or introducing variations
in the training dataset [136]. In Table 6.1, these ensembles are referred to as multi-
structure ensembles, multiple-weight initializer-based ensembles, and multiple-input
representation-based ensembles. Furthermore, the multi-scheme ensemble combines
base classifiers using any of these aforementioned methods to enhance ensemble
diversity.

In this study, the primary focus is on assessing the viability of a multi-subject

ensemble CNN (MS-En-CNN) for SI classification of EEG data. MS-En-CNN is an
ensemble of CNN base classifiers that are trained from a subset of training subjects. In
this chapter three distinct methods for training base classifiers, combining their outputs
to create the MS-En-CNN classifier are introduced. The effectiveness of these ensemble
models is compared against the individual CNN base classifiers that constitute the
ensemble. In addition, a comparison with the conventional approach, where a single
CNN is trained using combined data from various training subjects, is conducted. The
significance of this study lies in the potential of MS-En-CNN to enhance the robustness
and accuracy of SI neural decoding systems, particularly those that leverage efficient
deep CNN architectures.

The remainder of this chapter is dedicated to discussing the strategies proposed for
constructing MS-En-CNN. Before introducing these strategies, a description of the
conventional approach for training the classification model is provided, serving as the
foundation for the comparative analysis.
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Conventional approach

Table 6.1: Examples of CNN ensemble-based studies for different applications.

Study Applications Ensemble methods
[137] Classification of the

transportation mode of
trip

Multi-structure ensemble: combination of dif-
ferent CNN architectures with different hyper-
parameter values
Ensembling methods: average voting, majority
voting and optimal weights method

[138] Gender prediction from
face images

Multiple weight initializer-based ensemble:
combination of three instances of the same
CNN model trained with random initialization
of weights
Ensembling method: averaging

[139] Image classification
problem

Multi-structure ensemble: combination of 4
CNNs with different filter sizes in two convolu-
tional layers
Multiple feature subset based ensemble:
CNN models trained on different feature sets
Multiple input representation based ensem-
ble: combination of different input forms with
various spectral characteristics.
Multi-scheme ensemble: combinations of
three different schemes

[140] Environmental Event
Sound Recognition

Multi-structure ensemble: combination of two
architectures
Ensembling method: Dempster-Shafer evi-
dence theory (uncertainty reasoning theory)
[141]

6.1 Conventional approach

6.1.1 Pooling strategy

A typical approach for training a classifier is pooling the data from multiple subjects to
train a single classifier. The details for such a process is described in this subsection. As
for all of the other methods used throughout this Thesis, to ensure subject independence,
the data pertaining to a single subject, denoted Si, is successively held out. Data from
all other subjects is then combined and divided in a stratified manner into a training
set (comprising 80% of the data: |Strain| = 0.8|S − Si|) and a validation set (20%,
|Sval| = 0.2|S−Si|) [142]. Here, |S| denotes the total number of observations available
in S, with S = ∪N

i=1Si, and N being the total number of subjects in a dataset. The
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Algorithm 1 Pooled-data CNN

1: Let I =
N⋃
l=1

l

2: for Si ∈ S
3: Partition S − Si into Strain (|Sj,train| = 0.8|S − Si|) and Sval = Sj − Sj,train

4: ˆacc∗ = 0
5: for θh ∈ Θ
6: Train ψθh,Strain,Sval

7: Check ˆaccθh,Strain,Sval

8: if ˆaccθh,Strain,Sval > ˆacc∗

9: ˆacc∗ = ˆaccθh,Strain,Sval

10: ψ∗
Strain,Sval

= ψθh,Strain,Sval

11: Report the performance of ψi on Si

Figure 6.1: Graphical representation of training process for pooled-data CNN classifier.

validation set is utilized for tuning hyperparameters of a single CNN classifier. In the
context of this study, a CNN classifier trained using the aforementioned procedure is
referred to as a pooled-data CNN. The process for training pooled-data CNN classifier
is illustrated in Fig.6.1 and elaborated in Algorithm 1. This process follows brute-force
search model selection (see lines 5-10 in Algorithm 1) to define the optimal model (the
one with the highest estimated accuracy) that is eventually used to decode the data of
test subject.

6.1.2 Performance of Pooled-data CNN

The performance of the conventional approach was verified on the ERP-based BNCI
dataset. The accuracies of the pooled-data CNN classifiers for each test subject
are presented in Table 6.2. It should be highlighted that each result represents the
performance of the model with optimal hyperparameters, these are the ones that
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demonstrated the best accuracy on the validation set among other CNNs defined by
the hyperparameter space in the BFS process (Section 5.1). None of the models are
evaluated on the test subject before the optimal model is obtained. The test subject
is used only once for the final evaluation of the selected optimal model and is never
seen in the training and model selection process. On average (across 10 subjects) the
accuracy of 70.53 ± 6.93% was achieved.

Table 6.2: SI performance of pooled-data CNN classifier achieved on BNCI dataset.

Test
subject

Pooled-data
CNN, %

1 78.80
2 66.80
3 73.70
4 77.90
5 63.30
6 77.80
7 63.80
8 76.30
9 62.50
10 64.40

Avg 70.53
STD 6.93

6.2 Subject-Specific Training and Model Selection
(SS-TM)

6.2.1 SS-TM strategy

One of the strategies that could be used to train the set of base classifiers for the
ensemble classifier is to perform subject-specific training and model selection (SS-TM).
This approach is presented in Figure 6.2 and Algorithm 2. As previously explained in
Section 4.6, first LOSO-CV is employed. The Si is isolated and an ensemble classifier
using the data from all other subjects (S−Si) is built. SS-TM technique is implemented
within the set of remaining subjects. This involves randomly dividing the data for each
Sj into two parts: an 80% training set (Sj,train, |Sj,train| = 0.8|Sj|), and a 20% validation
set (Sj,val, |Sj,val| = 0.2|Sj|). Subsequently, for each Sj and each parameter θh ∈ Θ a
classifier ψθh,Sj,train,Sj,val is constructed, and the one with the highest accuracy, denoted
ˆaccθh,Sj,train,Sj,val is selected. Such an ensemble classifier is referred to as ψ∗

Sj,train,Sj,val
.

Consequently, each base classifier is trained specifically for an individual subject present
in the training data. Finally, the ensemble classifier is employed to classify observations
for the subject Si that was withheld during training.
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Algorithm 2 SS-TM based approach MS-En-CNN

1: Let I =
N⋃
l=1

l

2: for Si ∈ S
3: for Sj ∈ S − Si
4: Partition Sj into Sj,train and Sj,val = Sj − Sj,train

5: ˆacc∗ = 0
6: for θh ∈ Θ
7: Train ψθh,Sj,train,Sj,val

8: Check ˆaccθh,Sj,train,Sj,val

9: if ˆaccθh,Sj,train,Sj,val > ˆacc∗

10: ˆacc∗ = ˆaccθh,Sj,train,Sj,val

11: ψ∗
Sj,train,Sj,val

= ψθh,Sj,train,Sj,val

12: ψE
i = C

( ⋃
r∈I−{i}

{ψ∗
Sr,train,Sr,val

}
)

where C is a combiner

13: Report the performance of ψE
i on Si

Figure 6.2: Training process for SS-TM based MS-En-CNN.

6.2.2 Performance of the SS-TM based MS-En-CNN

The method described above was evaluated on the BNCI dataset. This dataset consists
of 10 subjects, thus considering the implementation procedure of the SS-TM method,
the MS-En-CNN consists of 9 base classifiers. The architectures for all of the base
classifiers are determined by the exhaustive search within the specified parameter space
(Section 5.1). The statistics of the classification performance of these base classifiers are
presented in Table 6.3, where minimum, maximum, and average SI test accuracy scores
are presented. In addition, the accuracies achieved by the ensemble using majority vote
(MV) combining scheme (Eq.4.2 with wm = 1) and PCEW (Eq.4.4) are tabulated. In
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Table 6.3: Test accuracy results achieved on BNCI dataset for MV and PCEW (with
α = 1 and α = 5) ensembling schemes using SS-TM to establish base classifiers. Test
accuracies of the base classifiers in columns columns 2-4 (minimum, maximum and
average) are determined across 9 models.

Test
subject

Base classifiers, % MS-En-CNN (SS-TM), %

Minimum Maximum Average MV PCEW
(α = 1)

PCEW
(α = 5)

1 53.60 70.70 61.70 67.30 67.80 67.80
2 63.20 74.20 68.70 76.40 77.00 77.20
3 62.80 75.20 70.90 77.00 76.80 76.80
4 63.00 72.40 69.20 77.90 77.70 77.70
5 65.90 83.40 72.80 84.40 85.40 85.30
6 58.30 70.60 64.30 71.80 72.10 71.50
7 54.50 74.20 62.70 67.50 68.50 67.80
8 55.50 72.30 64.60 70.80 71.00 70.70
9 57.60 79.60 66.80 72.60 73.10 72.10
10 58.30 80.90 71.00 81.50 81.90 81.70

Avg 59.27 75.35 67.27 74.72 75.13 74.86
STD 4.21 4.45 3.82 5.71 5.70 5.86

the case of PCEW, the degree of trust to the estimated base classifiers’ accuracies (α)
is considered as hyperparemeter and takes values of 1 and 5. In addition to MV and
PCEW, Naive Ensemble Weighting (NEW) combiner was considered. This combiner
follows the general formula of hard voting (Eq.4.2) with the difference to MV in the
way the weight wm is determined. In NEW, the estimated accuracies of the base models
(denoted as ˆaccm) are used to determine the weights wm = ˆaccm∑M

j=1 ˆaccj
, such that all

weights are positive and they sum to one [143]. This naive way of estimating wm is
directly based on the consensus that a classifier with higher accuracy is more reliable
and should weigh more in the process of ensemble classification [143]. However, this
approach demonstrated classification performance similar to that of the MV combining
approach. Consequently, these results are not included in Table 6.3.

For all of the columns in Table 6.3 the average performance across 10 test subjects
and standard deviation is calculated. In all aspects presented in Table 6.3, the worst and
best performance is associated with the test subjects 1 and 5, respectively. The lowest
improvement achieved by the SS-TM based MS-En-CNN using MV with respect to the
average performance of the base classifiers is 4.80%, while on average (among 10 test
subjects) the SI accuracy is increased by 7.4%.
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6.3 Subject Pairs Training and Model Selection
(SP-TM)

6.3.1 SP-TM strategy

In the second method, the subject pairs were formed such that to construct a base
classifier that is trained on Sk ∈ S−Si, while the model selection process is carried out
using other subject’s data, Sj ∈ S − Sk − Si. Based on such a procedure this method
is referred to as Subject Pairs Training and Model Selection (SP-TM) approach. It is

Algorithm 3 SP-TM based approach MS-En-CNN

1: Let I =
N⋃
l=1

l

2: for Si ∈ S
3: for Sj ∈ S − Si
4: for Sk ∈ S − Si − Sj
5: ˆacc∗ = 0
6: for θh ∈ Θ
7: Train ψθh,Sk,Sj

8: Check ˆaccθh,Sk,Sj

9: if ˆaccθh,Sk,Sj
> ˆacc∗

10: ˆacc∗ = ˆaccθh,Sk,Sj

11: ψ∗
Sk,Sj

= ψθh,Sk,Sj

12: ψE
i = C

( ⋃
r∈I−{i},a∈I−{i}−{r}

{ψ∗
Sa,Sr

}
)

where C is a combiner

13: Report the performance of ψE
i on Si

Figure 6.3: Training process for SP-TM based MS-En-CNN.
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visually represented in Fig.6.3 and described in Algorithm 3. The process continues
until all pairs of subjects within the training data S−Si have been used for both training
and model selection. Consequently, in the context of a dataset comprising N subjects,
with each subject being sequentially set aside for testing (SI classification), a total of
(N − 1) × (N − 2) base classifiers are constructed to form a single ensemble classifier.

6.3.2 Performance of the SP-TM based MS-En-CNN

Similar to the SS-TM method, SP-TM-based MS-En-CNN approach is verified on the
BNCI dataset. Considering the SP-TM strategy, in this MS-En-CNN classifier there
are 72 base models. The results for the ensemble and its base classifiers are shown
in Table 6.4. From this table, it can be seen that similar to the previous case, the
lowest performance is associated with test subject 1. The best performance of the base
classifiers in terms of minimum and maximum accuracy is demonstrated on the data
of test subject 10, while the highest accuracy in terms of average among nine base
classifiers and the performance of the ensemble is achieved for test subject 5. The
SI accuracies of SP-TM based MS-En-CNN classifier using MV are higher than the
average of its base classifiers by at least 3.90%, with the highest difference in the case
of subject 9 (improvement by 10.40%).

Table 6.4: Test accuracy results achieved on BNCI dataset for MV and PCEW (with
α = 1 and α = 5) ensembling schemes using SP-TM to establish base classifiers. Test
accuracies of the base classifiers in columns columns 2-4 (minimum, maximum and
average) are determined across 72 models.

Test
subject

Base classifiers, % MS-En-CNN (SP-TM), %

Minimum Maximum Average MV PCEW
(α = 1)

PCEW
(α = 5)

1 53.30 69.40 62.10 66.00 66.60 66.00
2 60.10 75.90 68.20 72.70 72.70 72.70
3 56.80 76.30 70.90 76.30 76.60 76.80
4 63.90 78.90 71.30 78.80 78.90 78.90
5 60.70 84.20 75.80 84.10 84.50 84.70
6 56.20 72.70 64.50 71.00 70.40 70.20
7 53.70 74.70 64.20 69.90 70.20 70.00
8 59.30 74.60 67.30 72.90 72.70 72.80
9 60.30 82.40 73.50 83.90 84.00 83.50
10 64.10 86.70 74.00 81.30 82.00 81.90

Avg 58.84 77.58 69.18 75.69 75.86 75.75
STD 3.78 5.42 4.65 6.20 6.29 6.38
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6.4 Jackknife-inspired Deep Learning Approach

In this section a systematic approach that takes inspiration from the concept of jackknife
estimation [144, 145, 146] is introduced. The fundamental idea behind the approach of
jackknife resampling is to construct a novel statistical estimator, systematically omit
each observation from a dataset, compute the parameter estimate using the remaining
observations, and then aggregate all these individual estimates [146].

The jackknife method and its extensions have gained popularity in the field of
machine learning for assessing the precision, variability, and robustness of models.
Alaa and Schaar [147] have specifically considered quantification of uncertainty in
deep learning models, while Kang et al. [148] have presented deterministic uncertainty
quantification for Graph Convolutional Networks using the jackknife estimator. Further
examples of the jackknife estimation’s application include estimating covariance
between different models and its use in quantifying uncertainty in ensemble methods,
which can be found in references [149, 150, 151]. In the work by Wager et al. [149], it
is demonstrated that the jackknife and infinitesimal jackknife methods are effective for
estimating uncertainty associated with random forest predictions and for constructing
valid confidence intervals. The authors suggest the integration of the estimates from both
the jackknife and infinitesimal jackknife by averaging them. This approach is grounded
in the idea that the biases in the individual approaches can, to some extent, offset each
other, leading to a variance estimate that is closer to being unbiased. Furthermore,
Ghosal and Hooker [150] estimated the variance of boosted random forests by utilizing
an extension of the infinitesimal jackknife method, while in [151], Ghosal et al. used
the infinitesimal jackknife to compute covariance between different models, offering a
means to quantify uncertainty in ensembles.

Taking inspiration from the concept of jackknife estimation, which involves
aggregating parameter estimates from individual subsamples created by excluding
one observation at a time, an ensemble classifier is developed. This ensemble integrates
outputs from classifiers trained on subsamples created by excluding all data associated
with a specific individual. The base classifier’s performance on unseen subjects is
enhanced by conducting tuning of hyperparameters specifically for every individual
base learner on the subject left out during training. First, building upon a few reasonable
assumptions, a theoretical perspective on why the proposed ensemble outperforms
a single model that underwent training on the entire dataset is presented. Then, the
proposed strategy is described and its performance is demonstrated.

6.4.1 Motivation behind the proposed approach

Using data of M training subjects (not to confuse with N number of total subjects in a
given dataset), the conventional method for creating an SI classifier involves aggregating
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data from all subjects (see Section 6.1), training a classifier, and applying this trained
classifier to data collected from a different, independent subject. When the input xi
is presented into a CNN classifier, denoted ψ(xi), it produces output estimates for
class yi, denoted pyi

, where i = 1, . . . , n and yi = 0, . . . , c− 1 with n and c being the
total number of observations and total number of classes, respectively. The classifier
subsequently operates as

ψ(xi) = arg max
yi∈{0,...,c−1}

pyi
. (6.1)

Inspired by the methodology of jackknife estimation technique [145, 146, 152], the
impact of the following process is examined in this subsection: all data related to subject
m is successively excluded, where m = 1, . . .M ; the data of other M − 1 subjects is
pooled together; a classifier ψm(xi) is trained employing the same procedure as for
ψ(xi); finally a collective decision is made. The decision-making process is based on
the estimates of posterior probabilities produced by the classifier ψm(xi), denoted pmyi

,
for each class yi. Given pmyi

for all yi and all m, the decision using soft voting [119] is

ψE(xi) = arg max
yi∈{0,...,c−1}

1
M

M∑
m=1

pmyi
. (6.2)

To simplify notation, a binary classification problem with c = 2 is examined. Given
that posterior estimates depend on training samples, which are random vectors, both pyi

and pmyi
, ∀i and ∀m, are also treated as random variables. A pertinent question to pose

is whether the subsequent inequality is valid:

P

(−1)yi+1

M

( M∑
m=1

pm1 −
M∑
m=1

pm0
)
> 0 | xi ∈ πyi

 >

P
(

(−1)yi+1
(
p1 − p0

)
> 0 | xi ∈ πyi

)
, (6.3)

where, with yi taking values of 0 or 1, and πyi
representing population yi. If inequality

(6.3) holds true, it suggests that ψE(xi) is more likely to correctly classify an observation
xi than ψ(xi). To simplify, it is assumed that yi = 1 and the definitions z ∆= p1 − p0

and zm ∆= pm1 − pm0 are introduced. Therefore, with zE = 1
M

∑M
m=1 z

m the objective is
to demonstrate

P

zE > 0 | xi ∈ πyi

 > P
(
z > 0 | xi ∈ πyi

)
. (6.4)

The following assumptions are established:
Assumption 1: It is reasonable expectation that a classifier ψ(xi) performs better

than random guessing: P
(
z > 0 | xi ∈ πyi

)
> 0.5.
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Assumption 2: It is assumed that z follows a normal distribution with a mean µ
and variance σ2, and similarly, zm follows a normal distribution with a mean of µ− ϵ

and the same variance, where m ranges from 1 to M . This means that z is expected
to have a positive mean (µ > 0). A larger µ corresponds to a higher probability of
correctly classifying xi ∈ π1 by ψ(xi). It is also assumed that all zm, for all m, share
identical normal distributions with a mean of µ− ϵ, where ϵ > 0. This assumption is
based on the fact that each ψm(xi) is trained with one less subject than ψ(xi), and it is
reasonable to expect that, with well-behaved learning algorithms, ψm(xi) is more likely
to misclassify a random feature vector xi ∈ π1 compared to ψ(xi).

Building upon Assumption 2 and presuming a uniform correlation of at least ρ ≥ 0
among all pairs of zi and zj , it can be deduced that zE follows a normal distribution
with parameters µ− ϵ and σ2

M

(
(M − 1)ρ+ 1

)
. Consequently, the expression on the left

side of (6.4) can be expressed as

P

zE > 0 | xi ∈ πyi

 = 1 − Φ
M ϵ− µ

σ2
(
(M − 1)ρ+ 1

)
 , (6.5)

where, Φ(.) represents the cumulative distribution function of the standard normal
random variable. Under Assumption 2, the expression on the right side of (6.4) becomes

P
(
z > 0 | xi ∈ πyi

)
= 1 − Φ

(−µ
σ2

)
. (6.6)

As µ is greater than 0, a comparison between (6.5) and (6.6) reveals that (given
Assumptions 1 and 2)

ϵ < µ(1 − ρ)
[
1 − 1

M

]
⇐⇒ P

zE > 0 | xi ∈ πyi

 > P
(
z > 0 | xi ∈ πyi

)
. (6.7)

Expression (6.7) illustrates that as ρ increases, a smaller value of ϵ is required,
indicating a reduced impact of subject removal, for ψE(xi) to remain advantageous over
ψ(xi). In the extreme case where ρ = 1, any value of ϵ results in a lower probability
of correct classification for ψE(xi) compared to ψ(xi). Conversely, when ρ = 0 there
is plenty of room for ϵ to render ψE(xi) superior to ψ(xi). Additionally, from (6.7), it
is evident that as M increases (indicating a larger number of subjects), there is more
flexibility for ϵ to enhance the benefits of ψE(xi).

6.4.2 “Delete-a-Subject Jackknife" (DASJ) strategy

Motivated by these observations, here the jackknife-inspired procedure for constructing
an ensemble is discussed. Each classifier in this ensemble is trained on a “Delete-a-
Subject Jackknife" (DASJ) sample. In this method (refer to Fig.6.4 and Algorithm
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Algorithm 4 DASJ sample based approach MS-En-CNN

1: Let I =
N⋃
l=1

l

2: for Si ∈ S
3: for Sj ∈ S − Si
4: ˆacc∗ = 0
5: for θh ∈ Θ
6: Train ψθh,S−Si−Sj ,Sj

7: Check ˆaccθh,S−Si−Sj ,Sj

8: if ˆaccθh,S−Si−Sj ,Sj
> ˆacc∗

9: ˆacc∗ = ˆaccθh,S−Si−Sj ,Sj

10: ψ∗
S−Si−Sj ,Sj

= ψθh,S−Si−Sj ,Sj

11: ψE
i = C

( ⋃
r∈I−{i}

{ψ∗
S−Si−Sr,Sr

}
)

where C is a combiner

12: Report the performance of ψE
i on Si

Figure 6.4: Training process for DASJ based MS-En-CNN.

4), after the data collected for one of the subjects (Si) is set aside (the LOSO-CV for
testing), a different single subject is used for model selection. The aim is to replicate the
SI context within the training data S−Si and identify the optimal set of hyperparameters
for training the base classifier. To clarify further, in this approach, for the dataset of N
subjects, to create an ensemble classifier used for classifying Si, N − 1 base classifiers
are constructed. Each of these classifiers is trained using data from M − 1 = N − 2
subjects within S − Si − Sj , where j ̸= i and M is the number of training subject. The
hyperparameters are tuned using data of the held-out subject within the training set
(Sj). These N − 1 base classifiers are then utilized to implement the ensemble classifier,
which in turn classifies observations for the held-out test subject i.
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6.4.3 Performance of the DASJ based MS-En-CNN

The classification performance of the DASJ sample based approach with the base
classifiers’ architecture being defined via brute-force search is presented in Table
6.5. Considering the performance of the base classifiers, the worst and best
minimum/maximum accuracy scores (among other subjects) were demonstrated on the
data of test subject 1 and test subject 10, respectively. The worst average performance
among 9 base classifiers, as well as for the ensemble (using MV), was achieved on the
data of test subject 1 (70.70% and 74.20%), while the best results are achieved for test
subject 9 (84.00% and 87.30%). The accuracies obtained using MS-En-CNN classifier
is greater than the average classification accuracies achieved by their base classifiers
by more than 2% for most of the test subjects (except for subject 3 and 4, where
the improvement is 1.10% and 1.50%, respectively). On average, this improvement
amounts to 2.60%.

Table 6.5: Test accuracy results achieved on BNCI dataset for MV and PCEW (with
α = 1 and α = 5) ensembling schemes using DASJ samples to establish base classifiers.
Test accuracies of the base classifiers in columns columns 2-4 (minimum, maximum
and average) are determined across 9 models.

Test
subject

Base classifiers, % MS-En-CNN (DASJ), %

Minimum Maximum Average MV PCEW
(α = 1)

PCEW
(α = 5)

1 65.10 75.10 70.70 74.20 73.90 73.90
2 72.70 79.80 77.20 81.30 80.30 80.20
3 74.50 78.90 77.10 78.20 78.60 78.80
4 74.20 81.50 78.60 80.10 79.60 79.40
5 76.90 82.40 80.40 82.80 83.90 83.80
6 70.00 74.90 72.60 75.00 74.50 74.80
7 66.40 76.80 72.50 75.50 75.60 75.70
8 67.80 74.90 72.20 74.20 74.50 74.60
9 80.20 86.70 84.00 87.30 87.60 87.60

10 74.30 81.70 78.60 81.60 82.30 82.40
Avg 72.21 79.27 76.39 79.02 79.08 79.12
STD 4.81 3.91 4.27 4.36 4.58 4.52

6.5 Key Findings

The last three sections of this chapter were dedicated to three distinct methods for
training base classifiers of the MS-En-CNN classifier (SS-TM, SP-TM, and DASJ
sample based approach). In this section a summary of those results, their comparison,
and a short discussion are presented. Additionally, the comparison with the pooled-data
CNN classifier (Section 6.1) is provided.
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Upon analyzing the results presented in this Chapter, it becomes evident that the
classification results exhibit a high degree of variance. Similar observations can be
drawn from Chapter 3, where the methods reported in the literature are summarized
with their achieved classification performance across various datasets. The variability
in performance can arise from factors such as subject-specific neurophysiological
characteristics, inherent variability in the neural signals being decoded, and electrode
positioning variability [153]. This reflects the inherent challenges and complexities
in decoding neural signals for practical applications. It is important to note that the
proposed strategies demonstrate not only improved average classification accuracy
but, in most cases, also reduced standard deviation. This suggests that the presented
approaches not only enhance overall performance but also contribute to the reduction
of variability across subjects, hence providing better generalizability.
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Figure 6.5: SI accuracies for three distinct ensemble methods and its base classifiers,
as well as the pooled-data CNN. The bars display the mean test accuracies along with
their respective standard deviations (indicated by error bars) for base classifiers trained
with SS-TM, SP-TM, and DASJ approaches. Above the bars, "×" symbols denote the
test accuracy of the ensemble (MS-En-CNN classifier) employing the MV combiner.
Additionally, a magenta star symbol signifies the accuracy achieved for each subject
using the pooled-data CNN classifier.

As was previously demonstrated, the accuracies for SI classification obtained
using MS-En-CNN classifiers surpass the average results achieved by their respective
base classifiers for all three strategies (SS-TM, SP-TM, DASJ) and across all test
subjects. These findings are graphically illustrated in Fig.6.5, where the SI accuracies
of three types of MS-En-CNN methods are presented not only with respect to its base

55



6. MS-En-CNN: Multi-Subject Ensemble CNN for EEG-based BCI

classifiers, but also with respect to pooled-data CNN. Notably, in 25 out of 30 instances
(corresponding to 10 subjects across the three strategies), the accuracy attained by
MS-En-CNN classifiers exceeds the average accuracy plus their corresponding standard
deviation. This difference is statistically significant, as confirmed by a one-sided
(paired) Wilcoxon signed-rank test. The alternative hypothesis in this test posits that the
performance achieved by the ensemble classifier is greater than the average accuracy of
its base classifiers. The calculated P-values for each MS-En-CNN strategy (SS-TM,
DASJ, and SP-TM) are all less than 0.001, demonstrating the significance with the
common significance level of α = 0.05.

If the results achieved through the three different strategies for training base
classifiers are compared, it becomes evident that the DASJ-based approach generally
outperforms SS-TM and SP-TM in terms of SI classification accuracy. This assertion
is substantiated through statistical analysis, as shown in Table 6.6, where P-values
resulting from one-sided Wilcoxon signed-rank tests are demonstrated.

The advantage of DASJ over the other two methods is also evident in Fig.6.5. Not
only does the classification accuracy achieved by base classifiers trained using DASJ
tend to be higher on average compared to the other two methods, but it also exhibits a
lower standard deviation. This lower standard deviation signifies that base classifiers
trained with DASJ are more consistently reliable. This enhanced robustness of base
classifiers trained using DASJ can be attributed, in part, to the substantial overlap in
observations used during their training. Referring to the mechanism detailed in DASJ
(see Algorithm 4), it becomes apparent that there are observations from 8 subjects in
common shared during the training process of each pair of base classifiers when using
this method. To clarify, the term “training" specifically refers to the backpropagation
process and not to model selection, with a clear distinction made between the “training
set" and the “validation set". In contrast, SS-TM trains all base classifiers on distinct
sets of observations, and for SP-TM, the 72 base classifiers are organized into 9 groups.
Within each group, there are observations from one subject shared and used to train 8
classifiers, but there are no overlaps between the training sets employed across these
groups.

The comparison between the SI classification performance of MS-En-CNN and
pooled-data CNN reveals significant improvements in the former case when using any
of the base classifier training methods. Specifically, when employing SS-TM, SP-TM,

Table 6.6: Results of one-sided Wilcoxon signed-rank test for comparison of the
classification accuracy of DASJ sample based vs. SS-TM and SP-TM strategies (P-
values).

DASJ vs.
SS-TM

DASJ vs.
SP-TM

P-value .005 .007
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or DASJ, MS-En-CNN achieves accuracy rates of 74.70% ± 5.70%, 75.80% ± 6.20%,
and 79.00% ± 4.40% respectively, compared to the pooled-data CNN’s accuracy of
70.50% ± 6.90%. In addition to SI accuracy, various other metrics to evaluate the
performance of both pooled-data CNN classifier and the three MS-En-CNN learning
strategies (SS-TM, SP-TM, DASJ) are presented in Table 6.7. This include Area
under the Receiver Operating Characteristic Curve (AUC), recall, precision, and f1-
score. The confusion matrix for all test subjects and each method is presented in Table
6.8. As shown, the MS-En-CNN classification approach consistently demonstrates

Table 6.7: Performance measures (accuracy, AUC, recall, precision and f1-score)
for pooled-data CNN and the SS-TM, SP-TM and DASJ sample based MS-En-CNN
ensembles.

Parameters Pooled-data
CNN, % SS-TM, % DASJ, % SP-TM, %

Test subject 1
Accuracy 78.80 67.30 74.20 66.00

AUC 79.70 69.00 75.00 68.00
Preci-

sion 70.10 51.70 66.70 48.90

Recall 88.80 81.70 82.70 81.40
f1-score 78.30 63.30 73.90 61.10

Test subject 2
Accuracy 67.80 76.40 81.30 72.70

AUC 69.20 77.00 82.00 74.00
Preci-

sion 42.30 65.80 77.70 59.60

Recall 93.00 87.90 86.70 86.10
f1-score 58.10 75.20 81.90 70.50

Test subject 3
Accuracy 73.70 77.00 78.20 76.30

AUC 74.60 77.00 77.00 76.00
Precision 65.00 80.30 88.70 80.00
Recall 83.10 78.10 75.60 77.40
f1-score 73.00 79.10 81.60 78.70

Test subject 4
Accuracy 77.90 77.90 80.10 78.80

AUC 78.70 78.00 80.00 79.00
Preci-

sion 69.70 73.40 85.10 75.20

Recall 87.20 84.10 79.60 84.10
f1-score 77.50 78.40 82.30 79.50

Test subject 5
Accuracy 63.30 84.40 82.80 84.10
AUC 65.60 85.00 82.00 84.00

Precision 40.60 82.60 90.40 83.30
Recall 83.70 88.20 80.50 87.10
f1-score 54.60 85.30 85.10 85.10
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Table 6.7: Continued.

Parameters Pooled-data
CNN, % SS-TM, % DASJ, % SP-TM, %

Test subject 6
Accuracy 77.80 71.80 75.00 71.00
AUC 77.90 73.00 75.00 72.00

Preci-
sion 76.60 58.40 70.70 56.70

Recall 81.60 85.20 81.00 85.20
f1-score 79.00 69.30 75.50 68.10

Test subject 7
Accuracy 63.80 67.50 75.50 69.90
AUC 66.20 69.00 76.00 71.00
Precision 38.90 48.60 68.70 55.40
Recall 87.90 85.60 83.50 83.90
f1-score 53.90 62.00 75.40 66.70

Test subject 8
Accuracy 76.30 70.80 74.20 72.90
AUC 77.30 72.00 74.00 74.00
Precision 66.00 82.80 75.50 65.20
Recall 87.50 79.40 76.80 81.50
f1-score 75.30 70.10 76.20 72.40

Test subject 9
Accuracy 62.50 72.60 87.30 83.90
AUC 63.80 74.00 87.00 84.00
Precision 50.10 55.80 90.90 80.00
Recall 72.70 90.40 86.50 89.30
f1-score 59.30 69.00 88.60 84.40

Test subject 10
Accuracy 64.40 81.50 81.60 81.30
AUC 66.20 82.00 81.00 81.00

Preci-
sion 46.00 78.40 86.70 82.10

Recall 80.30 86.50 80.80 83.30
f1-score 58.50 82.20 83.70 82.70

Average across 10 subjects ± STD
Accuracy 70.53±6.93 74.72±5.71 79.02±4.36 75.69± 6.20
AUC 71.91±6.29 75.60±5.25 78.90 ± 4.17 76.30 ± 5.52
Recall 56.53±14.30 67.78±13.36 80.11± 9.37 68.64± 12.90
Precision 84.58±5.64 84.71±3.95 81.37± 3.64 83.93 ± 3.34
f1-score 66.75±10.65 73.39±7.88 80.42± 4.90 74.92 ± 8.30
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Table 6.8: Confusion matrices for pooled-data CNN and the SS-TM, SP-TM and DASJ
sample based MS-En-CNN ensembles.
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A
ct

ua
l P N

P 980 170
N 784 1270

7

Predicted

A
ct

ua
l P N

P 672 92
N 1056 1348

Predicted

A
ct

ua
l P N

P 840 141
N 888 1299

Predicted

A
ct

ua
l P N

P 1187 235
N 541 1205

Predicted

A
ct

ua
l P N

P 958 184
N 770 1256
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Table 6.8: Continued.
8

Predicted
A

ct
ua

l P N
P 1141 163
N 587 1277

Predicted

A
ct

ua
l P N

P 1086 282
N 642 1158

Predicted

A
ct

ua
l P N

P 1305 393
N 423 1047

Predicted

A
ct

ua
l P N

P 1126 255
N 602 1185

9

Predicted

A
ct

ua
l P N

P 866 325
N 862 1115

Predicted

A
ct

ua
l P N

P 964 102
N 764 1338

Predicted

A
ct

ua
l P N

P 1571 245
N 157 1195

Predicted

A
ct

ua
l P N

P 1383 166
N 345 1274

10

Predicted

A
ct

ua
l P N

P 795 195
N 933 1245

Predicted

A
ct

ua
l P N

P 1355 212
N 373 1228

Predicted

A
ct

ua
l P N

P 1499 355
N 229 1085

Predicted

A
ct

ua
l P N

P 1419 284
N 309 1156

Av
er

ag
e

Predicted

A
ct

ua
l P N

P 977 182
N 751 1258

Predicted

A
ct

ua
l P N

P 1137 209
N 591 1231

Predicted
A

ct
ua

l P N
P 1385 321
N 343 1119

Predicted

A
ct

ua
l P N

P 1186 227
N 544 1211

Table 6.9: Results of one-sided Wilcoxon signed-rank test (P-values) for comparing the
classification performance (in terms of accuracy, AUC, recall, precision and f1-score)
achieved by DASJ-based MS-En-CNN classifier vs. pooled-data CNN classifier.

Accuracy AUC Precision Recall f1-score
P-values .032 .065 .005 .958 .010

superior average performance across most of the mentioned metrics and exhibits a
lower standard deviation in comparison to the CNN classifier based on pooled-data
approach. Furthermore, the improvements achieved in accuracy, recall, and f1-score
are statistically significant according to one-sided (paired) Wilcoxon signed-rank tests
at a common significance level of α = 0.05. The tests indicate that the classification
performance achieved by MS-En-CNN with the DASJ training strategy surpasses the
average classification performance of the pooled-data CNN. The P-values for these
statistical tests can be found in Table 6.9. The most substantial improvement is observed
with the DASJ strategy, and it is statistically significant with P= 0.032. Notably, for
certain test subjects, such as subjects 2, 5, and 9, DASJ-based MS-En-CNN outperforms
the pooled-data CNN by margins of approximately 15%, 19%, and 25%, respectively,
in terms of accuracy (refer to Table 6.7).

The preceding discussion highlights the effectiveness of the proposed DASJ-based
MS-En-CNN in various scenarios. Specifically, comparisons were made to underscore
its superiority over MS-En-CNNs employing alternative strategies (SS-TM, SP-TM), the
average classification performance of its constituent base classifiers, and a conventional
approach (pooled-data CNN). The respective P-values from the statistical one-sided
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Wilcoxon signed rank test with the alternative hypothesis stating the significant
improvement demonstrated by DASJ-based approach over other methods are: 0.005
(SS-TM), 0.007 (SP-TM), less than 0.001 (base classifiers), and 0.032 (pooled-data
CNN). To address the challenge of multiple comparisons inherent in the above analysis,
the False Discovery Rate (FDR) control method was employed. The calculated P-
values were subject to FDR correction using the Benjamini-Hochberg procedure.
After adjustment, the corrected significance levels remained below the predetermined
threshold of 0.05, confirming the statistical significance of the observed differences in
comparison of the DASJ-based approach to other methods while minimizing the risk of
false positives.

6.6 Application to MI datasets

Given the promising results of the DASJ approach on ERP dataset, the same strategy
has been applied to MI datasets, namely BCI IV 2A and BCI IV 2B. Table 6.10 displays
test accuracies of the base classifiers (minimum, maximum, and average) and the test
accuracies of the ensemble classifiers for two datasets. The results of ensembles are
presented for different combining schemes. It can be noted that in addition to MV
and PCEW, here the performance of NEW combination rule based MS-En-CNN is
also tabulated. This is because, in contrast to the BNCI dataset cases, the results of
NEW-based MS-En-CNN differ from those achieved using MV. On average MV based
ensemble performs better than the NEW-based. Furthermore, a comparison between MV
and PCEW reveals minimal differences in their performance. Consequently, only MV
combination rule is utilized further, as it avoids the need for additional hyperparameter,
such as α in PCEW.

When comparing the ensemble classifiers’ accuracies to the average accuracies of
the individual base classifiers on test data, a significant performance enhancement is
evident in the ensemble scheme. To validate this observation statistically, a one-sided
(paired) Wilcoxon signed-rank test was conducted. The resulting P -values for all
pairwise comparisons between the performance of ensemble classifiers and the average
performance of base classifiers are displayed in Table 6.11. Notably, all P -values
are below 0.01, which is less than the commonly used significance level (0.05). This
underscores the substantial improvement realized by the ensemble classifiers.

6.7 Summary

This chapter was dedicated to introducing the proposed methods. First, it defined
a common approach used for comparing the designed methods. Next, it described
various strategies for training the set of base classifiers employed within the MS-En-
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Table 6.10: SI classification performance of DASJ-based MS-En-CNN (using MV,
NEW, and PCEW combining schemes) classifier and test accuracies of its base classifiers
(minimum, maximum, and average among 9 in total) using data from BCI IV 2A and
2B datasets.

Test
subject

Base classifiers, % MS-En-CNN (DASJ), %

Minimum Maximum Average MV NEW PCEW
(α = 1)

PCEW
(α = 5)

B
C

II
V

2A

1 63.31 70.72 66.35 70.60 67.36 71.88 72.22
2 48.26 53.70 51.46 53.01 51.74 52.78 53.13
3 64.93 77.31 71.08 78.82 76.04 77.89 76.16
4 54.40 64.58 58.75 59.61 61.23 60.76 60.65
5 52.08 56.71 54.01 56.02 52.66 56.48 54.86
6 55.21 62.50 58.93 59.26 59.38 60.30 60.07
7 53.36 61.81 58.09 61.57 56.13 61.34 60.42
8 66.78 74.07 69.69 76.85 71.99 76.16 77.43
9 58.56 66.44 62.50 61.69 67.59 61.46 62.62

Avg 57.43 65.32 61.21 64.16 62.68 64.34 64.17
STD 6.35 7.75 6.76 9.12 8.57 8.82 8.94

B
C

II
V

2B

1 59.63 65.00 62.39 64.17 64.72 65.00 64.58
2 52.11 55.34 53.49 53.87 53.28 54.26 54.61
3 52.31 54.91 53.69 54.12 55.19 53.84 53.70
4 77.25 81.89 80.41 83.29 81.04 82.61 82.79
5 57.88 64.46 62.53 63.96 63.33 65.81 64.37
6 63.56 70.56 67.77 71.06 70.56 71.02 70.14
7 61.25 66.85 64.37 65.74 63.75 65.83 66.02
8 66.80 72.41 70.46 70.53 70.13 71.84 71.23
9 65.51 70.32 68.09 69.77 69.58 70.79 70.51

Avg 61.81 66.86 64.80 66.28 65.73 66.78 66.44
STD 7.79 8.42 8.35 9.04 8.43 8.94 8.88

Table 6.11: Comparison of the classification accuracy of an ensemble against the
average accuracy of the base classifiers for BCI IV 2A and 2B datasets based on P-
values computed with one-sided Wilcoxon signed rank test.

Dataset Combiner vs. Average
MV PCEW (α = 1) PCEW (α = 5)

BCI IV 2A 0.00586 0.00391 0.00195
BCI IV 2B 0.00195 0.00195 0.00195

CNN classifier. The distinction among these strategies lies in how the data is divided
into training and validation subsets. The validation subsets play a crucial role in
the model selection process, particularly in tuning the hyperparameters of the CNNs.
The experiments presented in this chapter were conducted using a brute-force model
selection approach.
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Chapter 7

DASJ-CNN Ensemble with
State-of-the-Art Base Models

In Chapter 6, MS-En-CNN ensembles were created using CNN base classifiers with their
architectures determined by a brute-force search-based model selection process. The
most promising approach appeared to be a DASJ sample based ensemble. In this chapter,
the DASJ-based ensemble is investigated with the base classifiers having the architecture
of the well-established CNN configurations. In this regard, the following architectures
demonstrated the state-of-the-art performance in EEG-based BCI: ShallowConvNet,
EEGNet, DeepConvNet. These three architectures were used to train the base classifiers
of the ensemble according to the DASJ based strategy, which in general could be referred
to as DASJ-CNN. When using ShallowConvNet, DeepConvNet or EEGNet architecture
for the CNN base classifiers of MS-En-CNN, it’s referred to as DASJ-ShallowConvNet,
DASJ-DeepConvNet or DASJ-EEGNet, respectively.

7.1 CNN versus DASJ-CNN Ensemble

7.1.1 Training the Base Classifiers of MS-En-CNN

The training strategy remains the same as it was described in Section 6.4, except for
the fact that instead of having the hyperparameter space to search through (defined
in Section 5.1), there is a fixed architecture of CNN that is used (ShallowConvNet,
DeepConvNet or EEGNet) (see Section 5.2). Each CNN base classifier underwent
training for a maximum of 200 epochs without implementing early stopping. The batch
size was configured at 64, and a learning rate of 0.001 was employed alongside a weight
decay of 0.0001.

7.1.2 Subject-independent classification performance

The objective is to demonstrate that the DASJ-CNN ensemble classification rule
systematically enhances the performance of current CNN architectures for EEG
classification. A comparison is conducted between DASJ-ShallowConvNet and
ShallowConvNet, DASJ-DeepConvNet and DeepConvNet, as well as between DASJ-
EEGNet and EEGNet, to assess their SI classification performance. This comparison
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helps evaluate the effectiveness of the proposed DASJ-CNN ensemble classification
rule in contrast to the conventional approach, which typically involves training a
single classifier using 80% of the pooled data from training subjects and reserving the
remaining 20% for hyperparameter tuning (see Section 6.1).

The experiments for both pooled-data CNN and DASJ sample based MS-En-CNN
were conducted considering two cases of standardization. A standard scaler was used
in both cases to standardize features by removing the mean and scaling to unit variance.
The difference is that in the first case during the test stage, when the base classifiers are
already trained, the test data is standardized based on the statistics of the real train data
that was used in the training stage (the data from the subject that was held-out as part
of the jackknife is not considered); while in the second case, the statistics of the data
pooled from all subjects except the test subject is used. The results for these two cases
of standardization for both the pooled-data CNNs and DASJ-CNN based ensembles
are shown in Table 7.1. Here the MS-En-CNN ensemble is formed considering the
majority vote (see Eq.4.2 for hard voting). The results indicate that there is barely no
difference in the two cases of standardization, therefore the second case is used in the
next experiments.

Another thing that was tested is the effect of using soft voting to ensemble the
base classifiers. The results for three datasets are presented in Table 7.2, where the SI
accuracies achieved by each of the subjects and average accuracy across all subjects
with its standard deviation are shown for each classification method (pooled-data CNN
versus DASJ-CNN based ensemble). The results using the multi-subject based ensemble
approach (MS-En) demonstrate the accuracies achieved by combining decisions from
multiple CNN models (ShallowConvNet, DeepConvNet or EEGNet) that were trained
on different sets of training data via soft voting (see Eq.6.2).

Although the same classification methods were used, a considerably different
performance is observed on different datasets. This might be attributed to the technical
variability associated with the datasets. Across all datasets, the best performance
was demonstrated by DeepConvNet (in both pooled-data CNN and DASJ-CNN based
ensemble scenarios). The difference in terms of using a particular CNN architecture
for pooled-data CNN and DASJ-CNN is minimal in the case of ALS dataset, while the
most significant difference is observed in the case of EPFL dataset.

Returning to the primary objective of this study, which is to showcase the
effectiveness of the proposed ensemble-based approach, the average SI classification
results across all datasets highlight the improvement achieved by the MS-En-CNN when
compared to a single model. Table 7.3 highlights the accuracy improvements achieved
for each test subject by using the DASJ-ShallowConvNet, DASJ-DeepConvNet and
DASJ-EEGNet based MS-En-CNN ensembles over their respective single models.
A “+" and “-" sign in the table is used to indicate performance enhancement and
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deterioration when utilizing DASJ-CNN based ensemble instead of the single CNN
architecture. The improvements of more than 2% are presented in bold. As it can be
noticed there is a significant difference in the improvements across different datasets.
Moreover, even within the same dataset, the achieved performance varies across subjects.
The variability in performance can be attributed to subject-several factors. EEG signals
can vary significantly between individuals due to differences in brain anatomy, electrode

Table 7.1: SI classification accuracy using a single model of particular architecture
(ShallowConvNet, DeepConvNet or EEGNet), i.e. pooled-data CNN, versus using
ensemble formed based on DASJ sample with the base classifiers being one of the three
architectures (ShallowConvNet, DeepConvNet or EEGNet). The results are presented
for two cases of standardization of test data using the statistics of: 1) real train data; 2)
data pooled from all subjects except the test subject. The hard voting combining rule is
used to form the MS-En-CNN.

(a) BNCI dataset
Pooled-data CNN

ShallowConvNet DeepConvNet EEGNet
1 2 1 2 1 2

1 72.63 72.76 71.34 71.37 71.78 71.81
2 76.64 76.67 82.32 82.17 79.04 78.98
3 79.58 79.45 78.35 78.06 76.74 76.74
4 80.65 80.65 80.52 80.52 78.98 78.98
5 80.71 80.59 85.20 85.13 82.80 82.80
6 71.91 71.65 72.47 72.29 72.13 71.88
7 76.01 76.04 66.70 66.22 71.43 71.37
8 71.18 70.96 74.62 74.59 73.48 73.52
9 83.43 83.49 85.23 85.23 85.13 85.01

10 84.44 84.28 86.77 86.68 76.01 75.88
Avg 77.72 77.65 78.35 78.23 76.75 76.70
STD 4.78 4.80 6.82 6.90 4.74 4.75

DASJ sample based MS-En-CNN
ShallowConvNet DeepConvNet EEGNet

1 2 1 2 1 2
1 70.45 70.52 73.26 73.74 73.20 72.85
2 81.98 81.88 84.97 85.54 82.45 82.42
3 78.35 77.94 78.06 77.94 77.56 77.49
4 77.59 77.46 80.93 80.56 80.05 80.27
5 84.56 84.60 85.64 85.51 85.04 85.04
6 73.80 73.20 78.76 79.48 77.81 77.78
7 70.71 70.58 71.72 71.65 74.37 74.78
8 73.07 72.89 75.38 74.78 74.21 74.27
9 87.53 87.56 88.57 88.13 87.85 87.78

10 85.86 85.92 84.28 84.41 82.51 82.83
Avg 78.39 78.25 80.16 80.17 79.50 79.55
STD 6.34 6.43 5.67 5.65 4.93 4.95
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Table 7.1: Continued.

(b) ALS dataset
Pooled-data CNN

ShallowConvNet DeepConvNet EEGNet
1 2 1 2 1 2

1 70.25 70.21 70.53 70.78 69.81 69.78
2 66.96 66.97 65.53 65.43 67.42 67.36
3 74.29 74.18 76.36 76.23 74.47 74.51
4 69.57 69.57 69.12 69.08 68.83 68.86
5 73.30 73.32 70.96 70.96 70.53 70.56
6 72.14 72.14 69.32 69.44 69.66 69.73
7 71.49 71.53 71.25 71.30 70.73 70.65
8 72.47 72.39 77.43 77.30 75.42 75.45

Avg 71.31 71.29 71.31 71.31 70.86 70.86
STD 2.33 2.31 3.89 3.85 2.74 2.76

DASJ sample based MS-En-CNN
ShallowConvNet DeepConvNet EEGNet

1 2 1 2 1 2
1 71.13 71.16 72.01 72.16 71.25 71.32
2 68.26 68.10 68.16 68.08 67.53 67.73
3 75.00 75.18 75.88 75.82 75.86 75.65
4 68.91 68.39 69.57 69.70 69.27 69.12
5 70.45 70.70 70.69 70.65 71.84 71.78
6 72.39 72.05 72.90 72.95 70.95 70.97
7 71.69 71.97 71.29 71.64 71.68 71.82
8 77.56 77.62 75.71 75.77 76.36 76.31

Avg 71.92 71.90 72.03 72.09 71.84 71.84
STD 3.09 3.21 2.74 2.73 3.00 2.92

(c) EPFL dataset
ShallowConvNet DeepConvNet EEGNet

Pooled-data CNN
1 2 1 2 1 2

1 52.18 51.49 59.08 59.49 57.09 57.12
2 52.35 51.76 56.28 58.16 56.12 56.42
3 56.96 56.81 66.69 65.76 61.56 60.85
4 54.46 54.55 55.40 55.81 49.45 49.53
5 59.49 59.39 63.41 64.20 63.92 63.36
6 56.84 56.65 60.74 61.10 60.66 60.85
7 55.95 55.49 66.92 66.64 63.49 63.34
8 55.01 54.84 55.25 55.67 51.25 51.71

Avg 55.40 55.12 60.47 60.85 57.94 57.90
STD 2.46 2.63 4.80 4.31 5.45 5.18

placement, and inherent neural activity patterns. This inherent variability may affect the
performance of the models differently for each subject. Different subjects may exhibit
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Table 7.1:Continued.

DASJ sample based MS-En-CNN
ShallowConvNet DeepConvNet EEGNet

1 2 1 2 1 2
1 57.39 56.16 57.86 58.10 59.02 59.46
2 52.49 50.61 58.91 59.48 58.99 58.93
3 60.89 61.22 61.69 60.88 62.76 63.10
4 59.61 59.05 58.67 58.69 54.15 54.10
5 69.12 68.86 67.29 66.68 67.55 67.74
6 65.93 66.40 63.64 64.12 59.29 59.09
7 65.50 63.55 58.83 58.31 62.46 61.56
8 56.92 57.14 55.19 54.31 54.83 55.21

Avg 60.98 60.37 60.26 60.07 59.88 59.90
STD 5.54 5.91 3.79 3.84 4.38 4.34

varying degrees of responsiveness to different model architectures (ShallowConvNet,
DeepConvNet, EEGNet) and ensemble configurations (MS-En-CNN). This sensitivity
can come from the complexity of neural dynamics captured by each model and the
adaptability of the ensemble approach to different signal characteristics. The most
significant subject-wise improvements were achieved on BNCI and EPFL data. When
utilizing EEGNet-based base classifiers on the BNCI dataset, there was a 2.96%
improvement over a single model. On the EPFL dataset, enhancements of 5.54%
and 2.54% in accuracy were recorded for ShallowConvNet and EEGNet-based base

Table 7.2: Subject-independent classification accuracy using a single model of particular
architecture (ShallowConvNet, DeepConvNet or EEGNet) vs. using ensemble formed
based on DASJ sample with the base classifiers being one of the three architectures
(ShallowConvNet, DeepConvNet or EEGNet). The soft voting combining rule is used
to form the MS-En-CNN.

(a) BNCI dataset
ShallowConvNet DeepConvNet EEGNet
Single MS-Ens Single MS-Ens Single MS-Ens

1 72.76 70.20 71.37 72.66 71.81 72.79
2 76.67 82.10 82.17 84.94 78.98 82.45
3 79.45 78.25 78.06 78.00 76.74 77.65
4 80.65 77.71 80.52 80.43 78.98 80.43
5 80.59 84.63 85.13 85.13 82.80 85.51
6 71.65 73.01 72.29 79.51 71.88 78.13
7 76.04 70.90 66.22 70.77 71.37 75.00
8 70.96 73.01 74.59 75.54 73.52 73.99
9 83.49 88.01 85.23 88.51 85.01 87.94

10 84.28 86.52 86.68 84.63 75.88 82.70
Avg 77.65 78.43 78.23 80.01 76.70 79.66
STD 4.80 6.61 6.90 5.85 4.75 5.03
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Table 7.2: Continued.

(b) ALS dataset
ShallowConvNet DeepConvNet EEGNet
Single MS-Ens Single MS-Ens Single MS-Ens

1 70.21 71.22 70.78 72.01 69.78 71.25
2 66.97 68.19 65.43 67.92 67.36 68.00
3 74.18 74.94 76.23 76.14 74.51 75.65
4 69.57 68.23 69.08 69.94 68.86 69.06
5 73.32 71.18 70.96 70.70 70.56 72.21
6 72.14 72.77 69.44 73.18 69.73 71.16
7 71.53 71.05 71.30 70.99 70.65 71.83
8 72.39 77.39 77.30 76.03 75.45 76.32

Avg 71.29 71.87 71.31 72.11 70.86 71.94
STD 2.31 3.14 3.85 2.89 2.76 2.88

(c) EPFL dataset
ShallowConvNet DeepConvNet EEGNet
Single MS-Ens Single MS-Ens Single MS-Ens

1 51.49 57.22 59.49 61.45 57.12 59.10
2 51.76 51.89 58.16 60.27 56.42 59.99
3 56.81 61.37 65.76 63.54 60.85 63.85
4 54.55 59.53 55.81 58.90 49.53 54.38
5 59.39 68.73 64.20 68.76 63.36 68.69
6 56.65 65.71 61.10 63.17 60.85 60.30
7 55.49 62.26 66.64 58.50 63.34 61.95
8 54.84 58.55 55.67 55.93 51.71 55.25

Avg 55.12 60.66 60.85 61.32 57.90 60.44
STD 2.63 5.18 4.31 3.92 5.18 4.59

estimators, respectively. Examining the table, it is possible to see that among the
78 test cases spanning the three datasets, performance improvement occurs in 47
cases, accounting for 60.25% of the instances. Furthermore, out of these 47 cases
with performance improvements, 26 cases exhibit an improvement of at least 2%,
representing 55.3% of the performance enhancements exceeding 2%.

The performance enhancement attributed to the use of the DASJ-CNN classifier over
the typical single CNN architecture is visually depicted in Fig.7.1. This figure illustrates
the range (represented by rectangular bars), average (indicated by red horizontal
lines), and standard deviation (illustrated by vertical red lines) of SI classification
accuracies across all 78 test cases. Notably, the minimum accuracy achieved for any
test subject is consistently higher with DASJ-CNN in nearly all cases, except for
ShallowConvNet in the BNCI data. Furthermore, when considering the overall accuracy
among all participants in a dataset, DASJ-CNN consistently outperforms the single
CNN architecture trained in a standard manner.
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Table 7.3: Subject-wise test accuracy improvements achieved when comparing the
performance of MS-En-CNN with ShallowConvNet (SN), DeepConvNet (DN), and
EEGNet (EN) based base estimators with the corresponding single model (pooled-data
CNN). The entries marked in bold indicate the difference in accuracies of more than
2%. The bottom line of the table presents the difference in average accuracies across all
subjects. ALS and EPFL datasets contain data for only 8 subjects, as a result, there are
entries with ’-’ for subject 9 and 10.

BNCI ALS EPFL
SN EN DN SN EN DN SN EN DN

1 -2.56 +0.98 +1.29 +1.01 +1.47 +1.23 +5.73 +1.98 +1.96
2 +5.43 +3.47 +2.77 +1.22 +0.64 +2.49 +0.13 +3.57 +2.12
3 -1.2 +0.91 -0.06 +0.76 +1.14 -0.09 +4.56 +3.00 -2.22
4 -2.94 +1.45 -0.09 -1.34 +0.2 +0.86 +4.98 +4.85 +3.09
5 +4.04 +2.71 0.00 -2.14 +1.65 -0.26 +9.34 +5.33 +4.56
6 +1.36 +6.25 +7.22 +0.63 +1.43 +3.74 +9.06 -0.55 +2.07
7 -5.14 +3.63 +4.55 -0.48 +1.18 -0.31 +6.77 -1.39 -8.14
8 +2.05 +0.47 +0.95 +5.00 +0.87 -1.27 +3.71 +3.54 +0.26
9 +4.52 +2.93 +3.28 - - - - - -

10 +2.24 +6.82 -2.05 - - - - - -
Avg +0.78 +2.96 +1.79 +0.58 +1.08 +0.80 +5.54 +2.54 +0.46

BNCI ALS EPFL
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Figure 7.1: Range of accuracies attained in the assessing the performance of DASJ-
CNN and individual CNN classifiers. The horizontal red lines represent the averaged SI
accuracy across all subjects (BNCI dataset consists of 10 subjects, while ALS and EPFL
datasets contained data for 8 subjects). Standard deviation is presented with vertical red
lines.
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Table 7.4: Number of trainable parameters per model across three ERP-based datasets.

BNCI ALS EPFL
EEGNet 1 162 1 034 1 418

ShallowConvNet 5 352 2 952 10 152
DeepConvNet 142 552 137 552 152 552

7.2 Limitations

One limitation of the proposed strategies lies in the computational complexity associated
with training the MS-En-CNN model. When dealing with a dataset containing M
training subjects, DASJ approach (SS-TM and SP-TM presented in Chapter 6) demands
the training of M (M and M(M − 1), respectively) classifiers. For a general overview
of the complexity of each CNN model utilized, the number of trainable parameters per
model for each dataset is presented in Table 7.4.

To address the computational challenge, a potential solution is to distribute the
training process across multiple graphics processing units (GPUs) or tensor Processing
Units (TPUs). For instance, the training for the above experiments was successfully
executed on 4 NVIDIA® Tesla V100 GPUs. However, even with a relatively moderate
M value, such as M = 9 (given a BNCI dataset with N = 10), training MS-En-CNN
using the SP-TM strategy can quickly become problematic due to its computational
demands. In such scenarios, even training DASJ or SS-TM may pose computational
difficulties, depending on the available resources. Nevertheless, there is room for
exploration of alternative strategies in the future to alleviate the computational burden.
For instance, instead of employing DASJ, one could consider dividing the training
subjects into K subsets, where K is significantly less than M , and train K base models,
similar to a K-fold cross-validation approach.

7.3 Summary

This chapter demonstrated the potential of the DASJ sample based MS-En-CNN to
improve the performance of the existing CNN architectures. For this, ShallowConvNet,
DeepConvNet and EEGNet were used as archetypical. The results were verified across
three ERP-based datasets. Considering the computational limitation of the DASJ-
based approach (as well as previously discussed strategies of SS-TM and SP-TM), an
alternative option to consider a K-fold cross-validation is suggested.
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Chapter 8

MS-En-CNN using K-fold
Cross-validation

Considering the limitations of the DASJ-based approach (as well as previously discussed
SS-TM and SP-TM), the K-fold cross-validation is investigated as an alternative method
to train the base classifiers for the MS-En-CNN. To check the potential of such an
approach, one of the largest datasets [27] collected from 54 subjects, known as KU
dataset, is used.

8.1 Training Strategy

One of the recent works on SI classification on KU dataset was presented by Zhang et

al. [107], who utilized DeepConvNet architecture. This architecture is used to train the
base classifiers of MS-En-CNN.

Unlike the case with brute-force search-based hyperparameter tuning (Section
5.1), here the architecture for the base classifier is fixed (i.e. DeepConvNet) and the
hyperparameter tuning for the base models is focused solely on the number of training
epochs (as in Chapter 7). Specifically, each base model is trained for a maximum of 200
epochs (without early stopping), and the epoch that yields the lowest validation loss is
selected. Each base model was trained using the Adam optimization algorithm with
decoupled weight decay, as described in [154]. The learning rate was set to 0.01, and a
weight decay of 0.0005 was applied. A batch size of 16 was utilized during training.
This was done to ensure a fair comparison with [107].

A general visual representation of K-fold CV-based MS-En-CNN is presented in
Fig. 8.2. To design a K-fold CV-based ensemble, the M = 53 (1 out of 54 subjects
is set aside for SI evaluation) of training subjects are randomly split into K folds.
Each of the CNN base classifiers (DeepConvNets) is then trained on the data from
a subset of subjects, consisting of ⌈53 − 53/K⌉ subjects (equivalent to subjects in
K − 1 folds), and hyperparameter tuning is performed on the remaining ⌊53/K⌋
subjects (found in the remaining fold). Here, ⌈.⌉ and ⌊.⌋ represent the ceiling and floor
functions, respectively. Taking into account the K-fold cross-validation process, K
base DeepConvNet classifiers are trained and tuned and subsequently used to build the
ensemble classifier employing a majority vote combination rule. For a given dataset,
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the number of trainable parameters required to train a DeepConvNet base classifier is
194 102. A flowchart explaining this methodology specifically for 54 subject-based
dataset can be found in Fig.8.1.

Figure 8.1: A flowchart of the training and evaluation process in a K-fold CV-based
MS-En-CNN for 54 subject-based dataset.

Although generally, K could be considered as a hyperparameter to optimize, it
is set to a fixed value of 13 because of computational constraints. This choice
was determined based on the maximum odd number feasible given our available
computational resources.

Figure 8.2: Architecture of K-fold CV based MS-En-CNN, where CNN stands for
DeepConvNet base classifier.
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8.2 SI Classification Performance

Table 8.1: SI performance of MS-En-CNN for each of the test subjects for different
scenarios of test data split, where si, i = 1, 2 and “on”/“off” implies the session and the
online/offline phases, respectively.

s1 (off) s1 (on) s2 (off) s2 (on) s1 (off+on) s2 (off+on) s1+ s2
1 90.00 83.00 81.00 89.00 86.50 85.00 85.75
2 84.00 63.00 83.00 92.00 73.50 87.50 80.50
3 94.00 91.00 97.00 97.00 92.50 97.00 94.75
4 83.00 95.00 91.00 92.00 89.00 91.50 90.25
5 98.00 83.00 92.00 93.00 90.50 92.50 91.50
6 99.00 97.00 98.00 100.00 98.00 99.00 98.50
7 73.00 87.00 83.00 87.00 80.00 85.00 82.50
8 76.00 76.00 84.00 91.00 76.00 87.50 81.75
9 86.00 79.00 76.00 67.00 82.50 71.50 77.00

10 73.00 59.00 72.00 57.00 66.00 64.50 65.25
11 83.00 69.00 75.00 65.00 76.00 70.00 73.00
12 86.00 84.00 78.00 80.00 85.00 79.00 82.00
13 79.00 78.00 75.00 67.00 78.50 71.00 74.75
14 81.00 78.00 77.00 85.00 79.50 81.00 80.25
15 94.00 92.00 93.00 91.00 93.00 92.00 92.50
16 78.00 84.00 97.00 75.00 81.00 86.00 83.50
17 75.00 83.00 69.00 80.00 79.00 74.50 76.75
18 94.00 76.00 81.00 91.00 85.00 86.00 85.50
19 81.00 90.00 76.00 90.00 85.50 83.00 84.25
20 86.00 93.00 88.00 86.00 89.50 87.00 88.25
21 95.00 97.00 99.00 98.00 96.00 98.50 97.25
22 78.00 96.00 87.00 84.00 87.00 85.50 86.25
23 86.00 58.00 89.00 67.00 72.00 78.00 75.00
24 68.00 62.00 61.00 71.00 65.00 66.00 65.50
25 87.00 59.00 100.00 98.00 73.00 99.00 86.00
26 82.00 88.00 97.00 83.00 85.00 90.00 87.50
27 93.00 85.00 97.00 93.00 89.00 95.00 92.00
28 99.00 100.00 97.00 100.00 99.50 98.50 99.00
29 78.00 85.00 82.00 85.00 81.50 83.50 82.50
30 85.00 94.00 90.00 73.00 89.50 81.50 85.50
31 92.00 95.00 91.00 83.00 93.50 87.00 90.25
32 98.00 80.00 92.00 91.00 89.00 91.50 90.25
33 98.00 100.00 98.00 99.00 99.00 98.50 98.75
34 65.00 67.00 68.00 66.00 66.00 67.00 66.50
35 100.00 100.00 95.00 100.00 100.00 97.50 98.75
36 99.00 99.00 99.00 100.00 99.00 99.50 99.25
37 96.00 93.00 97.00 96.00 94.50 96.50 95.50
38 76.00 73.00 79.00 78.00 74.50 78.50 76.50
39 92.00 94.00 87.00 98.00 93.00 92.50 92.75
40 84.00 76.00 89.00 82.00 80.00 85.50 82.75
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Table 8.1: Continued.

s1 (off) s1 (on) s2 (off) s2 (on) s1 (off+on) s2 (off+on) s1+ s2
41 76.00 64.00 84.00 84.00 70.00 84.00 77.00
42 84.00 82.00 81.00 80.00 83.00 80.50 81.75
43 90.00 93.00 93.00 91.00 91.50 92.00 91.75
44 80.00 88.00 86.00 93.00 84.00 89.50 86.75
45 86.00 93.00 95.00 96.00 89.50 95.50 92.50
46 67.00 74.00 81.00 96.00 70.50 88.50 79.5
47 96.00 62.00 92.00 96.00 79.00 94.00 86.50
48 72.00 93.00 70.00 90.00 82.50 80.00 81.25
49 79.00 74.00 89.00 95.00 76.50 92.00 84.25
50 47.00 67.00 51.00 55.00 57.00 53.00 55.00
51 77.00 76.00 71.00 85.00 76.50 78.00 77.25
52 93.00 94.00 83.00 92.00 93.50 87.50 90.50
53 89.00 68.00 85.00 75.00 78.50 80.00 79.25
54 71.00 73.00 84.00 72.00 72.00 78.00 75.00

Mean 84.28 82.26 85.28 85.56 83.27 85.42 84.34
STD 10.63 12.33 10.57 11.63 9.92 10.16 9.42
Median 84.50 83.50 86.50 89.50 83.50 86.50 84.88
Range 47.00 58.00 51.00 55.00 57.00 53.00 55.00
Max 100.00 100.00 100.00 100.00 100.00 99.50 99.25
Min 53.00 42.00 49.00 45.00 43.00 46.50 44.25

It’s important to highlight that the entire dataset, comprising data from both phases
and sessions (a total of 400 trials for each subject), excluding the subject reserved
for testing, is utilized for training. However, in evaluating the ensemble classifier’s
performance, various scenarios for splitting the target subject’s data have been explored.
This was done due to the fact that in the past different methods have been employed
and assessed using KU dataset. However, it’s important to note that different research
groups used different test data from sessions and/or phases of KU dataset in their
evaluations. In order to ensure a fair comparison with the results previously reported
in literature and to establish a benchmark for later comparisons, the performance of
the MS-En-CNN classifier is evaluated in the following ways: a) separately for each
phase (offline and online) and session (s1 and s2); b) for data combined from the online
and offline phases while maintaining separation between sessions; c) for pooled data
encompassing all phases and sessions. Table 8.1 displays the SI performance achieved
by each of the test subjects in these scenarios. The mean with standard deviation and
the median, as well as the minimum, maximum and range across 54 subjects are also
tabulated.
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8.3 Comparison with the State-of-the-Art Approaches

Recently, various algorithms have been tested on the KU dataset. Kwon et al. [100]
presented a technique that involves combining individually trained CNN models
through concatenation fusion. They demonstrated an enhanced performance compared
to methods such as common spatial pattern (CSP) [97], multiresolution filter bank
CSP (MR FBCSP) [97], and a fused model developed by Ray et al. [155]. For SI
classification assessment using LOSO-CV, they utilized the online phase data from
Session 2 and achieved an average accuracy of 74.15% with a standard deviation of
15.83%. In another recent study, a hybrid architecture called CCSPNet was proposed,
which incorporates a wavelet kernel CNN, a temporal CNN, CSP, and a dense neural
network. This combined architecture achieved a SI accuracy of 74.11% with a standard
deviation of 15.42% when tested on the online phase data from Session 2 [114]. Jeon
and colleagues [112] introduced a deep neural network aimed at learning subject-
invariant and class-relevant representations. They employed DeepConvNet and EEGNet
as feature extractors, achieving average accuracy scores of 73.32% with a standard
deviation of 13.55% and 72.16% with a standard deviation of 13.51%, respectively, in a
zero-training scenario. It is noteworthy that recent works include examples of applying
transformers for SI classification. Autthasan et al. [156] presented MIN2Net, a method
that combines multi-task learning with deep metric learning in a single framework to
extract a compact and discriminative representation from EEG data for classification,
yielding an accuracy of 72.03±14.04%. Deny et al. [157] introduced a hierarchical
transformer architecture with a low-level transformer and a high-level transformer,
where the former extracts features from short intervals, while the latter prioritizes
relevant ones using transformer self-attention. The highest reported in the literature SI
accuracy of 84.19% with a standard deviation of 10.08% was achieved by utilizing a
DeepConvNet architecture. This study used pooled data from both phases of Session 2
for assessment 4 [107].

The state-of-the-art results are presented in Table 8.2. To facilitate comparison,
the summary of the results for both the online phase and the combined data from the
online and offline phases of Session 2 are included. MS-En-CNN demonstrates superior
performance compared to previously reported results, considering both average and
median accuracies. Given the substantial number of subjects and trials, the observed
enhancements in accuracy compared to the runner-up performance reported in [107]
are statistically significant, as confirmed by a one-sided paired Wilcoxon signed rank
test with a P = 2 × 10−4.

To better visualize the achieved improvements, a scatter plot comparing SI
classification accuracy achieved by MS-En-CNN with that of [107] for each subject

4as detailed in the source code available at https://github.com/zhangks98/eeg-adapt
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Table 8.2: SI classification accuracy (in %) of various methods found in literature on
the KU dataset. Across all methods the test data used is the data from Session 2, while
its phases online (on) and offline (off) are indicated in table. A "–" sign in the table
means that a measure was not reported by the authors. MS-En-CNN represents the
K-fold CV based ensemble.

Method Phase Min Max Range Mean ± STD Median
MR FBCSP [100] on 48.00 97.00 49.00 68.59±15.28 63.00
Pooled CSP [100] on 45.00 100.00 55.00 65.65±16.11 58.00
Fused model [100] on 41.00 98.00 57.00 67.37±16.01 62.50
CNN based fusion
technique [100]

on 41.00 100.00 59.00 74.15±15.83 75.00

CCSPNet [114] on 50.00 100.00 50.00 74.11±15.42 73.50
Jeon et al. [112]
with EEGNet

off+on – – – 72.16±13.51 –

Jeon et al.[112]
with DeepConvNet

off+on – – – 73.32±13.55 –

MIN2NET [156] on – – – 72.03±14.04 –
Hierarchical Trans-
former [157]

off+on – – – 81.30 –

DeepConvNet
[107]

off+on 52.00 99.50 47.50 84.19±10.08 84.5

MS-En-CNN on 55.00 100.00 45.00 85.56±11.63 89.5
MS-En-CNN off+on 53.00 99.50 46.50 85.42±10.16 86.5

when held out for testing is presented in Fig.8.3. Points located above the identity line
in Fig.8.3 indicate that MS-En-CNN outperforms the previously reported method. In
fact, MS-En-CNN achieved a higher SI classification accuracy for 35 out of 54 subjects
in the KU dataset.

8.4 K as a Hyperparameter in MS-En-CNN

As previously mentioned, the choice of K = 13 was determined by the maximum
odd number that was feasible given the available computational resources. However,
it’s crucial to recognize that K serves as a hyperparameter and naturally impacts the
performance of the MS-En-CNN classifier. Therefore, in this section, the influence of
varying K on the performance of MS-En-CNN is investigated.

Different values of K, specifically K ∈ 3, 5, 7, 9, 11, 13, are considered and the
entire process outlined in Section 8.1 for each K (with the results for K = 13 already
presented) is repeated. Table 8.3 presents the SI accuracy of MS-En-CNN (summary
across 54 subjects) for varying values of K using pooled data from both the online
and offline phases of Session 2. The accuracies achieved for each test subject could be
found in Table A1 in Appendix section. An analysis to determine whether these results
demonstrate a statistically significant improvement compared to the performance of
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Figure 8.3: The scatter plot comparing the SI classification accuracy between MS-En-
CNN and the results presented in [107] for each subject when it is reserved for testing.
The vertical axis represents the accuracies achieved by the proposed MS-En-CNN
algorithm with DeepConvNet base classifier, while the horizontal axis represents the
accuracies reported by Zhang et al. in [107]. Points positioned above the diagonal line
(in green) signify that MS-En-CNN performs better.

a single DeepConvNet trained in [107] was also conducted. For this purpose, the P -
values from a one-sided paired Wilcoxon signed rank test are calculated and presented
in Table 8.4.

Based on these results, the following observations and recommendations could be
made:

• For values of K greater than or equal to 7, MS-En-CNN exhibits a statistically
significant performance improvement over the single DeepConvNet trained in
[107].

Table 8.3: SI performance (in %) of MS-En-CNN at different values of K using the
data from Session 2 (both phases: online and offline) as a test data.

K-fold CV Min Max Range Mean ± STD Median
K = 3 54.00 100.00 46.00 84.41 ±10.27 85.25
K = 5 53.00 99.50 46.50 84.91 ±10.12 85.50
K = 7 53.50 99.50 46.00 85.38 ±9.93 87.00
K = 9 53.50 99.50 46.00 85.30 ±9.87 87.50
K = 11 52.00 99.50 47.50 85.31 ±10.14 87.00
K = 13 53.00 99.50 46.50 85.42 ±10.16 86.50
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Table 8.4: P -values computed through a one-sided Wilcoxon signed rank test to
compare the classification accuracy achieved by an MS-En-CNN ensemble with base
classifiers based on DeepConvNet (referred to as MS-En-DeepConvNet), trained using
K-fold cross-validation, against that of a single DeepConvNet model.

K-fold CV K = 3 K = 5 K = 7 K = 9 K = 11 K = 13
P-values 0.243 0.023 9 × 10−4 10−4 0.001 2 × 10−4

• While it might be tempting to consider larger values of K, such as 13, which
could potentially yield better performance than relatively smaller values like 3,
it’s worth noting that moderate values like K = 7 or K = 9 demonstrate virtually
comparable performance to that of K = 13 while being computationally less
intensive (as fewer base classifiers need to be trained).

8.5 Summary

The impressive performance achieved by MS-En-DeepConvNet approach results from
the utilization of a theoretically sound ensemble learning scheme in conjunction with
the use of convolutional neural networks, which are known for their effectiveness in
decoding intricate patterns. By harnessing the strengths of both learning approaches, it
is possible to significantly outperform other methods previously attempted on a dataset
of this size and complexity.

In constructing the ensemble, a fixed base CNN architecture and a single algorithmic
hyperparameter, the epoch, were employed. The K base models were created with the
decisions being combined using a majority voting approach. Additionally, the impact of
varying K on the performance of MS-En-CNN was explored, considering values up to
K = 13 within the limits of available computational resources. It’s worth noting that in
the future, depending on computing capacity, one could investigate even larger values
of K (with a maximum of N − 1 where N represents the number of subjects in the
dataset) to potentially enhance classification performance. However, as demonstrated in
Section 8.4, a moderate value of K (7 or 9) already leads to a significant improvement
in performance.
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Chapter 9

Adaptive Boosting (AdaBoost)
for EEG-based BCI

In the previous chapters, the base estimators were generated in parallel. Such a method
leverages the independence among the models and typically averages out the errors. In
this chapter, a different ensemble technique known as Adaptive Boosting (AdaBoost),
where the base models are generated in a sequential manner, is considered.

Although AdaBoost has conventionally been associated with the basic weak
classifiers, recent research has explored the effectiveness of utilizing CNNs as capable
base learners within the AdaBoost framework [158]. By harnessing the robust feature
extraction capabilities of CNNs and the ensemble learning prowess of AdaBoost, an
innovative AdaBoost-CNN framework is investigated. This framework dynamically
enhances the significance of challenging instances in the subsequent training process
through iterative oversampling of the original dataset, replicating the misclassified
observations.

9.1 AdaBoost-CNN with Iterative Oversampling

Typically, in AdaBoost, each base estimator ψm is trained while taking into account the
weight vector dm = [dm1 , . . . , dmn ]T (see Eq.4.6 for dmi ). These weights are assigned to
individual training observations to highlight the significance of certain observations
over others. This weight assignment directly impacts how the loss is computed since
the model’s loss function is weighted on a per-observation basis. To clarify, the weights
dictate the influence of each observation within a batch when calculating the overall loss.
The procedure for this boosting technique is detailed in Algorithm 5 and is commonly
referred to as boosting by (re)weighting (in the context of this Thesis it is named as
AdaBoost.w.)
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Algorithm 5 : AdaBoost.w
1: Set M , which is the number of base estimators (CNNs)
2: for m ∈ [1,M ]:
3: if m == 1:
4: Initialize the weights for each observation as dm=1

i = 1
n

, where
i = {1, 2, ..., n}, and n is the total number of training observations:
dm=1 = [ 1

n
, . . . , 1

n
]

5: Train the CNN-based base classifier, ψm=1, on the training data T0 using
the initial weight vector dm=1

6: else :
7: Train ψm, the m-th CNN, on the training data T0 using the weight

vector dm = [dm1 , . . . , dmn ]
8: Record pm, which represents the set of class probability estimates of

the m-th CNN
9: Use pm to update the data weight vector dm+1 based on Eq. 4.6

10: Normalize the new weight vector dm+1

Algorithm 6 : AdaBoost.o
1: Set M , which is the number of base estimators (CNNs)
2: for m ∈ [0,M ]:
3: if m == 1:
4: Initialize the weights for each observation as dm=1

i = 1
n

, where
i = {1, 2, ..., n}, and n is the total number of training observations:
dm=1 = [ 1

n
, . . . , 1

n
]

5: Train the CNN-based base classifier, ψm=1, on the training data T0
6: else :
7: Train ψm on the replicated training set T ∗∗

m

8: Record pm
9: Use pm to update the weight vector dm+1

10: Use ceil() function of dm to determine the number of
repetitions for each data observation

11: Create the replicas of the observations to form a new training set T ∗∗
m

In this Thesis, the boosting by iterative oversampling method, denoted as AdaBoost.o,
is proposed. In this method, the weight information assigned to the observations,
represented as dm, is utilized to increase the number of misclassified observations,
essentially oversampling the training dataset. This results in a new training dataset,
denoted T ∗∗

m , which is subsequently used as input for the next learning iteration. The
higher the weight assigned to an observation, the more attention the next base model
must allocate to that particular observation, which leads to the observation being
replicated more times in the new dataset T ∗∗

m . The detailed procedure for implementing
AdaBoost.o is shown in Algorithm 6.

While both methods (the commonly used AdaBoost.w and proposed AdaBoost.o)
attribute significant importance to weights of observations, they differ in how this
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importance is distributed during training. To illustrate the distinctions in distributing
the importance of observations across these two boosting strategies, an artificial dataset
consisting of 10 observations is presented in Fig.9.1. For demonstration purposes, the
weights of observations (dmi ) are treated as integer values, although this is not the case in
the actual implementation of AdaBoost.w (see line 10 for normalization in Algorithms
5), and are represented in the form of matrix Dm.

In the case of boosting by reweighting (AdaBoost.w method – Algorithm 5,
Fig.9.1.a), each time the loss is computed, the complete importance of an observation is
considered in the loss function for the current mini-batch. For all training instances in
the mini-batch, where each training observation can appear only once, we calculate the
derivative of the weighted cost function and use it to update the model weights. When
the error is multiplied by the weight of the observation (as seen in the wider rectangles
corresponding to higher weights in Fig.9.1.a), the error is dramatically magnified for
that mini-batch. This rapid increase in error leads to quicker changes in the weights.
Unlike AdaBoost.w (where observations are weighted), AdaBoost.o allows the size
of the training set (T ∗∗

m ) after oversampling to vary based on the replication factor,
indicating how many times a particular observation will be repeated.

When comparing two methods, oversampling the original training set based on
weights in AdaBoost.o ensures that the effect of the weight of an observation is
distributed evenly across all mini-batches, thus making the impact of observation
importance global. AdaBoost.o maintains the emphasis on the importance of
misclassified observations while addressing the issues of localized effects due to the
high weight of an observation in a specific mini-batch (as in AdaBoost.w). By allowing
certain training observations to appear in different mini-batches depending on the
number of times they were replicated, the network is able to learn more smoothly.

It’s worth noting that in Algorithm 6, the weight vector is not normalized, as doing so
would result in entries in the normalized vector being less than 1, causing the replication
factor to lose its meaning. Instead, the ceil() function is calculated to determine the
integer value used as the number of replications for each observation.

9.2 SI Classification Performance of AdaBoost-CNN

This section presents the results that were achieved using the AdaBoost-CNN method.
The performance was evaluated on MI-based dataset. To construct the ensemble the
standard two and three-layered CNN architectures were used. Both 1-dimensional (1D)
and 2-dimensional (2D) CNNs were considered. For both of the boosting methods
(AdaBoost.w and AdaBoost.o) the same training procedure was followed. In total
50 base estimators (CNNs) were used, and each one was trained for a maximum of
50 epochs. The batch size was set to 32. The learning rate of 0.001 with the decay
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Table 9.1: Average (across 9 subjects) SI classification accuracy results achieved on
MI-based dataset by the AdaBoost-CNN ensembles with various CNN configurations
being used as the base estimators (BE) of the ensemble using reweighting (AdaBoost.w)
and iterative oversampling based boosting (AdaBoost.o) techniques, AB.w and AB.o in
the table, respectively. Here 1D convolution was considered.

(a) Two-layered CNN architectures as base estimators for AdaBoost-CNN.

BE models Hyperparameters of BE AB.w, AB.o,
conv1 conv2 kernel % %

AB-CNN1D-16-32/3 16 32 3 68.83 69.29
AB-CNN1D-16-32/5 16 32 5 68.94 68.09
AB-CNN1D-16-32/7 16 32 7 70.49 68.94
AB-CNN1D-32-64/3 32 64 3 68.94 68.98
AB-CNN1D-32-64/5 32 64 5 68.33 70.02
AB-CNN1D-32-64/7 32 64 7 69.44 70.68
AB-CNN1D-64-128/3 64 128 3 69.29 70.10
AB-CNN1D-64-128/5 64 128 5 69.64 69.71
AB-CNN1D-64-128/7 64 128 7 68.79 71.64

Average 69.19 69.72
(b) Three-layered CNN architectures as base estimators for AdaBoost-CNN.

BE models Hyperparameters of BE AB.w, AB.o,
conv1 conv2 conv3 kernel % %

AB-CNN1D-16-32-64/3 16 32 64 3 68.48 67.75
AB-CNN1D-16-32-64/5 16 32 64 5 68.02 69.52
AB-CNN1D-16-32-64/7 16 32 64 7 66.90 69.60

AB-CNN1D-32-64-128/3 32 64 128 3 68.75 69.29
AB-CNN1D-32-64-128/5 32 64 128 5 68.36 69.95
AB-CNN1D-32-64-128/7 32 64 128 7 68.09 69.71
AB-CNN1D-64-32-16/3 64 32 16 3 67.25 71.03
AB-CNN1D-64-32-16/5 64 32 16 5 66.13 68.40
AB-CNN1D-64-32-16/7 64 32 16 7 69.68 70.87

AB-CNN1D-128-64-32/3 128 64 32 3 69.29 70.18
AB-CNN1D-128-64-32/5 128 64 32 5 67.79 68.91
AB-CNN1D-128-64-32/7 128 64 32 7 71.84 72.96

Average 68.38 69.85
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Table 9.2: Average (across 9 subjects) SI classification accuracy results achieved on
MI-based dataset by the AdaBoost-CNN ensembles with various CNN configurations
being used as the base estimators (BE) of the ensemble using reweighting (AdaBoost.w)
and iterative oversampling based boosting (AdaBoost.o) techniques, AB.w and AB.o in
the table, respectively. Here 2D convolution was considered.

(a) Two-layered CNN architectures as base estimators for AdaBoost-CNN.

BE models Hyperparameters of BE AB.w, AB.o,
conv1 conv2 kernel % %

AB-CNN2D-16-32/3 16 32 3×3 51.58 54.17
AB-CNN2D-16-32/5 16 32 5×5 65.05 63.31
AB-CNN2D-16-32/7 16 32 7×7 63.27 62.73
AB-CNN2D-32-64/3 32 64 3×3 51.23 58.14
AB-CNN2D-32-64/5 32 64 5×5 65.97 63.97
AB-CNN2D-32-64/7 32 64 7×7 65.12 65.12
AB-CNN2D-64-128/3 64 128 3×3 62.31 61.92
AB-CNN2D-64-128/7 64 128 7×7 67.44 66.05

Average 61.50 61.93
(b) Two-layered CNN architectures with rectangular shape of the kernel as base
estimators for AdaBoost-CNN.

BE models Hyperparameters of BE AB.w, AB.o,
conv1 conv2 kernel % %

AB-CNN2D-16-32/3×8 16 32 3×8 64.81 67.13
AB-CNN2D-16-32/3×24 16 32 3×24 65.39 66.24
AB-CNN2D-16-32/3×40 16 32 3×40 66.78 67.44
AB-CNN2D-32-64/3×8 32 64 3×8 65.55 64.93

AB-CNN2D-32-64/3×24 32 64 3×24 67.09 68.25
AB-CNN2D-32-64/3×40 32 64 3×40 66.24 65.63
AB-CNN2D-64-128/3×8 64 128 3×8 64.62 64.70

AB-CNN2D-64-128/3×24 64 128 3×24 65.82 67.55
AB-CNN2D-64-128/3×40 64 128 3×40 64.74 64.24

Average 65.67 66.23
(c) Three-layered CNN architectures as base estimators for AdaBoost-CNN.

BE models Hyperparameters of BE AB.w, AB.o,
conv1 conv2 conv3 kernel % %

AB-CNN2D-16-32-64/3 16 32 64 3×3 67.40 67.90
AB-CNN2D-16-32-64/5 16 32 64 5×5 68.06 69.48

AB-CNN2D-32-64-128/3 32 64 128 3×3 68.21 68.02
AB-CNN2D-32-64-128/5 32 64 128 5×5 68.44 68.40

Average 68.03 68.45
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9. Adaptive Boosting (AdaBoost) for EEG-based BCI

Figure 9.1: Distribution of the importance of an observation using different boosting
strategies: (a) AdaBoost.w, and (b) AdaBoost.o. Blue color indicates the observations
from the original dataset that were correctly classified in the m-th iteration, while the
reddish color illustrates the misclassified ones, where the brighter the color, the more
this observation contributed to the error (observations C and H). The lower part of each
subfigure illustrates the contribution of the randomly chosen mini-batches (depicted
as hatched squares) in the optimization process with a batch size of 5 (this number
was selected just for illustration purposes). It should be noted that the entries in the
weight matrix Dm were intentionally used as integers to provide a clearer depiction of
the process, while dmi should be normalized as shown in line 10 of Algorithm 5.

factor of 10−6 was used. Tables 9.1 and 9.2 demonstrate the details about the CNN
configurations: the number of convolutional filters used in each CNN layer (conv1,
conv2, conv3) and the kernel size. In the case of 2D CNNs, in addition to the square
shape of the kernel sizes (3 × 3, 5 × 5, 7 × 7) rectangular shapes (3 × 8, 3 × 24, 3 × 40)
were considered. In the same tables, the average classification performance (across 9
subjects) is presented for each case of AdaBoost-CNN. The accuracy in bold highlights
the one that on average performs better when comparing AdaBoost.w and AdaBoost.o.
On average the proposed AdaBoost.o boosting technique exhibits better performance.

In evaluating the general performance of AdaBoost-CNN, it was observed that the
use of 2-layered 2D CNNs with standard square-shaped kernels yielded the lowest
results. However, introducing rectangular-shaped kernels led to a notable improvement,
enhancing accuracy by approximately 4%. The performance was further optimized
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with a 3-layered architecture for 2D CNNs within the AdaBoost-CNN framework. On
a given dataset, across diverse CNN configurations, the most impressive results were
obtained with 1D CNNs. Among the tested 1D CNNs, AdaBoost.o achieved an average
accuracy of 69.79%, surpassing AdaBoost.w by 1.06%. The classification accuracies
for each test subject can be found in the Appendix Tables B2 and B3. On the given
dataset with the defined architectures of the base estimators, the achieved improvement
of AdaBoost.o with respect to AdaBoost.w is not substantial. Nevertheless, the overall
performance of AdaBoost-CNN is remarkably impressive. Moreover, when considering
the iterative oversampling method on image classification problems in most cases the
improvement of more than 4% was achieved with AdaBoost.o over AdaBoost.w, while
in some cases the difference in the performance was more than 12%. To showcase the
potential of the proposed method, a summary of results for image classification across
four widely used datasets is provided in Appendix (see Tables B4 and B5). Given the
potential of the proposed boosting strategy, it is recommended for further exploration
and analysis.
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Chapter 10

Discussion
The emergence of deep learning technologies, powered by recent advancements in
parallel computing hardware and algorithmic progress, has presented opportunities
to achieve significant breakthroughs across various domains [52]. This situation is
primarily attributed to the deep neural networks’ (DNNs) ability to capture complex data
representations through multiple hidden layers [159]. Among different types of DNNs,
Convolutional Neural Networks (CNNs) have excelled in terms of training efficiency and
performance, leading to several state-of-the-art architectures for accurately classifying
EEG data [35, 30, 21]. Despite this, the challenge of inter-subject variability in brain
signals remains a significant obstacle in developing zero-calibration subject-independent
(SI) BCI systems. This PhD Thesis aims to create robust models for anticipating the
user’s mental intention using EEG signals. In this context, the "robustness" implies
the development of SI models applicable to any user without requiring individualized
calibration. Moreover, such models aim to accommodate various BCI paradigms,
ensuring adaptability across a range of applications and users. Particularly in this
project, several motor imagery (MI) and P300-based datasets were considered. In both
cases, the project involved binary classification tasks: differentiating between left and
right-hand movements in one scenario and distinguishing target (P300 signal) from
non-target (non-P300 signal) signals in the other.

To push the boundaries of DNNs in the context of SI EEG classification, here
the advantages of CNNs are integrated within the potential of the ensemble learning
methods. However, while this integration holds promise, common ensemble learning
techniques like stacking [160, 161], boosting [121, 162], bagging [163, 64], and random
subspace [164] do not offer a clear framework for training and fine-tuning to enhance
the performance of the existing DNN classification models, especially for use in
SI applications. Furthermore, enveloping a classifier within an ensemble learning
approach does not necessarily guarantee a substantial improvement in performance, if
any [165, 166, 167]. This prompts the question of whether a systematic approach is
viable for enhancing the performance in SI EEG classification or if "ad hoc" techniques
remain the sole viable options.

In this study, a "multi-subject" ensemble CNN (MS-En-CNN) is proposed and its
effectiveness is investigated. This ensemble consists of multiple CNN base classifiers,
each trained on a subset of subjects’ data. Three strategies for constructing the MS-En-
CNN, namely Subject-Specific Training and Model Selection (SS-TM), Subject Pairs
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Training and Model Selection (SP-TM), and "Delete-a-Subject-Jackknife" (DASJ),
are introduced. The numerical experiments focus on evaluating the performance of
these strategies in SI classification tasks. On the P300-based dataset (BNCI), the
results demonstrate that all three MS-En-CNN strategies yield significantly improved SI
classification performance compared to the average performance of their respective base
CNN classifiers. Depending on the test subject (and the strategy), these improvements
in classification accuracy range from approximately 1% to about 11%. Furthermore,
the findings reveal that MS-En-CNN substantially enhances the average classification
performance when compared to the conventional approach of training CNNs using
pooled data from multiple subjects. The improvements of 4.19%, 5.16%, and 8.49% in
average classification accuracy (across 10 subjects) are achieved when using SS-TM,
SP-TM, and DASJ, respectively. Moreover, the respective reductions in the standard
deviation are 1.22%, 0.73%, and 2.56%. Among the three proposed base classifier
training strategies, DASJ sample based approach appears to be the most promising.
This strategy was further validated on two MI-based datasets, where the performance of
the MS-En-CNN was evaluated against the average accuracies of the base classifiers.
Employing the DASJ based ensemble yielded 1.48% and 2.95% improvement in the
case of BCI IV 2A and 2B datasets, respectively. The significance of the improvements
was confirmed through a one-sided paired Wilcoxon signed-rank test with a significance
level of 0.05.

The above-mentioned results were achieved while employing a brute-force search
based model selection to define the architecture for each of the base classifiers of the
MS-En-CNN. As it was demonstrated in [135] and verified herein in the context of
SI classification using the ensembles, training and fine-tuning numerous architectures
within the restrictive hyperparameter space could be a viable option to construct an
accurate classifier. Considering the fact that incorporating domain knowledge into a
DNN’s structure is a complex task, these results on systematic CNN model selection
for designing the base classifiers can function as a helpful guide for individuals in
the field of deep learning who have limited expertise in the given domain. It can aid
them in designing robust ensemble models for EEG classification. Performing such
a model selection for base classifiers, of course, comes at the cost of computational
complexity. Depending on the availability of the resources, one may explore even larger
hyperparameter space. Additionally, in this work mostly the structural hyperparameters
were taken into account (number of convolutional layers, number of convolutional
filters in each layer, kernel size), while the algorithmic parameters (number of epochs,
batch size, optimizer, learning rate, etc.) were left fixed for all of the CNN architectures.
In the future, both structural and algorithmic hyperparameters could be considered
during the model selection process. Moreover, instead of using the exhaustive search
(as presented herein), some suboptimal search strategies could be investigated in the
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10. Discussion

future.

Exploring multiple architectures for classifier development is a feasible option, but
it is challenging and resource-intensive. An alternative approach for selecting the
architecture for base classifiers is to tailor an existing DNN’s structure. For example,
EEGNet [38], a CNN architecture that was designed based on domain knowledge and
has consistently demonstrated state-of-the-art performance in various EEG classification
tasks. This option has been considered in this Thesis. The base classifiers for MS-En-
CNN were crafted using three prominent CNN architectures within the BCI domain:
ShallowNet, DeepConvNet, and EEGNet. The base classifiers were trained following
the DASJ-based strategy. The empirical results derived from the experiments, conducted
on three publicly accessible P300-based datasets, indicate that in most instances, the
DASJ-based ensemble CNN classifier enhances the accuracy of an existing CNN
architecture. The degree of improvement reaches as high as 9% in certain cases.

A limitation of the DASJ-CNN framework arises when dealing with datasets
containing a large number of subjects. It becomes computationally demanding to
set aside one subject at a time, train, and fine-tune a base classifier for each jackknife
sample. However, depending on the available computational resources, an alternative
option is to parallelize the training process. This approach is relatively straightforward
since the training of each base classifier for each jackknife sample can be carried out
independently of the others. In cases where computational resources are insufficient,
an alternative is to divide subjects into K folds and train one base classifier using the
subjects within each fold. In this scenario, K can be considered as a hyperparameter
to be optimized. Such an experiment was conducted on one of the largest datasets
collected from 54 subjects. This dataset, which emerged relatively recently, has garnered
significant attention and has already been used to test a variety of methods, including
SI approaches. Notably, the K-fold CV-based MS-En-CNN surpassed the performance
of the current state-of-the-art methods reported in the literature. This research not
only represents a significant contribution by achieving the highest overall classification
accuracies ever reported for such an extensive MI dataset, but it also opens up the
possibility of applying the MS-En-CNN classification technique to attain state-of-the-
art SI classification performance in other EEG-based paradigms in the future.

As a recommendation based on the presented work and results, the choice of
ensemble learning strategy may depend on the size of the dataset. For smaller datasets,
the DASJ approach, which has shown promising results in enhancing classification
performance when dealing with limited subject samples, is suggested. Conversely,
given larger datasets, a K-fold CV-based MS-En-CNN approach is recommended. This
strategy allows for the efficient utilization of data while providing robust performance
assessments.

MS-En-CNN discussed above is an example of the ensemble where the base
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classifiers can be trained in parallel and later aggregated via certain combining schemes.
A different method to construct an ensemble is to train the base classifiers in sequence,
allowing the base models to learn from the errors made by their predecessors. A well-
known example of this type of ensemble is AdaBoost. Given the primary focus of
this Thesis on the advantages of CNNs and their application in creating ensembles to
enhance performance, as well as the emerging capability to construct AdaBoost not
only from weak classifiers but also from CNNs [158], the evaluation of AdaBoost-CNN
within the context of EEG classification is conducted. In addition to the conventional
implementation of the boosting strategy via reweighting, an alternative strategy of
iterative oversampling is proposed. On average, the iterative oversampling-based
AdaBoost-CNN tends to perform better. Based on the results and promising potential
of the AdaBoost-CNN, it is recommended for future investigation.
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Chapter 11

Conclusions and Future work
In recent years, deep neural networks have opened up remarkable opportunities for
crafting highly accurate classifiers to decode EEG signals. Among these architectures,
the Convolutional Neural Network (CNN) has gained popularity due to its exceptional
predictive performance and efficient training. Its efficiency in extracting crucial features
from raw EEG data has solidified itself as a prominent choice for BCI applications. In
this study, by leveraging the advantages of both deep CNNs and ensemble learning,
a “multi-subject” ensemble CNN (MS-En-CNN) is proposed and its effectiveness is
investigated. This ensemble consists of multiple CNN base classifiers, each trained on
a subset of subjects’ data. Several distinct strategies for constructing the MS-En-CNN,
depending on how subject-specific data is utilized for training and fine-tuning the base
classifiers, are introduced. Depending on the strategy, the training and validation sets
were formed based on the portions of subject-specific data; pairs of the subjects; or
K-fold cross-validation. The validation sets were used for the model selection process
to tune the hyperparameters of the base CNNs. The proposed strategies were validated
on multiple MI and P300-based datasets. On average, all of the tested strategies led
to a better SI classification accuracy when compared to the average accuracy of the
base CNNs used within the ensembles and with respect to a single model trained on
a pool of data collected from multiple subjects. While training the base classifier
according to the particular strategy, two options for defining the architecture of the
base estimators were investigated. One is based on the brute force search within
the limited hyperparameters space and the second with the fixed structure of well-
known architectures (ShallowNet, DeepConvNet, and EEGNet). The former, although
being more computationally demanding, is useful for practitioners with limited domain
knowledge. The latter highlights the fact the proposed methodology is a simple yet
effective way to improve the performance of existing CNN architectures.

Among different strategies, a K-fold cross-validation based MS-En-CNN showed
the most promising results. In this strategy, K could be treated as a hyperparameter
that might be varied depending on the size of the dataset and the availability of
computational resources. The case with K equal to the number of available training
subjects corresponds to the jackknife-inspired strategy, where one of the training
subjects is left out to form a jackknife sample. While this approach demonstrated
efficiency on small datasets, scaling up to larger datasets may pose computational
challenges when setting aside a single subject. Hence, a moderately sized value of
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K is suggested to be used, striking a balance between achieving better results and
avoiding excessive computational complexity. The experiments conducted on one of
the largest MI dataset demonstrated that K-fold based implementation of MS-En-CNN
consistently enhances classification accuracy with respect to a single model. Notably, it
surpassed the performance of the current state-of-the-art methods tested on the same
dataset. In addition to proposing MS-En-CNN, the potential of the AdaBoost-CNN was
investigated and a new boosting strategy was introduced. Given the promising results,
it calls for further investigations.

While the current research has concentrated on binary classification within the SI
classification of EEG, the exploration of multi-task classification could be considered
in the future. Shifting towards the simultaneous classification of multiple tasks not only
broadens the scope of the study, but also allows to move towards the realm of online
BCI. This transition reflects the complexity of real-world cognitive scenarios, where
individuals often engage in various mental activities concurrently. Talking about MI-
based BCI, in addition to left and right-hand movement, imagination of other activities
might be considered (for example tongue or feet movement). Binary P300 classification
problem can be extended toward the character recognition problem, such that the online
BCI speller can be implemented. Furthermore, extending the application of CNN
ensembles to other EEG-based paradigms opens doors to diverse neurological contexts.
Additionally, a critical aspect of future work might involve delving into the optimization
of model selection processes. Exploring and refining search strategies to identify
optimal model configurations can significantly enhance the efficiency and efficacy
of the proposed methods. This is related to both MS-En-CNN and AdaBoost-CNN
presented herein.
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Appendices
This section presents the supplementary material for the Thesis.

Appendix A

Table A1: SI performance of K-fold cross-validation based MS-En-CNN for each of
the test subjects at different K values. For comparison purposes the performance of the
DeepConvNet reported by Zhang et al. [107] is presented as well.

[107] K = 3 K = 5 K = 7 K = 9 K = 11 K = 13
1 81.50 82.50 83.00 85.00 83.00 85.50 85.00
2 81.50 86.50 83.50 87.50 85.50 85.00 87.50
3 97.00 98.00 97.50 97.00 97.50 97.50 97.00
4 89.50 89.50 89.50 90.00 91.00 90.50 91.50
5 90.50 88.00 89.00 92.50 92.00 92.00 92.50
6 99.00 99.00 98.50 98.50 98.50 99.00 99.00
7 85.50 82.50 85.50 87.00 88.00 86.50 85.00
8 85.50 87.00 87.00 86.50 88.00 87.00 87.50
9 73.00 70.50 73.00 72.50 73.00 73.00 71.50
10 65.00 66.50 64.50 66.00 67.50 64.00 64.50
11 73.50 70.00 75.50 74.00 72.00 71.00 70.00
12 77.50 79.50 79.50 78.00 79.00 78.00 79.00
13 73.00 74.50 71.50 73.00 73.00 72.00 71.00
14 80.00 78.50 81.00 78.00 80.50 78.00 81.00
15 87.50 88.00 91.50 92.00 90.00 91.50 92.00
16 87.50 86.50 86.00 87.50 86.50 87.00 86.00
17 74.50 72.50 71.50 73.50 73.50 76.00 74.50
18 83.00 81.50 86.50 85.00 87.50 86.00 86.00
19 82.50 85.00 84.50 81.00 83.00 82.50 83.00
20 83.00 86.00 87.00 87.00 87.50 87.50 87.00
21 97.00 99.50 99.00 99.00 98.50 99.00 98.50
22 82.50 86.50 84.00 86.50 86.00 87.00 85.50
23 77.00 78.50 76.50 76.50 78.50 80.00 78.00
24 59.50 59.00 66.00 65.00 64.00 63.00 66.00

Table A1 presents the SI classification performance achieved on 54 subject-
based dataset using the K-fold cross-validation. The accuracy results for K =
{3, 5, 7, 9, 11, 13} are shown. Additionally, the performance of DeepConvNet [107] for
each test subject is tabulated.
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Table A1: Continued – Results for test subjects 42-54. The mean, STD, median,
miniumum, maximum and range of the accuracies across 54 subjects are presented.

[107] K = 3 K = 5 K = 7 K = 9 K = 11 K = 13
25 99.50 98.50 99.50 99.50 99.50 99.00 99.00
26 86.50 86.00 84.50 88.50 87.50 87.50 90.00
27 92.00 85.00 89.50 90.50 92.00 92.50 95.00
28 97.50 98.00 98.50 98.00 97.50 98.00 98.50
29 81.50 85.00 85.00 85.00 83.50 82.50 83.50
30 77.00 83.50 80.00 83.00 82.00 83.00 81.50
31 85.00 85.50 85.50 89.00 88.50 87.50 87.00
32 90.00 92.00 92.00 91.50 91.50 92.00 91.50
33 99.00 98.50 99.00 99.00 98.50 99.00 98.50
34 69.50 65.00 64.00 67.00 67.00 66.50 67.00
35 97.00 96.50 98.00 97.50 98.50 97.50 97.50
36 99.00 100.00 99.50 99.50 99.50 99.50 99.50
37 95.00 96.50 96.50 96.50 96.00 96.00 96.50
38 74.50 72.50 78.50 75.50 78.00 80.50 78.50
39 91.50 91.50 93.00 90.50 92.50 91.50 92.50
40 87.50 84.50 81.50 84.00 82.50 84.00 85.50
41 79.50 83.50 85.50 85.00 83.00 84.50 84.00
42 81.50 79.00 81.00 79.00 80.00 80.50 80.50
43 91.00 91.50 90.00 92.00 90.50 90.50 92.00
44 90.00 89.00 89.00 89.50 89.50 90.00 89.50
45 94.50 93.50 95.00 94.00 94.00 94.50 95.50
46 88.50 90.00 87.00 89.00 88.00 87.00 88.50
47 90.50 93.50 91.50 94.50 94.00 93.00 94.00
48 81.50 79.50 79.00 80.50 78.50 81.00 80.00
49 91.00 91.00 93.50 92.50 91.50 91.00 92.00
50 52.00 54.00 53.00 53.50 53.50 52.00 53.00
51 78.50 75.00 76.00 80.00 80.00 78.00 78.00
52 84.00 85.00 91.50 87.00 87.50 91.50 87.50
53 82.00 81.50 80.00 80.00 81.50 81.50 80.00
54 74.00 78.00 77.50 81.00 76.50 77.00 78.00

Mean 84.19 84.41 84.91 85.38 85.30 85.31 85.42
STD 10.08 10.27 10.12 9.93 9.87 10.15 10.16

Median 84.50 85.25 85.50 87.00 87.50 87.00 86.50
Min 52.00 54.00 53.00 53.50 53.50 52.00 53.00
Max 99.50 100.00 99.50 99.50 99.50 99.50 99.50

Range 47.50 46.00 46.50 46.00 46.00 47.50 46.50
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Appendix B

Table B2: Classification accuracy results achieved on MI-based dataset by the AdaBoost-
CNN ensembles for each test subject with various CNN configurations being used as
the base estimators (BE) of the ensemble using reweighting (AdaBoost.w - AB.w) and
iterative oversampling based boosting (AdaBoost.o - AB.o) techniques. The average
across various models is presented for each subject and each method. Results are
presented for test subjects 1-5. 1D convolution is considered.
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Table B2: Continued - Results for test subjects 6-9.
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Table B3: Classification accuracy results achieved on MI-based dataset by the AdaBoost-
CNN ensembles for each test subject with various CNN configurations being used as
the base estimators (BE) of the ensemble using reweighting (AdaBoost.w - AB.w) and
iterative oversampling based boosting (AdaBoost.o - AB.o) techniques. The average
across various models is presented for each subject and each method. Results are
presented for test subjects 1-5. 2D convolution is considered.
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Table B3: Continued - Results for test subjects 6-9.
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Table B4: Image classification problem: average classification accuracies and standard
deviation calculated across various AdaBoost-CNNs (12 architectures for each dataset).

Dataset AdaBoost.w, (%) AdaBoost.o, (%)
CIFAR-10 70.37 ± 4.59 78.7 ± 4.95

EMNIST by-class 83.31 ± 2.12 85.36 ± 0.83
EMNIST by-merge 86.97 ± 2.72 89.07 ± 0.82

Fashion MNIST 89.62 ± 1.17 91.36 ± 3.01
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Table B5: Image classification problem: the percentage differences in classification ac-
curacies achieved by comparing the iterative oversampling based boosting (AdaBoost.o)
method to reweighting (AdaBoost.w) methods. The ’+’ sign indicates that AdaBoost.o
based boosting outperforms the other method.

AdaBoost-CNN
model

CIFAR-10 EMNIST
by-class

EMNIST
by-merge

Fashion
MNIST

AB-CNN-16-32/3 +6.10 +6.04 +7.54 +2.11
AB-CNN-16-32/5 +7.45 +3.15 +3.12 +1.98
AB-CNN-16-32/7 +11.14 +2.42 +1.59 -7.73
AB-CNN-32-64/3 +6.19 +1.99 +4.06 +2.98
AB-CNN-32-64/5 +6.99 +3.22 +1.65 +1.55
AB-CNN-32-64/7 +11.67 +0.77 +2.29 +4.14
AB-CNN-64-128/3 +6.23 +1.37 +1.53 +2.88
AB-CNN-64-128/5 +5.93 +1.15 -0.15 +2.60
AB-CNN-64-128/7 +12.63 +0.64 +0.54 +3.33
AB-CNN-128-256/3 +6.54 +2.34 +1.92 +2.32
AB-CNN-128-256/5 +12.67 -0.05 +1.81 +2.74
AB-CNN-128-256/7 +6.45 +1.59 -0.73 +1.97
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