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Abstract

This paper describes the progression of research initiated in MATH 424:
Mathematical Finance course, with an emphasis on the creation and devel-
opment of the Trinomial Tree Method for option pricing, particularly in the
presence of transaction costs. We begin by reviewing the Cox-Ross-Rubenstein
binomial scheme and then go on to trinomial approaches in financial literature,
demonstrating their enhanced effectiveness over the binomial method. Our
study includes complex models such as the Boyle and Vorst model, widening
the scope beyond the standard Black-Scholes model covered in the course.
However, the Boyle and Vorst’s method only covers transaction cost for bino-
mial models. Our objective is to review the literature on the Trinomial Tree
Method considering transaction cost which requires solving the absolute value
matrix equation Ax− |X| = b along the tree. We have extended the results
of the Boyle and Vorst from a binomial to trinomial method for a European
call option. We implemented numerically our method and these results were in
consistent with the results of the Boyle and Vorst’s method comparable to the
binomial results.

The research extends the practical application of option pricing models
by providing a complete framework for solving absolute value equations in
the setting of trinomial trees, yielding useful insights for the Trinomial Tree
Method with transaction cost.

Keywords: Trinomial Tree Method, option pricing, transaction cost, financial
mathematics
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1 Introduction

1.1 Literature Review

The field of mathematical finance has undergone significant progress in modeling
and pricing financial derivatives over time in complete markets. The pursuit of more
accurate and sophisticated methods for incomplete markets is motivated by the
dynamic nature of financial markets and the necessity to consider various factors
influencing option prices. This section traces the development of option pricing
models, highlighting crucial milestones that have shaped the landscape of financial
mathematics.

In the early 1970s, the groundbreaking work of Fischer Black, Myron Scholes and
Robert C. Merton laid the groundwork for contemporary option pricing theory. The
Black-Scholes model, presented in their paper “The Pricing of Options and Corporate
Liabilities” (Black and Scholes, 1973), provided an innovative analytical solution for
European call and put options. Despite its elegance, this model assumes constant
volatility and complete markets, constraining its practical applicability.

Cox, Ross, and Rubinstein first proposed the binomial option pricing model in
1979 and hereafter referred to as the CRR model (Cox et al., 1979). This discrete-
time model allowed for the consideration of varying volatility and discrete dividend
payments, enhancing its versatility for option pricing. The binomial approach served
as a stepping stone toward more intricate and realistic models. Expanding upon
the binomial framework, researchers explored Trinomial Tree Methods to achieve
even greater accuracy. It is well-known that the binomial method’s solution, as time
period approaches to infinity, converges to the exact solution of the Black-Scholes
equation.

In general, it is assumed that trading involves no transaction costs, meaning that
the buy and sale prices of stocks are identical. Such models without transaction
costs are described as friction-free. However, in actual market settings, transaction
costs come in various forms. Fixed costs, where a consistent price is charged for
each transaction regardless of its amount, and proportional costs, where fees are
scaled according to transaction size, are the two most basic forms. For simplicity, in
1992, Boyle and Vorst focused on proportional transaction costs in their analysis and
enhanced option pricing by integrating transaction costs into the binomial model
(Boyle and Vorst, 1992). Although not originally focused on trinomial trees, their
methodology can be adapted to these models, providing a more accurate reflection of
market conditions. This work forms a bridge between simpler binomial methods and
more complex trinomial models, particularly by adding real-world trading costs. Our
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goal is to extend these models to incorporate transaction costs, using the foundational
work of Boyle and Vorst as a guide.

We will further detail the enhancements and practical implications of integrating
transaction costs into Trinomial Tree Methods in the subsequent sections, advancing
the field of financial mathematics.

1.2 Introduction to Options

An option is a contract that offers the owner a right, rather than an obligation,
to trade the underlying asset at a fixed price, denoted by K-called the strike price,
and at a specified future time, denoted by T -called the expiration date (Cox et al.,
1979). There are two types of common options: a call and a put. The call option
allows the holder to purchase the asset; if it is exercised at the expiration date, then
it is considered as a European call option (Black and Scholes, 1973). The further
explanations are considered in the following example based on the idea derived from
the chapter “A Review of Options” in the book A Discussion of Financial Economics
in Actuarial Models (Finan, 2016). For simplicity we only consider the European
call option in this project. The following is a simple example to explain how profits
can be made for a European long-call option.

Example 1:
Suppose the current stock price, denoted by S, on the market is $100. An investor

chooses to purchase a call option with strike price K = $105. The investor, as a
buyer of the option, takes a long position and pays a premium for the option at
a price of $5, denoted by Pc. On the other side, the seller of the option takes a
short-sale position for the asset and is obligated to sell the stock and deliver to the
option holder when it is exercised. At the expiration date, suppose that the stock
price increases to ST = $120. What is the profit of the investor?

Solution:
The payoff and profit of the call option at expiration date can be expressed in

the following equations:

Payoff to Call Option = max(0, ST −K) (1)

Call Profit = max(0, ST −K)− Pc (2)

The payoff and profit diagrams of the call option are shown in Figure 1 below. The
call option can be exercised if, and only if, ST > K at the expiration date (Finan,
2016). Otherwise, if the stock price is less than K, the investor loses the premium.
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Therefore, the investor’s call profit = max(0, ST −K)− Pc = max(0, $120 - $105) -
$5 = $10.

Payoff = max(0, ST −K)

Profit = max(0, ST −K) - Pc

−Pc

STK K + Pc

0

Payoff / Profit Long Call

Figure 1: Payoff and Profit of a Long Call Option

The central question: What is the price of a European call option at time 0?
In the following we will explain how to determine this price by introducing Binomial
models.

2 Binomial Models

We introduce the CRR binomial method to solve for the option price and associate
it with risk-neutral probability. In the following, for this we introduce two main
approaches: Replicating portfolio in Section 2.1 and a Risk-neutral approach in
Section 2.2. Moreover, we introduce the concept of transaction costs, which brings a
layer of real-world complexity to the binomial model in Section 2.3. This section
will discuss how incorporating transaction costs affects the pricing and replication
strategies, necessitating adjustments to the standard binomial approach to accu-
rately reflect the impact of these costs on trading strategies and option valuations.
Through these discussions, our aim is to provide a nuanced understanding of both
the theoretical underpinnings and practical applications of the binomial method in
financial mathematics.

2.1 Replicating Portfolio Approach of the Binomial Model

The binomial model for option pricing represents one of the foundational method-
ologies in financial mathematics, offering a discrete-time framework for valuing
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options. This model, introduced by Cox et al. (1979), conceptualizes the evolution
of stock prices as a binomial tree, where each node represents a possible price at a
given time in the future.

At its core, the binomial model assumes that the price of the underlying asset,
S, can move to one of two possible prices in the next time step: an up state (u) with
a probability p or a down state (d) with a probability 1−p. Let Cu = max(0, uS−K)

and Cd = max(0, dS −K) be two possible values of the payoff values of the option
at time period n = 1 (Cox et al., 1979). At two-time period, we assume udS = duS

and Cud = Cdu as illustrated in the following Figure 2:

S
C

uS
Cu

dS
Cd

u2S
Cu2 = max(0, u2S −K)

udS = duS
Cud = Cdu = max(0, udS −K)

d2S
Cd2 = max(0, d2S −K)

p

1− p

p

1− p

p

1− p

n = 0 n = 1 n = 2

Stock Price = S
Option Price = C

Figure 2: Two-step Binomial tree method

We assume there is no transaction cost and no arbitrage opportunity. The
binomial model’s flexible feature allows us to incorporate with delta hedging type
framework. The seller of the option needs to form a portfolio to match the value of
the option so that at the expiration date he can fulfill the obligation. The portfolio
is replicated with the number of shares of the stock denoted by ∆ and the amount
of invested money in risk-free bonds identified as B (Cox et al., 1979). The cost of
the portfolio, when the stock price goes up, is Cu = uS∆+B, and when the stock
price goes down, is Cd = dS∆+B (Hull, 2022).

Regardless of the outcome, based on the assumption that definition of complete
market is complete, the value of the portfolio is the same (Cutland and Roux, 2013),
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so we ensure that it is risk-free and it follows:

∆ =
Cu − Cd

uS − dS
(3)

B = e−rT uCd − dCu

u− d
(4)

C = ∆S +B (5)

The Equation (3) shows that ∆ is a hedge ratio of the price that measures the
sensitivity of the option price in general trading to the change of the option price.
The risk-free portfolio with no-arbitrage opportunity must earn a risk-free interest
rate, which is discussed in the following section.

2.2 Risk-Neutral Approach of the Binomial Method

Let r be the risk-free interest rate and the condition d < r < u is required
to mitigate arbitrage opportunities (Cox et al., 1979). The cost of setting up the
portfolio at time T can be obtained by substituting ∆ and B from Equations (3)
and (4):

C = e−rT (puCu + (1− pu)Cd) (6)

pu =
erT − d

u− d
(7)

The binary outcome is derived from the probability of up and down movements.
However, instead of a real-world probability, we use a risk-neutral probability,
denoted as pu, where pd = 1− pu (Bjorefeldt et al., 2016). It avoids complex risk-
evaluation by ensuring that the expected payoff of the derivative is equal to the
current price with the risk-free rate. In case of two-step, illustrated in Figure 3, we
separately consider the value option at each node, so the length of the time step is
∆t years, instead of T (Hull, 2022). Equations (6) and (7) become:

pu =
er∆t − d

u− d
(8)

C = e−r∆t(puCu + (1− pu)Cd) (9)

We can also calculate and simplify the call option pricing for a two-period:

C = e−2r∆t(pu
2Cu2 + 2pupdCud + pd

2Cd2) (10)
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Cu2 = max(0, u2S −K)

Cu = e−r∆t(puCu2 + pdCud)

C = e−r∆t(puCu + pdCd) Cud = max(0, udS −K)

Cd = e−r∆t(puCud + pdCd2)

Cd2 = max(0, d2S −K)

Figure 3: Call Option Pricing in a two-step Binomial method

The parameters u and d are determined by the implied volatility, denoted as σ

(Black and Scholes, 1973). Hence, the standard deviation of the return is σ
√
∆t, and

Cox et al. (1979) suggested the following equations:

u = eσ
√
∆t (11)

d = e−σ
√
∆t (12)

The DerivaGem software was used in the book Options, Futures, and other
derivatives by Hull, 2022 and it can calculate the option price for trees up to 500
steps. This software is used for valuing the following example for a European call
option.

Example 2:
A stock is currently $100. The rate of risk-free interest is 10% per annum, and

the rate of olatility is 20% per annum. Consider a 1-year European call option, when
the strike price is $120 and find the option price at time 0.

Solution:
In order to construct a binomial tree, we divide the life of the option into six

periods and the length of one time step is approximately 61 days or ∆t = 0.1667.
Using Equations from (8) to (12):

u = eσ
√
∆t = 1.0851, d = e−σ

√
∆t = 0.9216, pu = 0.5824

By working backwards through the tree, as shown in Figure 4, the value of the option
at time 0 is $4.355255. The stock prices and values of the options at each node of
the binomial tree were calculated using DerivaGem software.
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Figure 4: Binomial tree for European Call option using DerivaGem

In the real world, to correctly estimate the current option value, a smaller ∆t

value is used as the error approaches to zero. Therefore, after implementing 500
tree steps using the DerivaGem software, the realistic option price in Example 2 is
$4.7059.

To demonstrate this graphically, Figure 5 shows the convergence of the option
price from the binomial tree method to the exact solution of the Black-Scholes partial
differential equation (PDE) model for a large number of time steps.
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Figure 5: Convergence of the Price of the Option using DerivaGem

This binary outcome reflects the fundamental uncertainty in price movements,
capturing the essence of market dynamics in a simplified manner. Model provides the
ability to evaluate call and put options by monitoring stock volatility, price movements,
strike price, interest rate and time value of money, respectively. The strength of
the binomial model lies in its iterative nature, allowing for the backward induction
process to determine the option’s fair value at the initial time. By considering the
payoff of an option at different nodes and discounting it back to the present using a
risk-neutral probability, the model can account for different option types and payoff
structures.

2.3 Completeness in Multi-Stock Scenarios

The primary objective of this section is to elucidate the construction of a matrix
system essential for pricing options within a binomial model framework, and to
reveal the possibility of encountering multiple solutions. Our focus is to dissect
the model’s completeness when dealing with portfolios comprising various stocks.
Through the application of linear algebraic principles, we aim to assess whether every
derivative within the model can be replicated—a marker of the model’s completeness.
Conversely, the emergence of multiple risk-neutral probabilities would signal a lack
of completeness. The strategic arrangement into a matrix system is pivotal for this
analysis, as it allows for the inspection of the equation system, which consists of
stock and bond price data over different market scenarios. It depends on discerning
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whether the equations yield a single solution, thereby affirming the model’s ability
to replicate derivatives uniquely, or if they admit multiple solutions, reflecting the
model’s incompleteness.

We delve into the notion of completeness within the framework of a multi-stock
scenario in a single-period model. Cutland and Roux (2013) characterized such
models by the presence of risk-neutral probabilities, which may not necessarily be
unique. A model is considered complete when every derivative within it can be
perfectly replicated. This completeness is assessed in terms of scenarios, denoted
by Ω = {ω1, ..., ωn}, through a system of equations xB1 + yS1(ωi) = D(ωi) for
each derivative D (Cutland and Roux, 2013). From a linear algebra standpoint,
completeness is contingent upon the rank of the matrix A, constructed with rows
representing bond and stock prices across scenarios.

A =


B1 S1

1(ω1) · · · Sm
1 (ω1)

...
... . . . ...

B1 S1
1(ωn) · · · Sm

1 (ωn)

 (13)

If A has a rank equal to the number of scenarios n, indicating n linearly indepen-
dent columns or rows, the model is deemed complete. Thus, a single-period model
with n scenarios achieves completeness when it comprises at least n independent
assets, encompassing both risky and risk-free types.

Here, B1 is the price of a bond and Sj(uj) is the price of the j-th stock in state
uj. Then, we need to introduce the vector q = (q1, ..., qn) with

∑n
i=1 qi = 1 and

qi ≥ 0 for all i, representing a portfolio of securities (Cutland and Roux, 2013).
Laying the groundwork for assessing the model’s capacity to ensure the derivative’s
replication, the expanded matrix form that mirrors the valuation equations for two
distinct scenarios within the market can be written as follows:

A =

[
B1S(q1)

B1S(q2)

]
(14)

The interaction between the transpose of matrix A and the portfolio vector q,
equating it to the anticipated returns from the bond and the stock, adjusted for the
risk-free interest rate r is illustrated in the following equation:

AT q =

[
B1B1

S(q1)S(q1)

]
×

[
q1

q2

]
= (1 + r)

[
B0

S0

]
(15)

Provided this, we observe a simplification where the investment returns from the
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bond in both scenarios are collectively equated to the present value of the bond,
compounded at the risk-free rate:

B1q1 +B1q2 = (1 + r)B0 (16)

q2 = 1− q1 (17)

B1 = (1 + r)B0 (18)

q1S(q1) + q2S(q2) = (1 + r)S0 (19)

pSu+ (1− p)Sd = (1 + r)S0 (20)

Further expanding the model, we include the derivative’s value D, incorporating
it into the linear system that equates the combined returns of the bond, the stock,
and the derivative to their present values factoring in the risk-free rate:

[
AT

D

]
q = (1 + r)

B0

S0

D0

 (21)

D(q1)q1 +D(q2)q2 = (1 + r)D0 (22)

Using the obtained formulas, we confront a parameter λ, which introduces a family
of risk-neutral probabilities, denoted as Qλ. This parameter’s existence exemplifies
the notion that, unlike binomial models, trinomial models can offer a spectrum of
risk-neutral valuations, reflective of the multifaceted states that a stock price can
assume in reality.

Qλ = (λ,
5

3
,−5λ,−4

5
+ 6λ) = (0,

5

3
,−4

5
) + λ(1,−5, 6) (23)

As we can see in Equation (23), there is one parameter λ of risk-neutral probabilities
Qλ which lead to a range of risk-neutral option prices. This is the major difference
between binomial and trinomial methods. In real life, stock price can have multiple
states.

2.4 Transaction Cost

In the previous section the binomial method based on risk-neutral assumption
the methods works only on complete market. It only covers complete markets with
risk-neutral probability and no-arbitrage method. Here we consider an incomplete
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market by taking into account transaction cost in replicating the portfolio. We use
the equation derived from Boyle and Vorst, 1992, where k is the rate of transaction
cost:

Cu = ∆u(uS) +Bu + k|∆−∆u|(uS) (24)

Cd = ∆d(dS) +Bd + k|∆−∆d|(dS) (25)

We derived formulas for option values extended to two-time period for up and down
states:

Cu2 = ∆u2(u2S) +Bu2 + k|∆u −∆u2|(u2S) (26)

Cud = ∆ud(udS) +Bud + k|∆d −∆ud|(udS) (27)

Cd2 = ∆d2(d
2S) +Bd2 + k|∆d −∆d2 |(d2S) (28)

Boyle and Vorst used the CRR model to replicate the payoff of a European call
option. However, they suggested that the number of shares and bonds for each period
is unique, such as the portfolio (∆u, Bu) and (∆d, Bd) can be maintained when the
stock goes up and down. Therefore, the inequality assumes ∆d ≤ ∆ ≤ ∆u (Boyle
and Vorst, 1992) and Equations (24) and (25) become linear:

Cu = ∆ūS +Ber∆t = ∆1ūS +Bu (29)

Cd = ∆d̄S +Ber∆t = ∆2d̄S +Bd (30)

where:
ū = u(1 + k) and d̄ = d(1− k) (31)

The option value formula with transaction cost at time 0 for a two-period can be
derived from Equations (29) to (31):

C = ∆S +B = e−r∆t(p̄u[(1 + k)∆uSu +Bu] + p̄d[(1− k)∆dSd +Bd]) (32)

As they claimed that B and ∆ are different at each node, it brings a challenge due to
many unknown variables. Further research was conducted using the works of Tichy
(2005), Melnikov (2005), and Cutland and Roux (2013).

Transaction costs encompass the expenses incurred during trading, including
commissions and the gap between the actual trading price and the midpoint of
the bid-offer spread. As a result, the price for buying an asset, denoted as Sask, is
invariably higher than the price for selling the same asset, Sbid, at the same moment
(Melnikov, 2005; Tichy, 2005). The following formulas suggest how asset prices and
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transaction costs are mathematically linked in trading models:

ST (1− κ) = Sbid
T ≤ ST ≤ Sask

T = ST (1 + κ) (33)

pu =
1 + r − d(1− κ)

(1 + κ)u− d(1− κ)
(34)

C =
1

1 + r
[Cupu + κuS0q + Cdpd] (35)

Let’s define x as bonds and y as shares, as suggested in the book Derivative
Pricing in Discrete Time (Cutland and Roux, 2013). For the sake of simplicity, they
consider only proportional transaction cost k which belongs to (0,1) interval. The
cost of creating the portfolio at time T follows:

C = xBT + y+Sask
T − y−Sbid

T = xBt + yST + k|y|ST (36)

We use these standard notations:

y+ =

y, if y > 0

0, if y < 0
y− =

0, if y > 0

−y, if y < 0
y+ − y− = y

[x]+ =

x, if x > 0

0, if x < 0
[x]− =

0, if x > 0

−x, if x < 0
[x]+ − [x]− = [x]

Example 3:
The conditions are the same as in Example 2, but we need to consider the

transaction cost rates, k, which are 0.5% and 2%.
Solution:
Using the Equations (29), (30), (31), and (32), we obtained the following results

as illustrated in Table 1.

Strike Price Number of Time Periods (n)
6 13 52 250

k = 0.5%
120 4.663 5.084 5.820 7.161

k = 2%
120 5.926 6.859 8.950 12.750

Table 1: Results for Example 3
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3 Trinomial models

3.1 Trinomial Method

The trinomial method extends the concepts of the binomial models but reflects three
potential stock price movements for each node, enhancing the model’s complexity
and ability to simulate more realistic market movements as shown in Figure 6.
According to Josheski and Apostolov (2020) and Bjorefeldt et al. (2016), the pricing
of European options through trinomial models reaches the valuation provided by the
European Black-Scholes method faster than binomial models do. Moreover, unlike
the deterministic framework of binomial models, the trinomial method introduces
nondeterminism with two equations and three unknowns, incorporating a parameter
that establishes a family of risk-neutral probabilities and thereby a range of fair
prices for derivatives.

u2S

uS umS

S mS m2S

dS dmS

d2S

Figure 6: Stock Price for a two-step Trinomial Tree Method

Hull (2022) provided the following formulas for the value of a call option in the
trinomial model:

C = e−r∆t(puCu + pmCm + pdCd) (37)

where u and d represent the up and down factors for the stock price, respectively,
and are given by:

u = eσ
√
3∆t, d = 1/u

The probabilities associated with each move—up, middle, and down—are calculated
using:

pu =

√
∆t

12σ2
(r − q − σ2

2
) +

1

6
(38)
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pm =
2

3
(39)

pd = −
√

∆t

12σ2
(r − q − σ2

2
) +

1

6
(40)

For the two period trinomial tree, the option values at the next time step are
calculated by aggregating the discounted values of potential future states:

Cu = e−r∆t(puCu2 + pmCum + pdCud) (41)

Cm = e−r∆t(puCmu + pmCm2 + pdCmd) (42)

Cd = e−r∆t(puCdu + pmCdm + pdCd2) (43)

These computations are visually supported by the trinomial tree diagrams for
option prices presented below in Figure 7:

Cu2 = max(0, u2S −K)

Cu Cum = max(0, umS −K)

C Cm Cm2 = max(0,m2S −K)

Cd Cmd = max(0,mdS −K)

Cd2 = max(0, d2S −K)

Figure 7: Call Option for a two-step Trinomial Tree Method

This model’s mathematical formulation is encapsulated in the following system
of equations, which provides a method for computing the fair value of derivatives
based on risk-neutral valuation:q1 + q2 + q3 = 1

C0 = (1 + r)−1
∑3

i=1 q2 ∗ C(qi)
(44)
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The system, a 2x3 matrix of two equations with three unknowns, demonstrates
the potential for multiple risk-neutral measures, emphasizing the model’s capacity to
accommodate a spectrum of market conditions and theoretical prices.

[
1 1 1

C(q1) C(q2) C(q3)

]
×

q1q2
q3

 =

[
1

C0(1 + r)

]
(45)

Here, we get q1 = λ and 2
9
< λ < 1

3

C(u)p+ C(d)(1− p) = (1 + r)C0 (46)

C0 =
1

1 + r
[pCu + qCd] = (1 + r)−1(pCu + qCd) (47)

Figure 8: 3D plot with triangle vertices at given coordinates.

The trinomial model not only facilitates a deeper understanding of option pricing
dynamics but also allows the exploration of scenarios where traditional models may
not provide complete solutions. This complexity and flexibility make it particularly
useful in financial markets where the assumptions of simpler models are too restrictive.

3.2 Trinomial Method with Transaction Cost: the Boyle and

Vorst model

In this section, we explore the Trinomial Tree Method considering the transaction
cost which is informed by the seminal work of Boyle and Vorst (1992). We have
found several ways to balance the replicating portfolio and corresponding formulas
for B. First, Melnikov (2005) proposed the formula for the bond price BT = (1+ r)T .
Second, Cutland and Roux (2013) indicated as BT = B0(1 + r)T . On the other hand,
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as shown in Figure 9, Boyle and Vorst (1992) suggested that the number of bonds
for up, middle, down states and for each period is different:

∆4, B4

∆1, B1 ∆5, B5

∆, B ∆2, B2 ∆6, B6

∆3, B3 ∆7, B7

∆8, B8

Figure 9: The number of bonds and shares for the Trinomial Tree Method

As interpretations are different in each paper, our goal is to specify the formula for
each period. The model suggested by Boyle and Vorst (1992) is challenging, as there
are too many unknown variables. To minimize the number of unknown variables,
we assume and suggest that the number of bonds is the same for potential nodes in
the same time period, such as B1 = B2 = B3 and B4 = B5 = B6 = B7 = B8. Given
the multiplicity of formulas across the literature, our objective is to consolidate the
notations and distill a definitive formula. We propose a unified approach to ensure
that bond prices, regardless of the chosen path, converge to a single value at time T :

BT = B0e
rT (48)

Accompanied by Equations (24) - (28), we demonstrate the valuation of a call
option within a trinomial framework, including transaction costs:

Cu = ∆uS +BerT = B1 +∆1uS + k|∆−∆1|uS (49)

Cm = ∆mS +BerT = B2 +∆2mS + k|∆−∆2|mS (50)

Cd = ∆dS +BerT = B3 +∆3dS + k|∆−∆3|dS (51)

The Trinomial Tree Method, a versatile tool for pricing derivatives, must be
adapted to account for the impact of transaction costs on trading strategies and
derivative valuation. However, the inequality ∆d ≤ ∆ ≤ ∆u was proven only for the
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binomial model in Boyle and Vorst (1992) and not for the 3x3 system of absolute
value equations. This leads to further research to make the above equations linear.

3.3 Further Research

As we continue our research on option pricing models, our future goal is to
capture this complexity in a set of absolute value equations of the type Ax− |X| = b.
Unraveling the answers to this system will be the foundation of our future research,
potentially leading to more precise and realistic option valuation approaches that
reflect the multidimensional structure of financial markets. We also plan to improve
the Trinomial Tree Method by including transaction costs into the Heston model’s
robust system. Based on Heston model, Rouah and Vainberg (2007) formulated an
expression for the valuation, at time t, of a European call option expiring at t+ T ,
featuring a strike price K:

Call = erTE∗
t [(St+T − k, 0)] = StP1 − ke−rTP2 (52)

P1 =
1

2
+

e−rT

πSt

(∫ ∞

0

Re

[
k−iφf ∗(iφ+ 1)

iφ

]
dφ

)
(53)

P2 =
1

2
+

1

π

(∫ ∞

0

Re

[
k−iφf ∗(iφ)

iφ

]
dφ

)
(54)

T represents the duration until maturity, E∗
t [(St+T −k, 0)] denotes the expectation

at time t following the risk-neutral distribution, St stands for the asset’s price at
time t, and P1 and P2 represent probabilities adjusted for risk-neutrality.

This model enhances our pricing methodology by introducing stochastic volatility
into our trinomial framework, while also factoring in the intricacies of transaction
costs. Unlike the Black-Scholes model and its trinomial tree modifications, which
assume constant volatility, the Heston model demonstrates that volatility is a dynamic
entity capable of mean reversion and volatility clustering, both of which are observed
in real financial markets. The paper by Yan (2021) should be reviewed for future
studies as it considers Heston model for European option pricing. This investigation
will result in the creation of a system of three equations, each associated with separate
∆ values representing the hedging methods used in the trinomial configuration.

4 Conclusion

In conclusion, this paper extended the fundamental concepts of the CRR binomial
model by introducing the Trinomial Tree Method to account for transaction costs,

19



MATH 499: Capstone Project Aidana Kadyrbayeva & Milana Kapezova

which are a key element in real-world trading. Our research found that including
transaction costs into the trinomial tree system improves the model’s realism while
also aligning it more closely with observed market behaviors and price anomalies.
This method’s numerical implementation has shown comparable accuracy to existing
models, while also giving deeper insights into the effects of transaction costs on option
prices. Future research will focus on improving these models, including incorporating
more complicated market situations, and investigating the consequences for financial
strategy and risk management.

This adaptation involves adjusting the tree’s parameters to incorporate the
costs associated with buying and selling the underlying asset, thereby altering
the probabilities and expected returns used in the model. The key challenge lies in
accurately reflecting the bid-ask spread induced by transaction costs, which affects the
liquidity and price movement assumptions inherent in the model. By incorporating
transaction costs, the Trinomial Tree Method becomes a more realistic tool for
financial analysis, offering insights into the cost implications of trading strategies
and the true value of derivatives in a less-than-ideal market environment.
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