
 

Modelling and simulation of complex and 

compliant contacts of gear transmissions, in 

consideration of nominal and real geometries 

and kinematics. 

by 

Maksat T.S. 

 

 

Submitted in partial fulfilment 

of the requirements for the degree of 

Doctor of Philosophy in Mechanical 

Engineering 

 

 

2023  



 

 

 

 

 

 

 

 

Declaration 

 

I declare that the research contained in this thesis, unless otherwise formally 

indicated within the text, is the author's original work. The thesis has not been previously 

submitted to this or any other university for a degree and does not incorporate any material 

already submitted for a degree. 

 

Signed 

Dated 



3  

 

 

 

 

 

MODELLING AND SIMULATION OF COMPLEX AND COMPLIANT CONTACTS OF 

GEAR TRANSMISSIONS, IN CONSIDERATION OF NOMINAL AND REAL 

GEOMETRIES AND KINEMATICS. 

 

MAKSAT  

TEMIRKHAN 

 

Submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Mechanical Engineering 

 

School of Engineering and Digital Sciences 

Nazarbayev University 

 

Supervised by 

Prof. Christos Spitas , PhD  

Prof. Dongming Wei , PhD  

Konstantinos Kaloudis ,  PhD, University of the Aegean. 

 

 

 

 

May 2023 

 

  



4  

Abstract 

 

An important aspect of gear design is the computer-aided modeling of gear tooth contact. 

It enables to evaluate the design of gears and the process of tooth contact, transmission errors 

(TE), tooth wear, alignment errors, vibration and noise. Contemporary gear tooth contact 

analysis models are multiple equation systems which rely on numerical solution techniques. 

Tooth contact analysis (TCA) is a crucial tool for designing and evaluating the efficiency of the 

gears in transmission systems. It stands for a significant approach to analyze contact locations, 

contact ratios, and kinematic errors in gear teeth. Gear manufacturers in various fields can 

greatly enhance the technology and quality of gears by simulating meshing and bearing contact 

on a computer. Additionally, TCA is a helpful method for forecasting a transmission's key 

characteristics, including the path of contact on the tooth surfaces and the motion graph. 

The necessity to analyze non-conjugate meshing and surface contact led to the 

development of numerous tooth contact analysis approaches, such as parametric mathematical 

model or finite element simulation. These methods handle the contact problem by applying the 

surface tangency condition, which leads to a set of nonlinear equations that must typically be 

solved numerically. The original suggestion of the most well-known solution was presented by 

Litvin F. L. and his team, where they suggested the set of generalized five nonlinear 

contact equations with five unknown parameters, which forms the foundation of conventional 

TCA algorithm. Since these equations are nonlinear, an iterative process is used to calculate 

certain values. However, the main problem with this method is that each simulation requires 

careful selection of the initial or "guess" values for the convergence of parameters in an iterative 

process. Later, Litvin F. L. and his colleagues proposed the “local synthesis method” to 

eventually determine appropriate "guess values" and obtain convergence to lessen the systemic 

lack of stability in this solution. Although, this resulted in a computationally expensive and 

impractical implementation. 

In this dissertation, by analytically transforming the same contact conditions as in the 

conventional model, a novel TCA method was presented to resolve convergense issue. As a 

result, a mathematical model of five conventional nonlinear tooth contact equations with five 

free parameters was reduced to a system of two nonlinear equations with only two unknown 

parameters in order to achieve more stable, accurate and fast converging algorithm. The 

proposed model was compared with the well-established conventional Tooth Contact Analysis 

(TCA) method in terms of accuracy, computational efficiency, and convergence probability, 
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thereby showing its superiority in terms of computationally efficient of the numerical solution.  

By using new TCA model  the impact of tooth surface to various misalignments and 

modifications on different types of gears is examined, in order to determine the most suitable 

design approach and establish acceptable values for tooth modifications. Additionally, the 

present study investigated the effects of three types of longitudinal crowning and tip/root profile 

relief on gear meshing. 
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Chapter 1. Introduction 

 

 The process of modeling and simulating tooth contacts within gear transmissions plays 

a crucial role in the design and manufacture of gears. By accurately representing the interactions 

between gear teeth under different loads, speeds, and operational conditions, this approach 

allows engineers to predict potential issues such as transmission errors, noise, and even tooth 

failure [1-5]. The consideration of both nominal and real geometries, as well as kinematic 

factors, ensures that the simulation results closely mirror real-world behavior. This aids in 

optimizing gear designs, selecting appropriate geometrical parameters, refining manufacturing 

processes, and enhancing the overall efficiency and reliability of gear systems. Ultimately, such 

simulations empower engineers to make informed decisions, leading to the creation of more 

durable, efficient, and effective gear transmissions.  

 

 1.1 Gear geometry  
 

 The manufacturing design process of gears begins with the definition of their 

dimensions, which are essential for both modeling and the selection of machine cutting tools 

[4]. Gear design typically involve key parameters like the number of teeth (𝑁1,2), module m (the 

ratio of pitch diameter (𝑑𝑝1,2) to the number of teeth), and pressure angle (𝛼). The pitch diameter 

and pressure angle are illustrated in Figure (1). The number of teeth plays a vital role in 

determining the gear's size and function. Meanwhile, the module helps establish the gear's 

dimensions and tooth size relative to the pitch diameter. The pressure angle influences the tooth 

profile's shape and the gear's load-bearing capacity. By manipulating these variables in gear 

design equations, engineers can tailor gears to meet specific performance requirements, ensuring 

smooth and reliable mechanical power transmission in a wide range of applications, from 

automotive transmissions to industrial machinery [6-9]. 
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Figure 1.  The pitch diameter and pressure angle illustration. 

 

 The aforementioned parameters are essential for establishing the range of minimum 

and maximum values for the corresponding radius of involute, denoted as 𝑢𝑖. These values, in 

turn, play a critical role in defining the tooth size. The procedure for establishing the minimum 

and maximum values of the radius for the corresponding involute curves is outlined in Table 

1. 

 

Table 1. Calculation of involute gear tooth profile size. 

Terms Symbols Formula 

Module m  

- Pressure angle 𝛼 

Number of teeth 𝑁1,2 

Pitch diameter  𝑑𝑝1,2 𝑁1,2 ∙ 𝑚 

Base diameter  𝑑1,2 𝑑𝑝1,2 ∙ 𝑐𝑜𝑠 𝛼 

Tip diameter 𝑑𝑎1,2 𝑑1,2 + 2𝑚 

Involution minimum 𝑢𝑚𝑖𝑛    𝑑1,2/2 

Involution maximum 𝑢𝑚𝑎𝑥 𝑑𝑎1,2/2 
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 In this study, we will examine the gear tooth profile exclusively as the involute type. The 

involute gear profile represented a crucial breakthrough in the field of machine design. Unlike 

alternative gear systems, an involute gear's tooth configuration relies solely on factors such as 

the gear's tooth number, pressure angle, and pitch.  The contact between involute gear teeth 

occurs at a single instantaneous point. To determine positions along the tooth profile, we will 

employ the parameter 𝑢𝑖 signifying the radius from the origin to the point of contact, as shown 

in Figure (2). The parametric expression for the involute gear profile in cylindrical coordinate 

system can be defined as follows: 

 {
𝑥 = 𝑟 (cos 𝜃 + 𝜃sin 𝜃 )

𝑦 = 𝑟 (𝑐𝑜𝑠 𝜃 – 𝜃𝑠𝑖𝑛 𝜃 )
    (1)   

 

where 𝑟 is a base radius and 𝜃  is the involute angle that was defined in [10]:  

 

 𝜃 = √𝑢𝑖
2

𝑟2 − 1  (2) 

 

 

Figure 2.  Involute gear profile parametrization. 

 

 

 1.2.  The vital role of TCA in gear design 
 

 Tooth contact analysis (TCA) is an indispensable tool in the design and evaluation of 

gear efficiency within transmission systems. It enables the examination of contact points, 

contact ratios, and kinematic discrepancies in gear teeth. TCA empowers gear manufacturers 

across various industries to advance gear technology and quality by simulating meshing and 

bearing contact on a computer. Furthermore, TCA serves as a valuable method for predicting 
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critical characteristics of a transmission, such as the tooth surfaces' contact path and motion 

graph [1-3,7,10-15]. Despite its classical nature, this field has experienced renewed interest from 

numerous researchers with the objectives of (a) enhancing the robustness of TCA algorithms 

through automatic tuning of initial conditions to ensure the convergence of numerical root-

finding procedures; (b) accelerating numerical computations by explicitly solving for the 

rotation angles based on equations that dictate surface normal collinearity; and (c) advancing 

gear drives and improving meshing characteristics to reduce sensitivity to misalignment, 

transmission errors, noise, and vibration. TCA technology finds widespread application in 

evaluating meshing quality, driven by the growing demand for improving the durability and 

mechanical efficiency of gears in diverse industrial sectors such as aviation, automotive, and 

civil engineering. Research in this field allows for the prediction of various meshing effects 

during the design stage, including the primary causes of transmission errors and misalignment, 

as well as strategies for avoiding edge contact and premature failure. Consequently, the 

simulation of gear meshing has led to the development of gears with involute profiles, enabling 

the maintenance of a constant velocity ratio in transmission. 

 

 1.3.  Thesis hypothesis   
 

 Theoretical models for gears don't always align with real-world applications due to 

intentional modifications or manufacturing mistakes. If these discrepancies are not taken into 

account, traditional gear theories may produce incorrect results. Therefore, the analysis of non-

conjugate gears is important to address the non-uniform motion transmission and altered contact 

direction.  

 In this study, we replicate the gear tooth contact analysis (TCA) model introduced by 

Litvin and his team [1]. We show that the model is fundamentally unstable and its numerical 

solutions are overly sensitive to the starting values chosen. Thus, the question arises on how to 

improve the stability of the TCA algorithm by adjusting the initial conditions to ensure the 

convergence of numerical techniques. To address these challenges, we propose a new approach 

for the general problem of contact between two rotating surfaces with fixed axes. Our goal is to 

simplify the model by reducing the number of unknown parameters from five to two, making it 

more explicit, stable, and straightforward. We analyze the sensitivity of misalignments on 

transmission error, contact paths, and stresses using various gears with tooth surface 

modifications. We compare the impact of three types of longitudinal crowning on transmission 
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error, maximum pressure, contact ellipse, and contact path. Our results demonstrate the 

effectiveness of the proposed method in obtaining convergent, accurate, and stable results, 

which can be used to optimize designs. 

 Hypothesis: 

I. The conventional TCA model often encounters convergence challenges due to the 

intricate nature of the non-linear equations involved and the presence of multiple roots. 

A practical solution to mitigate these convergence issues lies in the reduction of 

unknown parameters within the gear system. This approach yields a more stable, 

expedited, and precise solution, independent of the initial guess values. 

 

II. The reduction of unknown parameters in the gear system can be achieved by adopting 

a novel parameterization method for tooth surfaces. In this methodology, the parameters 

of the pinion can be deduced from fundamental mathematical principles and the 

parameters of the gear. 
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Chapter 2. Literature review  

 2.1   Types of gears used for simulations 
 

  In this chapter, we will explore the various types of gears employed for simulation and 

assessing conventional and proposed TCA methods. Spur gears are the simplest form of gears 

and are characterized by cylindrical shapes which are widely used in transmissions and 

machines with parallel shafts and are known for their low cost and ease of manufacture [16-18], 

Figure (3). The equation for general involute surfaces was developed by introducing the 

necessary parameters, denoted as 𝑢𝑖 and 𝑣𝑖, tailored to a specific machine tool configuration. 

This formulation aims to establish a mathematical representation of the tooth surface in spur 

gears. The parametric equations describing the involute surface can be articulated as follows: 

 

 𝑥𝑖 = 𝑢𝑖cos(𝛼𝑖) 

  

 𝑦𝑖 = 𝑢𝑖sin(𝛼𝑖) (3) 

  

 𝑧𝑖 = 𝑣𝑖 

where 𝛼𝑖 describes the angle of initial involution:  

 

 𝛼𝑖 = cos−1 (
𝑟𝑏

𝑢𝑖
(cos(𝜃𝑖) + 𝜃sin(𝜃𝑖))) (4) 

 

 where 𝑟𝑏 is a base radius and 𝜃𝑖 is angle of involute shown in Equation 2. 

  

Figure 3.  3D model of involute spur gear provided by SolidWorks program. 
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 Helical gears possess teeth with a helix shape, as shown in Figure (4), causing them to 

engage at an angle relative to the rotation axis. This unique design characteristic grants helical 

gears superior load-bearing capabilities and extended operational lifespans compared to spur 

gears [19-22]. In the context of a specific machine tool configuration, the parametrization of 

helical involute surfaces was computed and derived from a universal equation using the 

provided parameters 𝑢𝑖 and 𝑣𝑖. The resulting parametric equations governing the involute shape 

are as follows:    

  

 𝑥𝑖 = 𝑢𝑖cos (𝛼𝑖 ± sin−1 (
𝑣𝑖

𝑟𝑏
sin 𝛽)) 

  

 𝑦𝑖 = 𝑢𝑖sin (𝛼𝑖 ± sin−1 (
𝑣𝑖

𝑟𝑏
sin 𝛽)) (5) 

  

 𝑧𝑖 = 𝑣𝑖 

 

In Equation (5), the symbol 𝛽 represents the helix angle, while 𝑧0 and 𝑧𝑓  correspond to the 

initial and final positions of the parameter 𝑣𝑖. Within this equation, 𝛼𝑖 signifies the angle 

characterizing the initial involution. 

 

Figure 4.  3D model of involute helical gear. 

 

 Bevel gears are specialized conical gears with teeth that engage along axes that are 

neither parallel nor intersecting. They find widespread use in industrial drivetrains and 

automobiles for transmitting power between shafts positioned at right angles to each other [23]. 
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The geometric characteristics of the tooth surfaces of bevel gears have been extensively studied 

in numerous research works [23-28]. In most practical cases, the geometry of bevel gear tooth 

surfaces is not readily available and must be determined through either implicit solution 

involving a set of nonlinear equations or cutting simulations, as standard spherical involute 

geometries are not commonly used without modifications. The parametric description of the 

spherical involute profile in terms of (𝑢𝑖, 𝑣𝑖) within the plane can be defined as follows: 

 

𝛽𝑖 =
1

𝑠𝑖𝑛(𝛼𝑖)
𝑐𝑜𝑠−1 (

𝑐𝑜𝑠(𝑢𝑖)

 𝑐𝑜𝑠(𝛼𝑖)
)  and  𝑅𝑖 = 𝑣𝑖.                                    (6) 

 

where 𝛽𝑖 is the involute generating angle and 𝛼𝑖 is the base cone angle. In the industrial sector, 

it is crucial to design straight bevel gears with the smallest feasible volume, Figure (5). This 

approach helps minimize the use of space and materials during the manufacturing process [29]. 

The position vector of the contact point on a straight bevel gear surface is defined in [30]: 

 

        𝑥(𝑢𝑖, 𝑣𝑖) = 𝑅𝑖  (𝑐𝑜𝑠(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛼𝑖)𝑐𝑜𝑠(𝛽𝑖) + 𝑠𝑖𝑛(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛽𝑖), 

 𝑦(𝑢𝑖, 𝑣𝑖) = 𝑅𝑖  (𝑐𝑜𝑠(𝛽𝑖 𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛼𝑖)𝑠𝑖𝑛(𝛽𝑖) − 𝑠𝑖𝑛(𝛽𝑖 𝑠𝑖𝑛(𝛼𝑖))𝑐𝑜𝑠(𝛽𝑖),          (7) 

    𝑧(𝑢𝑖, 𝑣𝑖) = 𝑅𝑖  𝑐𝑜𝑠(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑐𝑜𝑠(𝛼𝑖), 

 

where 𝑅𝑖 is a radius vector varied from inner to outer cone distance, and the position of the point 

of contact on the bevel tooth profile can be computed by varying parameter 𝑢𝑖 from inner to 

outer cone angle. 

 

Figure 5.  Straight bevel gear model.  
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 For quite some time, researchers have explored spiral bevel gears using the principles of 

conjugate surfaces or conjugate curves, which rely on geometric elements (Figure (6)). 

However, with the growing demand for high-performance gear mechanisms, engineers face 

conflicting design objectives. They must simultaneously enhance power transmission efficiency 

and durability while also addressing factors like noise, vibration, and hardness, as discussed in 

references [31-33]. Consequently, numerical tools that can simulate the behavior of gearbox 

components and predict the overall system performance have become crucial in the production 

process. These tools empower engineers to experiment with various designs without the need 

for costly prototypes. The parametric definition of the involute spiral bevel gear is provided in 

terms of (𝑢𝑖 , 𝑣𝑖) within the plane. 

 

        𝑥(𝑢𝑖, 𝑣𝑖) = 𝑅𝑖  (𝑐𝑜𝑠(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛼𝑖)𝑐𝑜𝑠(𝛽𝑖 ± 𝜗𝑖) + 𝑠𝑖𝑛(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛽𝑖 ± 𝜗𝑖), 

 𝑦(𝑢𝑖, 𝑣𝑖) = 𝑅𝑖  (𝑐𝑜𝑠(𝛽𝑖 𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛼𝑖)𝑠𝑖𝑛(𝛽𝑖 ± 𝜗𝑖) − 𝑠𝑖𝑛(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑐𝑜𝑠(𝛽𝑖 ± 𝜗𝑖),          

(8) 

    𝑧(𝑢𝑖, 𝑣𝑖) = 𝑅𝑖  𝑐𝑜𝑠(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑐𝑜𝑠(𝛼𝑖), 

 

where 𝑅𝑖 is a radius vector specified in (𝑢𝑖 , 𝑣𝑖 ) as follows, and 𝛼𝑖 is the base cone angle, 

𝛽𝑖 is the involute generating angle. 𝜃𝑖 is logarithmic function  with a spiral angle denoted as Φ 

and 𝑅𝑚 is mean cone distance and described as:  

 

𝜃𝑖 =
1

𝑠𝑖𝑛(𝛼𝑖) cotΦ
log

𝑅𝑚

 𝑅𝑖
.                                                     (9) 

  

 

Figure 6.  Spiral bevel gear model.  
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 2.2.  Misalignments in the gearbox 
 

 Gear misalignments, also known as gear alignment problems, are a significant issue in 

the power transmission industry. Issues such as manufacturing imperfections, misaligned 

assembly, and other elements can lead to noise and vibration during operation. Gear alignment 

issues have been a cause of concern for engineers for a long time. As a result, researchers have 

been investigating the effects of gear misalignments on the performance of gear systems. 

Misalignments of gear pairs can influence the physical and geometric properties of the tooth 

flanks. Establishing the contact performance of loaded teeth with misalignments is essential for 

furthering strength and stabilizing the gear transmission system.  

 Gear misalignments can be classified into two categories: angular and linear, both of 

which have a negative impact on gear contact and engagement. Hu and Mao [34] offered a more 

thorough division of gear misalignments, discerning them into four types: angular pitch and yaw 

misalignments and linear radial and axial misalignments, as illustrated in Figure (7-8). In-plane 

axial, radial and yaw misalignments, and out-of-plane pitch misalignments [35] have significant 

effect on gear tooth contact and transmission. Studies of spur gears have revealed that the gear 

tooth surface contact is more vulnerable to angular misalignments than to linear ones, and that 

the contact area between two gears is notably reduced in the case of angular misalignment 

compared to linear misalignments [36]. Ye and Tsai [37] found that under angular misalignment 

high-contact-ratio gears produce higher stress compared to linear ones.  

 One study by Simon [38] focused on the load distribution calculations in gear systems 

with misalignments. The author proposed that loaded tooth contact analysis (LTCA) can provide 

a more realistic contact pattern and pressure distribution compared to other methods. Another 

study by Ding et al. [39] utilized LTCA to determine the effects of misalignments on the tooth 

contact pattern and load distribution in gear systems. The authors concluded that LTCA is an 

effective tool for analyzing the performance of gear systems with misalignments. 

A more recent study by Li, Cui, and Chen [40] investigated the dynamic behavior of 

planetary gear systems with misalignments. The authors proposed a method for improving the 

stability and performance of these systems by considering the effects of misalignments on the 

gear teeth. Another study by Zhang, Xiao, and Chen [41] focused on optimizing the load-
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carrying capacity of planetary gears with misalignments. The authors utilized numerical 

simulations and experimental measurements to investigate the effects of misalignments on the 

gear system's performance. 

 These studies underscore the significance of factoring in misalignments at the stage of 

evaluating the efficiency and effectiveness of gear systems. Researchers have found that 

misalignments can significantly impact the geometric and physical performance of gear teeth, 

and thus, LTCA is an effective tool for determining the effects of misalignments on gear system 

performance.  

 

 

Figure 7.  Misalignment errors' types 

 

 

(a)                                                                         (b) 
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(c)                                                                         (d) 

Figure 8.  The coordinate systems for (a) out-of-plane, (b) in-plane angular misalignment, (c) 

in-plane off-set, and (d) out-of-plane off-set. 

 

 2.3.  Gear tooth surface modification  
 

 Different researchers have explored various solutions to address the issue of gear 

misalignment in order to enhance the performance and longevity of gear systems. One such 

solution involves the use of gear tooth modifications, which aim to optimize the functioning of 

gears by reducing noise levels, improving performance, and increasing durability. Some of the 

most commonly used modifications include addendum modification, profile modification, lead 

modification, and crowning modification. Each of these modifications addresses specific 

problems and conditions, and choosing the right modification for a specific application is crucial 

for ensuring optimal results. Mao [42] suggested tooth modification, such as crowning, as a way 

to significantly reduce the stress concentration caused by misalignments. This approach, also 

known as "corrections," has been described in different guidelines [43,44]. The goal is to 

eliminate the risk of edge contact and related failure during tooth contact. However, it's 

important to note that these modifications are themselves errors, and excessive modifications 

can lead to increased transmission error (TE), overloads, and vibration [45]. The tooth 

modification focuses on crowning along the tooth flanks and profile modification along the tooth 

height, resulting in a smoother pressure distribution and preventing edge contact, making it an 

effective solution for misalignments. Li [46] also discussed misalignment in gears and 

recommended tooth flank modification as an appropriate solution. He emphasized the 

importance of finding the optimal criteria for crowning based on static loads and the extent of 



29  

misalignment, as proper tooth surface adjustment can reduce the risk of micro-pitting. Excessive 

modification of the tooth can cause micro-cracks and micro-pitting, which can shorten the life 

of the gear and worsen the dynamic response, while too little crowning can cause issues with 

contact localization [47].  

 Conventional gears' modification is shown as a parabolic curve. Concept of the pre-

designed parabolic function was introduced by Litvin et al. [48], where they demonstrated that 

double-crowned gears can reduce the noise and vibration of gearbox and ensure continuous 

parabolic function of the transmission error (TE) by absorbing the linear function of TE caused 

by gear misalignment. Lin et al. [49] found that gear tooth parabolic modification is less 

sensitive to the change of load compared to linear relief. Afterwards, Gurumani and Shanmugam 

[50] demonstrated a more convenient approach to generate circular arc crowning. Litvin et al. 

[51] and Zhen et al. [52] discussed the benefits of double circular-arc helical gears, which lower 

the contact stress level and increase resistance to tooth bending, making this type of gear a 

common choice for handling higher torque. Bergesth and Bjorklund [53] recommended 

logarithmic crowning, which shifts the load peak from the edges to the middle of the tooth 

surface. The logarithmic crowning that originally created for roller bearings with the aim of 

enhancing the dispersion of stress, has not been extensively studied for its use in modifying the 

gear tooth surface. Lundberg's theory [54] was used to develop the logarithmic crowning, which 

was discovered to be more effective than conventional modification, resulting in considerably 

lower contact pressures when subjected to minor misalignments. Yangyang and colleagues [55] 

explored the development of the logarithmic equation, noting that several researchers have made 

enhancements and adjustments to the theoretical logarithmic convex equation [56-59]. Harianto 

and Houser [60] explain that longitudinal crowning is employed to counteract misalignments, 

and their selection is determined by the company's requirements, manufacturing precision, or 

load distribution analysis, which considers known peak misalignments. 

 Modifying the gear tooth surface can refine the contact properties of various gears and 

diminish the susceptibility to misalignments, but finding the appropriate amount of modification 

is essential to ensure smooth gear system transmission. Currently, different studies are focused 

on finding the optimal tooth modification, including crowning with various profiles, to minimize 

TE in the quest for higher transmission quality. 

 

2.4 Parametric equations of tooth surface modification 
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 In practical applications, misalignments of gears can have a significant impact on 

transmission quality and meshing performance. This can result in transmission errors, a high 

distribution of stress, and tooth edge contact, which can significantly increase vibration and 

noise in gear drives. In this study, the tooth contact performance of modified gear drives with 

alignment errors was investigated to evaluate the effect of tooth crowning.  Accurate 

modifications are necessary in gear drives to avoid discontinuous transmission and edge contact 

when there is misalignment during transmission. However, excessive crowning can cause 

increased transmission error, while insufficient crowning can lead to gear teeth edge contact. 

Thus, the amount of crowning applied must be adjusted to provide engagement contact at a 

specific distance from the tooth surface edges, as well as an appropriate transmission error 

function. 

 Figure (9) displays the curves of modified longitudinal profiles of gear teeth, which 

exhibit similar flattening near the middle of the tooth flank. Nevertheless, the logarithmic profile 

has more bending compared to the parabolic or circular profile towards the edges of the tooth 

face. Consequently, meshing teeth with logarithmic crowning at regions close to the edges may 

result in unexpected outcomes in contrast to conventional profile modifications like circular or 

parabolic. Equations (10-12) present the function of the curves of the modified tooth flank. 

 

 𝛿𝑝 = 𝑐1(𝑣𝑖 − 𝑣𝑜)
2 + 𝑐2(𝑣𝑖 − 𝑣𝑜) + 𝑐3,                        (10) 

 

  𝛿𝑐 = 𝑅 − √𝑅2 − (𝑣𝑖 − 𝑣𝑜)2, where  𝑅 =
4𝐶𝑐

2+𝑏2

8𝐶𝑐
                   (11) 

 𝛿𝑙 = 𝑎1𝐿𝑜𝑔(
1

1−𝑎2(
𝑣𝑖−𝑣𝑜

𝑣𝑜
)
2),                                     (12) 

 

Figure 9. Curves of profile modifications, where an unmodified tooth flank with a 

straightforward edge fillet is shown by the black line. 
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Tip relief modification is another popular method for improving the contact and 

transmission performance of gears. It is typically used to prevent contact shocks that occur when 

a single-tooth contact transitions to double-tooth contact and vice versa. The tip relief function 

is shown in Equation (13), which involves surface parameterization using (𝑢𝑖, 𝑣𝑖) and utilizes 

the Heaviside function to modify only a specific section of the profile. 

𝛿𝑡 = 𝐻(𝑢 − 𝑢0)𝑐𝑚 (
𝑢−𝑢0

𝐿
)
2

.                                   (13) 

 

In this equation, the variable 𝑢0 represents the starting point of the correction, while 

𝑐𝑚  indicates the extent of modification. L refers to the length of the relief. 

 

 2.5 Transmission error 

 Transmission error (TE) is a primary source of noise and vibration in gear sets. It can be 

defined as the "discrepancy between the real position of the output gear and where it would be 

positioned if the gear drive were perfectly matched." This type of gear transmission error is 

commonly encountered in real gear systems due to factors such as irregular tool geometry, 

imperfect mounting, misalignment between the two gears, and other similar issues. The TE vary 

from zero due to surface mismatch or misalignment and can be calculated using the equation 

below: 

 

 ∆𝜑 = (𝜑2 − 𝜑20) −
𝑁1

𝑁2
(𝜑1 − 𝜑10),    (14) 

 

where 𝜑10 and 𝜑20 are the rotational angles of the pinion and the gear when tooth surfaces are 

in contact at an initial contact point. Here, 𝜑2 is the gear rotational angle corresponding to the 

pinion rotational angle 𝜑1, which is an independent variable. The function of transmission error 

∆𝜑 is a periodic function with the period 𝑇 = 2𝜋/𝑁1. ∆𝜑 has different shapes depending on 

conditions such as the angle of misalignment or applied crowning. Figure (10) displays example 

of the result of TE (∆𝜑) caused by gear misalignment without applying any modification.  
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Figure 10. The function of TE at the present of angular misalignment in gear system. 

  

 In the case where meshing gears without crowning are misaligned, their axes are crossed 

or intersected. In that case, the edge of the pinion tooth surface will be in tangency with the gear 

tooth surface, which will lead to the path of contact located at the edge of the tooth flank as in 

Figure (11), accompanied by the discontinuous function of TE as shown in Figure (10). In this 

circumstance, gear transmission at the end of the meshing cycle is inevitably accompanied by a 

jump in the angular velocity, vibration, and noise. 

 

Figure 11. Path of contact of spur gear with in-plane angular misalignment. 

 

 2.6 Gear tooth contact analysis methods  
 

 The study of gear tooth contact analysis (TCA) is critical in the design and performance 

evaluation of gear systems. TCA involves the determination of the contact conditions between 

meshing gears, including the contact pattern, contact pressure distribution, and tooth surface 

strains. Computer simulation of gear tooth interaction allows to evaluate all gear-related 

processes during the design phase, which can encompass misalignment, transmission errors, 

tooth damage, noise, and vibration.  
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 Litvin [1] is a well-known expert in this field and has developed essential methods for 

tooth contact analysis (TCA) and local synthesis, determining the interaction between two gear 

teeth in machine tool settings. To minimize noise and vibration in a meshing spur and helical 

gear pair, Litvin and his team [61-63] proposed a five degree of freedom equation system to 

modify their geometry and reduce transmission errors while avoiding tooth edge contact. They 

later applied this method to examine the interaction of misaligned spur and helical gear pairs by 

using double crowning of tooth surfaces with a parabolic transmission error function. In 

addition, Litvin and his team [64,65] utilized this tooth surface topology to pinpoint the bearing 

interaction. The primary limitation of the model is that determining the location of the surface 

contact is essential for obtaining an accurate solution, but this demands a substantial amount of 

computational power. If this computational power is not available, the numerical computation 

process experiences convergence issues. To address this and other related problems, different 

studies have proposed alternative models for tooth contact analysis.  

 Bracci [66] proposed a geometric approach that does not require considering the 

curvature of the surface to estimate the contact pattern. This method employs a surface 

intersection procedure that simulates the removal of marking compound during meshing, 

ultimately estimating the instantaneous contact area. 

 Lin and Fong [67] suggested an alternative approach that eliminates the need for using 

normal vectors to determine the coordinates of contacting points based on surface position. They 

introduced a numerical approach vector exclusively for this purpose. 

  Spitas and colleagues [68] introduced a novel set of basic two-dimensional contact 

equations for the two-dimensional issue, specifically for spur parallel-axis gearing, which 

reduced Litvin's model of five nonlinear equations with five unknowns and one independent 

parameter to a system of only two equations with two unknowns and one independent parameter. 

 Wang et al. [69] introduced optimization methods that involve the discretization of 

unknown parameters. In contrast, this study introduces a simplified model for the conventional 

TCA method of gear analysis, incorporating new perspectives on geometry and kinematics.  

 While these methods are indeed more advanced TCA approaches, it's important to note 

that they still primarily serve as optimizations of conventional TCA methods or describe only 

two-dimensional contact cases. In contrast, our work offers a more explicit solution, allowing 

for the definition of unknown free parameters through a straightforward geometric approach. 

This distinction underscores the unique contribution and innovation in our research compared 

to the refinement of existing approaches by other authors. 
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 One traditional TCA method is the use of the elliptical contact theory, which assumes a 

uniform contact pressure distribution over the entire tooth surface. However, this theory has 

been shown to provide unrealistic results, particularly in cases where the load distribution is not 

uniform. To address this issue, studies on loaded tooth contact analysis (LTCA) have been 

carried out to assess contact properties that avoid edge contact, concentrated stresses, low 

vibration, and acceptable transmission error [70].  

 

 

 

 

 

 

 2.7  Hertzian stress contact analysis 
 

 Hertzian stress is a term used to describe the stress that arises at the point of contact 

between two bodies in mechanical systems. This stress is proportional to the pressure applied at 

the point of contact and is described by the Hertz theory, which was developed by the German 

physicist Heinrich Hertz in the late 19th century. Hertzian stress is a critical factor in many 

engineering applications, such as in the design of bearings, gears, and other mechanical 

components. Contact analysis is a crucial tool in the determination of Hertzian stress and its 

effects on mechanical systems. This analysis involves the use of mathematical models and 

simulations to understand the behavior of stress at the point of contact and to predict the behavior 

of mechanical components under different loads and conditions [71,72]. There have been 

numerous studies conducted on Hertzian stress and contact analysis, and this research has 

contributed to a better understanding of the relationship between contact stress and the behavior 

of mechanical components. Some of the key findings from this research include the importance 

of considering surface roughness and material properties in contact analysis, the role of 

geometry and load distribution in determining Hertzian stress, and the importance of taking into 

account the dynamic behavior of mechanical components in contact analysis [73,74]. In recent 

years, advances in computer-aided design (CAD) and simulation software have allowed for 

more accurate and efficient analysis of Hertzian stress in mechanical systems. This has led to 

improvements in the design of mechanical components and has opened up new possibilities for 

the optimization of existing systems [75-78]. The Hertzian stress is also an important concept 
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in gear tooth contact analysis. In gear systems, the Hertzian stress can play a critical role in 

determining the durability and efficiency of the gears, as well as the overall performance of the 

system. When gear teeth come into contact, the Hertzian stress is generated at the point of 

contact. This stress is a result of the indentation force that is generated by the meshing of the 

gear teeth. The Hertzian stress can have a significant impact on the life of the gear teeth and the 

gear system as a whole. For example, if the Hertzian stress is too high, it can cause deformation, 

pitting, or fatigue failure in the gear teeth. Gear tooth contact analysis is used to evaluate the 

Hertzian stress and predict its effects on the gear system. This analysis can be used to optimize 

the design of the gear teeth [79-81]. Additionally, gear tooth contact analysis can be used to 

identify potential failure modes and to develop maintenance schedules for gear systems. 

 This study proposes an analytical method for assessing stress in misaligned gear drives 

with localized bearing contact. The method, based on Hertz theory, determines the area of 

contact and maximum contact stress for various gear drives by using crowned tooth surfaces to 

avoid edge contact. The contact pressure is transmitted along an elliptical area during 

engagement of the crowned teeth, which is influenced by the contact geometry and tooth 

modifications. The dimensions of the contact ellipse can be determined by using the principal 

curvatures of the gear teeth surfaces at the point of contact [82,83], as follows: 

 The first fundamental forms of the tooth surface are calculated using the surface 

parametric equation 𝑓 𝑖(𝑢1, 𝑣1),  to determine the maximum and minimum principal curvatures 

at the point of contact on the tooth surface,   

𝐸 =
𝜕𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑢
∙
𝜕𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑢
  𝐺 =

𝜕𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑣
∙
𝜕𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑣
     𝐹 =

𝜕𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑢
∙
𝜕𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑣
 .      (15) 

 

and second fundamental forms as: 

 

𝐿 = �̂� ∙
𝜕2𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑢2 𝑁 = �̂� ∙
𝜕2𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑣2 𝑀 = �̂� ∙
𝜕2𝑓 𝑖(𝑢1,𝑣1)

𝜕𝑢𝜕𝑣
 .                        (16) 

 

 After determining the maximum and minimum principal curvatures of the point of 

contact on the tooth surface using the normal vector at contact point, the first fundamental forms 

of the tooth surface are calculated using the surface parametric equation 𝑓 𝑖(𝑢1, 𝑣1). From these 

fundamental forms, the Gaussian and mean curvatures of the surface 𝑓 𝑖(𝑢1, 𝑣1) can be 

calculated. 
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𝐾 =
𝐿𝑁−𝑀2

𝐸𝐺−𝐹2       and     𝐻 =
𝐸𝑁+𝐺𝐿−2𝐹𝑀

2(𝐸𝐺−𝐹2)
   ,                              (17) 

 

 Here, 𝐾 represents the intrinsic property of curvature, and 𝐻 represents the extrinsic 

property of curvature, which are not dependent on the coordinate system. The maximum and 

minimum principal curvatures at the contact point on the tooth surface (𝑢1, 𝑣1) can be 

determined using the following equation: 

 

𝜅𝑚𝑎𝑥
(𝑖)

=
1

𝑅𝑚𝑎𝑥
(𝑖) = 𝐻 + √𝐻2 − 𝐾            𝜅𝑚𝑖𝑛

(𝑖)
=

1

𝑅
𝑚𝑖𝑛
(𝑖) = 𝐻 − √𝐻2 − 𝐾,                (18) 

 

The maximum and minimum radii of curvatures, denoted as 𝑅𝑚𝑎𝑥
(𝑖)

 and 𝑅𝑚𝑖𝑛
(𝑖)

, respectively, are 

used to determine the shape of the contact area for crowned canonical involute profiles of gears, 

which results in an elliptical shape even when there is a misalignment during transmission. To 

calculate the eccentricity of the contact ellipse, the composite radii are defined as: 

 

1

𝑅𝑥
= 2𝐴 =

1

𝑅𝑚𝑎𝑥
(1) +

1

𝑅𝑚𝑎𝑥
(2)    and 

1

𝑅𝑦
= 2𝐵 =

1

𝑅
𝑚𝑖𝑛
(1) +

1

𝑅
𝑚𝑖𝑛
(2)  ,                    (19) 

 

The numerical estimation of the eccentricity of the contact area is obtained by equating: 

 

1

[𝐾(𝑒)−𝐸(𝑒)]
[

𝐸[𝑒]

(1−𝑒2)
− 𝐾(𝑒)] =

𝐵

𝐴
,                                              (20) 

 

The eccentricity of the contact area is estimated numerically using Newton's method. The first 

and second kind complete elliptic integrals, 𝐾(𝑒) and 𝐸(𝑒), respectively, are involved in the 

estimation process. These integrals can be expressed in terms of a function. 

 

𝐾(𝑒) = ∫
𝑑𝜃

√1−𝑒2𝜃
     

𝜋/2

0
𝑎𝑛𝑑      𝐸(𝑒) = ∫ √1 − 𝑒2𝜃 𝑑𝜃

𝜋/2

0
 .                (21) 

 

 The major axes a and minor axes b of the contact ellipse can then be obtained after 

determining the eccentricity (e): 

  

𝑎 = (
3𝑃𝐶𝐸[𝐾(𝑒)−𝐸(𝑒)]

2𝜋𝑒2𝐴
)
1/3

𝑎𝑛𝑑            𝑏 = 𝑎√1 − 𝑒2,                            (22) 
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where the material modulus 𝐶𝐸 is: 

𝐶𝐸 =
1−𝜈1

2

𝐸1
+

1−𝜈2
2

𝐸2
,                                                       (23) 

The equation for the maximum contact pressure can be found after specifying the load P and 

using the Young’s modulus 𝐸1 and 𝐸2, and the Poisson’s ratios 𝜈1 and 𝜈2  of the pinion and 

gear. The equation is: 

 

𝑝 =
3𝑃

2𝜋𝑎𝑏
 .                                                                (24) 

 Calculating a dimensionless pressure value can help evaluate the impact of tooth profile 

or alignment changes on stress distribution and streamline simulation. This involves dividing 

the maximum contact pressure obtained from Equation (24) by the maximum pressure for an 

aligned and unmodified tooth contact, which is denoted as 𝑝𝑜. The resulting dimensionless 

pressure value can then be used to compare the effects of profile modification or misalignment 

on stress distribution, and to make the simulation process more convenient. The stress ratio 𝑆𝑅 

(or 𝜎) can be expressed as: 

 

𝑆𝑅 =
𝑝

𝑝𝑜
   .                                                       (25) 
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Chapter 3. Mathematical models of gear TCA method 

 

3.1   Conventional TCA method 

 

Litvin et al. [1] presented a solution for the problem of the geometrical contact of two 

rotating surfaces in the context of gear tooth contact analysis, as shown in Figure (12). Their 

approach involved assuming the presence and smoothness of surface gradients and using a 

surface tangency condition to represent the gear tooth contact. Specifically, the tooth surfaces 

𝑆1 and 𝑆2   were considered to be in point tangency, and vector equations in the coordinate 

system 𝑆𝑓  were used to describe the instantaneous tangency of the surfaces. 

 𝑟 𝑓
(1)

− 𝑟 𝑓
(2)

= 0 ,  (26) 

 �⃗� 𝑓
(1)

− �⃗� 𝑓
(2)

= 0 . (27) 

 

The unit vector of surface normal is represented by �⃗� 𝑓
(1,2)

, and the position vectors are 

illustrated by 𝑟 𝑓
(1,2)

. Equation (26) generates three independent scalar equations, while Equation 

(27) generates only two, as 

 |�⃗� 𝑓
(1)

| = |�⃗� 𝑓
(2)

| = 1 ,                (28) 

 

If needed, the collinearity of the surface normals can be determined in the following 

manner:  

 

𝑁1 = 𝜆𝑁2       (𝜆 ≠ 0) ,                                          (29) 

 

Assuming that gear 1 is the reference gear, Equations (26-27) provide a set of six non-

linear equations, where five are independent, with five unknowns and one applied parameter 

(𝜙1), denoted by  

 

𝑓𝑖(𝑢1, 𝑣1, 𝜙1, 𝑢2, 𝑣2, 𝜙2) = 0 ,      𝑓𝑖 ∈ 𝐶1 ,      (𝑖 = 1, . .5) .                   (30) 

 

where 𝑓𝑖 belongs to the set of continuously differentiable functions 𝐶1 (Equation (30)). 

The local frame of reference bound to each gear is used to describe the corresponding surfaces 
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with two parameters (𝑢1, 𝑣1) and (𝑢2, 𝑣2) which rotate together with their respective gears by 

angles 𝜙1 and 𝜙2. The equations can be solved for a contact point using the Theorem of Implicit 

Function System Existence, with the condition that the Jacobian is non-zero, as shown in 

Equation (31).  

 

0 ≠
𝐷(𝑓1,𝑓2,𝑓3,𝑓4,𝑓5)

𝐷(𝑢1,𝑣1,𝑢2,𝑣2,𝜙2)
 ,                                         (31) 

 

{𝑢1(𝜙1), 𝑣1(𝜙1), 𝑢2(𝜙1), 𝑣2(𝜙1), 𝜙2(𝜙1)} ∈ 𝐶1 .                              (32) 

 

The aim is to obtain the unknown parameters of the reference gear (𝑢1, 𝑣1) and its mating 

gear (𝑢2, 𝑣2, 𝜙2), where these parameters are continuously differentiable functions according to 

Equation (32). This method is generally applicable to any gear tooth surface geometry and to 

gear tooth surfaces that are not aligned, as demonstrated by Figure (12), which shows the helical 

gear tooth surface contact in the case of in-plane misalignment. 

 

Figure 12.  This figure depicts a diagrammatic representation of the contact between the teeth 

of a helical gear pair. 

 

The simulation process involves analytical expression of gear tooth misalignment 

through the rotation matrix R(λ). The system's solution relies on the application of subroutines 
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with an iterative process. However, numerical solutions are sensitive to the selection of initial 

"guess values," and therefore heavily rely on it. Inaccurate results may be generated by the 

numerical algorithm, such as convergent solutions that are not accurate compared to the actual 

ones, or the algorithm may fail to converge if the guess values are not carefully selected.  

 

3.2 Novel TCA method 
 

In order to overcome convergence issues that appear in conventional passive models, we 

have presented a novel set of nonlinear equation to describe tooth contact condition. It is 

assumed that the surfaces of the contacting teeth are continuous 𝐶1 and  revolve about axes 𝑤𝑖 

in a fixed coordinate system, as shown in Figure (13). The surface meshing is achieved by 

fulfilling the surface tangency conditions. 

 

�⃗� 1(𝑢1, 𝑣1, 𝜙1) × �⃗� 2(𝑢2, 𝑣2, 𝜙2) = 0 ,                                 (33) 

 

�⃗� 𝑖 =
𝜕𝑟 𝑖

𝜕𝑢
×

𝜕𝑟 𝑖

𝜕𝑣
      𝑎𝑛𝑑   𝑟 𝑖 = 𝑅𝑖(𝜙𝑖)𝑓 𝑖(𝑢𝑖 , 𝑣𝑖)       𝑖 = 1,2,                  (34) 

 

The tooth meshing equation is formed based on this parameterization of the surfaces, 

which is represented by the radial distance 𝑢𝑖  of a contact point from the surface rotation axis 

𝑤𝑖 and the algebraic projection 𝑣𝑖 of the position vector 𝑟 𝑖 onto the same axis. 

 

 𝑣𝑖 = �⃗⃗� 𝑖 ⋅ 𝑝𝑟𝑜𝑗�⃗⃗� 𝑖𝑟 𝑖 , (35) 

 

 𝑢𝑖 = ||𝑟 𝑖 − 𝑝𝑟𝑜𝑗�⃗⃗� 𝑖𝑟 𝑖|| . (36) 

 

The position vector 𝑟 𝑖(𝑢𝑖, 𝑣𝑖) is assumed to be a 𝐶1 continuous function. The parameters 

𝑢𝑖 and 𝑣𝑖 describe the lengths of a right triangle with the hypotenuse as the position vector 𝑟 𝑖  of 

the contact point on the tooth surface. A rotation matrix 𝑅𝑖(𝜙𝑖) , which represents the rotation 

of the tooth by an angle 𝜙𝑖, is used in combination with the surface equations (𝑓 𝑖) to define the 

vector 𝑟 𝑖(𝑢𝑖 , 𝑣𝑖). 

 

                                        𝑟 𝑖 = 𝑅𝑖(𝜙𝑖)𝑓 𝑖(𝑢𝑖, 𝑣𝑖)                    𝑖 = 1,2 . (37) 
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 In addition, the common point of contact is obtained by summing the free vectors: 

 

 𝑟 1 − 𝑎 12 − 𝑟 2 = 0⃗  . (38) 

 

The vector distance between the coordinate systems of each surface is represented by 

𝑎 12. With specific geometric relationships, the parameters 𝑢2 ,𝑣2 and 𝜙2 can be directly 

calculated in terms of 𝑢1 , 𝑣1, 𝜙1. 

 

 

Figure 13. The diagrams demonstrate the interaction between the surfaces of the first and 

second teeth as they revolve around their respective fixed axes, 𝑤1 and 𝑤2. 

 

 𝑣2 = 𝑝𝑟𝑜𝑗�⃗⃗� 2𝑟 2 = �⃗⃗� 2 ⋅ (𝑅1(𝜙1)𝑓1 − 𝑎 12) , (39) 

 

where the applied parameter angle 𝜙1 describes the rotation of the first surface. The Pythagorean 

theorem states: 

 𝑢2 = √𝑟 2(𝑢2, 𝑣2)2 − 𝑣2
2 = √(𝑅1(𝜙1)𝑓1(𝑢1, 𝑣1) − 𝑎 12)2 − 𝑣2

2,                  

(40) 

 

The projection of vectors 𝑓 2 and 𝑟 2 onto a �̂�2-plane is used to calculate the rotation angle 
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𝜙2 around fixed axis �⃗⃗� 2, where 𝑓 2(𝑢2, 𝑣2)  and 𝑟 2(𝑢2, 𝑣2)  describe the surface and position 

vector of a meshing teeth, respectively.  

 

𝑝 2(𝑢2, 𝑣2) = 𝑝𝑟𝑜𝑗�̂�2−plane 𝑓 2(𝑢2(𝑢1, 𝑣1), 𝑣2(𝑢1, 𝑣1)) ,                                    (41) 

 

 𝑞 2(𝑢2, 𝑣2) = 𝑝𝑟𝑜𝑗�̂�2−plane 𝑟 2(𝑢2(𝑢1, 𝑣1), 𝑣2(𝑢1, 𝑣1)) ,                                    

(42) 

 

where 𝑞 2(𝑢2, 𝑣2) is a projection of 𝑟 2(𝑢2, 𝑣2) on the �̂�2-plane and 𝑝 2(𝑢2, 𝑣2)  is a 

projection of 𝑓 2(𝑢2, 𝑣2). With the dot product concept, the following problems can be resolved: 

 

 𝜙2 = ±𝑐𝑜𝑠−1 𝑝 2(𝑢2,𝑣2)⋅�⃗� 2(𝑢2,𝑣2)

�⃗� 2
2  . (43) 

 

 
𝑝 2(𝑢2,𝑣2)×�⃗� 2(𝑢2,𝑣2)

||𝑝 2(𝑢2,𝑣2)×�⃗� 2(𝑢2,𝑣2)||
⋅ �⃗⃗� 2 = ±1 , (44) 

 

where the direction will be positive for a clockwise rotation and negative for an 

anticlockwise rotation.  Equations (34-44) can be substituted into Equation (33) to obtain scalar 

equations that only depend on two independent parameters (𝑢1, 𝑣1) and one applied parameter 

𝜙1. A numerical method can be used to calculate the surface contact point for the first tooth, 

and the remaining unknowns can be explicitly defined through back substitution. This allows 

the contact point on the meshing surface and its position in space to be determined. In the 

proposed method, a parametric quasi-static study is carried out on the contact between gear teeth 

by introducing innovative kinematic and geometric perspectives to enhance the understanding 

of the meshing process. As a result, it should be noted that the research primarily focuses on 

these aspects and does not explicitly involve rotational speed as a variable in the study. 

  

3.3 New TCA model in spherical coordinate system 

  

The tooth contact analysis (TCA) model for spur and helical gears is typically described 

using the cylindrical coordinate system. However, when analyzing other types of gears, such as 

bevel gears, it is necessary to switch to a spherical coordinate system for TCA. The proposed 
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solution for the bevel gear tooth contact problem is represented using surface tangency 

conditions as in previous section. These conditions involve two surfaces, 𝑆1 and 𝑆2, which 

revolve around a fixed axis �⃗⃗� 𝑖 and are 𝐶1 continuous. The conditions are illustrated in Figure 

(14). To perform TCA in the spherical coordinate system, we will define 𝑢1,2  as the angle 

between the 𝑤1,2   axis and the contact point, and 𝑣1,2 as the radial distance from the origin 

𝑂1,2  to the contact point. The process for calculating the contact position is the same as in the 

previous section, with the exception that 𝑢2 is defined differently as follows: 

  

𝑢2 = 𝑐𝑜𝑠−1(𝑐𝑜𝑠 𝛴𝑜  𝑐𝑜𝑠 𝑢1 + 𝑠𝑖𝑛 𝛴𝑜  𝑠𝑖𝑛 𝑢1 𝑐𝑜𝑠 (|𝜑1| ± 𝜗1) ) ,             (45)               

 

𝜗1 =
1

𝑠𝑖𝑛(𝛼1)
𝑠𝑖𝑛(𝛼1) 𝑡𝑎𝑛 (

𝑡𝑎𝑛(𝛼1)

 𝑡𝑎𝑛( 𝑢1)
) −

𝑡𝑎𝑛(𝛼1)

 𝑡𝑎𝑛( 𝑢1)
.                               (46) 

 

 

The variable 𝜗1 represents the involute polar angle of the meshing gear. When there is 

contact between the gear tooth surface and the addendum, 𝜗1 assumes a positive sign, whereas 

when there is contact with the dedendum, it assumes a negative sign. The angle of the shaft is 

denoted by 𝛴𝑜. By substituting Equations (34-44), two scalar equations with two independent 

parameters (𝑢1, 𝑣1) can be defined.  

 

Figure 14. The interaction between involute bevel teeth is shown schematically. 
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Chapter 4. Cylindrical gears contact analysis using the 

proposed TCA method 

 

 4.1 Spur gears contact analysis 

 

The Wolfram Mathematica software was utilized to simulate a proposed new set of 

equations for TCA, which involve two unknown parameters (𝑢𝑖 and 𝑣𝑖), for meshing two C1 

spur involute surfaces with alignment errors.  Involute spur gears are susceptible to in-plane and 

out-of-plane angular misalignment, which can be prevented by crowning the mating tooth 

surface to localize bearing contacts while keeping the second gear unmodified. The modelling 

process considered both in-plane (∆γ) and out-of-plane (∆δ) angular misalignment, as well as 

in-plane (∆E) and out-of-plane (∆H) axial off-set along the x and y-axis. The misalignment 

amounts used in the simulation were ∆γ=17.5 mrad, ∆δ=17.5 mrad, ∆E=0.2, and ∆H=0.2. 

During the simulation, the gears' rotation axes were parallel (�⃗⃗� 1||�⃗⃗� 2) and oriented along the z-

axis. The simulation used the following gear parameters: number of teeth 𝑁1 = 𝑁2 = 25, 

module 𝑚 = 1, pressure angle 𝛼 = 20𝑜, and tooth face width 𝑏 = 10, where 𝑚 and 𝑏 were non-

dimensionalized. 

 

  

Figure 15.  The transmission function is discontinuous due to insufficient parabolic 

modification. 
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Figure 16.  With enough parabolic adjustment, the continuous transmission function can be 

obtained. 

 

 Figures (15) and (16) illustrate the results of the analysis of the transmission function. 

In Figure (15), a parabolic crown with a value of 𝑎1 = 0.00125  in inverse non-dimensional 

length units is utilized, causing a curved transmission error function due to in-plane 

misalignment. The intermittent function suggests that the modifications made were insufficient, 

which may result in gear tooth engagement noise and vibration. However, Figure (16) 

demonstrates that a satisfactory modification of 𝑎1 = 0.01675  was made, leading to a 

continuous parabolic transmission function. For the stress simulation analysis, the Poisson's 

ratio of the gears was set to 𝜈 = 0.3, the elasticity modulus to 𝐸 =200 GPa, and a total applied 

load of 𝐹 = 56 × 10−6  was utilized to determine the contact trace and contact ellipses for 

various misalignments and surface modifications, as depicted in Figures (17) and (18). Figure 

(17) shows the contact path when longitudinal parabolic crowning of 𝑎1 = 0.0025 is applied to 

prevent contact with the edges in the case of angular and linear alignment errors. However, this 

leads to discontinuous transmission. On the other hand, Figure (18) displays the contact path for 

in and out-of-plane misalignment with tip and root relief and longitudinal crowning, resulting 

in an unusual contact trace but an asymmetrically continuous transmission function with similar 

outcomes for both angular misalignments, as shown in Figure (15). The number of modification 

parameters for the crowning and the tip-root relief were selected as 𝑎1 = 0.0025, 𝐿1 = 0.6, 

𝐿2 = 0.4 and 𝑐𝑚 = 0.4. Lastly, Figure (19) illustrates the contact path in the presence of both 
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out and in-plane angular misalignments with the same modification parameters, and the result 

of the transmission function is not significantly different from Figure (20). 

 

 

(a)                                                                         

 

 (b) 

 

 (c) 

Figure 17.  Path of contact with contact ellipses for (a) In-plane and (b) Out-of-plane angular 

misalignment; (c) Axial off-set  
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(a) 

 

 

(b) 

Figure 2. The contact path of the tooth surface with tip-root relief and crowning with in-plane 

(a) and out-of-plane (b) angular misalignments. 

 

Figure 19.  Transmission with tooth surface modification with angular misalignment. 
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Figure 20.  Path contact with combined out and in-plane angular misalignments. 

 

 Figures (21) and (22) were presented to visualize how contact stress changes at different 

stages of contact. The vertical axis represents a non-dimensionalized tooth profile, while the 

horizontal axis represents the stress ratio. Figure (21) shows the stress distribution for in-plane 

angular misalignment with longitudinal crowning of the tooth, whereas Figure (22) shows stress 

distribution for in-plane alignment error with both root tip relief and longitudinal crowning. 

Comparing the two figures, it is evident that the tip-root relief alters the contact trajectory in an 

unusual way and unevenly distributes pressure. In both cases, the highest pressure on the tooth 

surface is exerted at the top and bottom, which aligns well with previous studies conducted on 

this topic and supported by experimental or finite element methods validation [84-91]. 
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Figure 21.  SR vs 𝑢1 regarding in-plane angular alignment error with longitudinal crowing. 

 

  

Figure 22.  SR vs 𝑢1 with  in-plane angular misalignment with longitudinal crowing and tip-

root relief. 
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 4.2 Helical gears contact analysis 

 

 The need to modify involute helical gears is evident from the application of design 

principles and testing with TE and contact, particularly when there is angular misalignment. The 

involute gearing is sensitive to assembly errors, including changes in the shaft angle, which 

affects the contact between tooth surfaces. Although traditional designs ensure immediate 

contact along a line, angular misalignment can cause the contact line to change to a point at the 

tooth flank's edge, leading to inconsistent linear functions of TE, noise, and vibration. The 

angles of angular misalignment used in the study were chosen based on and consistent with 

previous research [1]. 

 In this study, a new set of three-dimensional equations for contact between teeth surfaces 

was used to simulate the TCA (tooth contact analysis) of misaligned helical gears. This approach 

is similar to what was done for spur gears in earlier sections. The effects of different types of 

crowning, such as parabolic, circular and logarithmic, were assessed by analyzing the TE 

function, the path of contact, and the area of the TE function. Various parameters were also 

adjusted to meet specific criteria, as in the case of the spur gears. Table 1 lists the simulation 

parameters used for the helical gears, which were rotated on parallel axes during the simulation. 

The involute gear was not modified, and only the involute pinion was altered. 

 

Table 2. Parameters of helical gears. 

Parameters Pinion Gear 

Number of teeth 40 37 

Module, mm 1 

Pressure angle, degree 20 

Helix angle, degree 14 

Face width, mm 20 

Center distance, mm 39.67 

Poisson’s ratio 0.3 

Modulus of Elasticity, GPa 206 

Total load, N 200 

 

 Akin to the analysis done for spur gears, a study was conducted to determine the amount 

of crowning necessary for achieving a continuous TE function across all three crowning types, 

as illustrated in Figure (23). The study revealed that inadequate crowning leads to a 
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discontinuous TE function, and therefore optimization is crucial to attain a contact path near the 

center of tooth surfaces that results in a continuous TE function. Table (2) presents the findings 

that led to a continuous TE function for the modification parameter for all three types of 

crowning. The study showed that the level of crowning required for a continuous TE function 

decreases as the misalignment level increases. Additionally, the maximum TE (∆𝜑𝑚𝑎𝑥) was 

determined for each modification. By comparing the values of ∆𝜑𝑚𝑎𝑥for each modification and 

misalignment angle, the logarithmic modification resulted in the smallest value, followed by the 

circular and parabolic modifications.  

 

 Table 3. Amount of modifications for various in-plane angular misalignment errors for 

helical gears. 

Angular 

misalignment 

γ (deg) 

Circular Parabolic  Logarithmic 

𝐶𝑐 (mm)  ∆𝜑𝑚𝑎𝑥  

(arcsec) 

𝑐1 (mm−1) ∆𝜑𝑚𝑎𝑥  

(arcsec) 

𝑎1 (mm) ∆𝜑𝑚𝑎𝑥  

(arcsec) 

 

-0.05˚ 

2.398 -0.15843 0.0227 -0.158389  2.515 -0.158352  

2.400 -0.15384 0.0233 -0.159286 2.600 -0.158858 

2.565 -0.153797 0.0240 -0.154701 2.669 -0.153776 

 

-0.1˚ 

1.104 -0.31696 0.0110 -0.316706  1.201 -0.316326  

1.150 -0.316498 0.0113 -0.317616 1.236 -0.31794 

1.173 -0.316498 0.0115 -0.31153 1.275 -0.30746 

 

-0.2˚ 

0.507 -0.633315 0.0051 -0.635564  0.537 -0.628879  

0.520 -0.637441 0.0052 -0.636932 0.553 -0.632365 

0.535 -0.618792 0.0053 -0.625768 0.572 -0.611297 

 

 

 

(a) 

 

(b) 
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(c) 

 

Figure 23.  The TE functions (a) circular, (b) parabolic, and (c) logarithmic have varying 

degrees of crowning. 

 

The helical gear with in-plane misalignment displays slight variations in the TE function 

among different surface modifications (as shown in Figure 24). To precisely quantify these 

differences, the area 𝑆𝑐,𝑝,𝑙 of the TE functions was computed, which yielded the following 

results:       

 

𝑆𝑐 = −0.220082; 𝑆𝑝 = −0.223297; 𝑆𝑙 = −0.218083. 

The computations reveal that the logarithmic modification produces superior outcomes 

compared to the other modifications. Specifically, the area of the TE function for the logarithmic 

modification is 2.33% and 0.9% less than that of the parabolic and circular modifications, 

respectively. 

 

Figure 24.  TE of a helical gear with three different modifications and an angular 
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misalignment of 0.2 (3.5 mrad) 

 Figure (25) illustrates the contact paths for various misalignment angles. As the 

misalignment angle increases, the contact path for each of the three modifications shifts away 

from the center. Although all three types of crowning yield a similar contact path, a closer 

analysis of the data reveals that the circular crown is closer to the center at misalignment angles 

of 0.1˚ (1.7 mrad) and 0.2˚ (3.5 mrad), while the logarithmic modification performs better at the 

smaller misalignment angle of 0.05˚ (0.87 mrad). 

 

 

(a)                                                                          (b) 

 

(c)  

Figure 25.  Path of contact of longitude circular, parabolic, and logarithmic crowned helical 

gear with in-plane misalignment: 0.05 (0.87 mrad), 0.1 (1.7 mrad), and 0.2 (3.5 mrad). The 

center of the tooth surface across the breadth of the gear is indicated by the dashed line. 

 

 Further we will investigate the effects of misalignment along the x-axis on helical gear 

systems. Specifically, the study looks at how different modifications to three crown types (𝐶𝑐, 

𝑐1 and 𝑎1) can ensure continuous TE function for misalignment angles ranging from 0.05-0.2˚ 

(0.87-3.5 mrad). The results are shown in Tab. (3), and ∆𝜑𝑚𝑎𝑥  (maximum TE) is also calculated 
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for each crown type and misalignment angle. The study finds that as misalignment increases, 

the necessary modification for all three crown types decreases. Additionally, the logarithmic 

modification yields the smallest value for ∆𝜑𝑚𝑎𝑥, followed by the circular and then the parabolic 

modifications. 

 

Table 4. Amount of adjustments in relation to angular misalignment out of plane for helical 

gear engagement. 

Angular 

misalignment  

δ (deg) 

Circular Parabolic  Logarithmic 

𝐶𝑐 (mm)  ∆𝜑𝑚𝑎𝑥  

(arcsec) 

𝑐1 (mm−1) ∆𝜑𝑚𝑎𝑥  

(arcsec) 

𝑎1 (mm) ∆𝜑𝑚𝑎𝑥 

(arcsec) 

 

0.05˚ 

0.804 -0.4225422 0.00799 -0.42257 0.873 -0.42094 

0.830 -0.424252 0.00820 -0.424946 0.900 -0.423014 

0.853 -0.410921 0.00847 -0.410987 0.927 -0.409179 

 

0.1˚ 

0.360 -0.845263 0.00359 -0.845918  0.368 -0.831488  

0.370 -0.850059 0.00370 -0.849776 0.380 -0.836597 

0.381 -0.823004 0.00380 -0.825234 0.393 -0.809249 

 

0.2˚ 

0.143 -1.69059 0.00143 -1.69062  0.046  -1.4328  

0.146 -1.70474 0.00146 -1.7048 0.055 -1.49707 

0.150 -1.66515 0.00150 -1.66508 0.081 -1.48844 

 

 To gain a more comprehensive understanding of the variation between crown types, the 

area 𝑆𝑐,𝑝,𝑙  is computed for all of them under a misalignment angle of 0.2˚ (3.5 mrad), using their 

TE functions (Figure 26).  

 

𝑆𝑐 = −0.645048; 𝑆𝑝 = −0.642903; 𝑆𝑙 = −0.509613 

 

 The results indicate that the logarithmic modification produces transmission function 

area that is approximately 21% smaller than that of the circular and parabolic modifications. 

Therefore, the logarithmic function is considerably more effective than the other two crown 

types. 
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Figure 26.  TE of a helical gear with three different modifications and an angular 

misalignment of 0.2 (3.5 mrad). 

 

 Figure (27) displays the contact path for each crown type and misalignment angle (0.05-

0.2˚). As the out-of-plane misalignment angle increases, the point of contact moves farther away 

from the center. The contact path for 0.05° and 0.1° misalignment is comparable, but at 0.2° 

misalignment, the contact path for the logarithmic crowning is noticeably farther from the center 

than the other two types. For a misalignment angle of just 0.2°, the shift is 1.3 mm for in-plane 

misalignment and 5.0-6.5 mm (depending on the crown type) for out-of-plane misalignment. 

Consequently, a significant finding of the simulation comparison between spur and helical gear 

meshing is that helical gears experience a much greater shift of the contact path from the center 

of the tooth in the presence of misalignments. 

 

 

  (a)                                         (b) 
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(c) 

Figure 27.  Path of contact of longitude circular, parabolic, and logarithmic crowned helical 

gear with out-of-plane misalignment: a) 0.05 (0.87), b) 0.1 (1.7), and c) 0.2 (0.2 mrad) (3.5 

mrad). The center of the tooth surface across the breadth of the gear is indicated by the 

dashed line. At the 0.2° misalignment angle, the scaled contact ellipses at the pitch point are 

displayed. 

 

 Figure (28) displays the three-dimensional mesh contact of helical gears with circular 

and logarithmic modifications. The parabolic crown is not shown because its surface is almost 

indistinguishable from the circular crown. Examining the figure, it is evident that when there is 

a significant misalignment between the two gear teeth, the surface with circular crowning will 

encounter edge contact. However, for the same situation, a much more severe misalignment 

angle is required for the logarithmic crown to experience edge contact. 

 

 

(a)                              (b)                            (c) 

Figure 28.  An illustration of a helical gear assembly model in space with (a) unaltered 

surface, (b) circular crowning, and (c) logarithmic crowning 

 

 The study utilized Hertz contact equations for an elliptical contact point to determine the 

stress ratio (SR) of two helical gear pairs at various angles of out-of-plane misalignment. Figure 
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(29) displays the SR values for all three crown types with respect to misalignment angle. At the 

smallest misalignment angle of 0.01° (0.17 mrad), the logarithmic crown has the highest (SR = 

15.1803), while the circular and parabolic crowns have lower SR values (15.0962 and 15.1661, 

respectively). In contrast to spur gears, where the parabolic crowning yielded the lowest SR 

value for all misalignment angles, each crown type for helical gears produced the lowest SR 

value at a different misalignment angle. At 0.02° (0.35 mrad), the logarithmic crown had the 

lowest (SR = 12.4127), while the circular crown had the highest (SR = 12.6628). At 0.05° (0.87 

mrad), the parabolic crown had the lowest value (SR=10.0767), whereas the logarithmic crown 

had the highest value (SR = 10.1105). The circular crown had the lowest SR value at 0.1° (1.7 

mrad) of misalignment, and the parabolic crown had the lowest SR value again at 0.2° (3.5 mrad) 

of misalignment. The SR values for the various crown types at misalignment angles between 

0.01-0.1° were similar, but at 0.2° of misalignment, the logarithmic crown had a significantly 

higher SR compared to the other traditional crowns, likely due to the unique curvature of its 

profile, which is more pronounced in helical gears.  

 

  

Figure 29. Helical gears with three different methods of profile modification were compared 

in terms of their stress ratio ( Σ) and the degree of out-of-plane misalignment. 

 

 The pressure contact behavior of the circular profile at an out-of-plane misalignment of 

0.2° is depicted in Figure (30) using contact ellipses. The SR at the upper portion of the gear 

tooth surface is higher than that of the lower portion, and it gradually decreases along the contact 

path, which is consistent with prior research [1-2, 88-91]. The pressure contact behavior for the 

other profiles is similar. 
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Figure 30.  The SR of crowned helical gears, where the blue outlines show the location of the 

contact ellipse at the contact point, with the least amount of circular profile alteration along 

the path of contact for an out-of-plane misalignment of 0.2o (3.5 mrad). 
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Chapter 5. Bevel gears contact simulation through the new 

TCA method 

 

 5.1 Straight bevel gear 

  

 The logical extension of the involute plane profile that describes a cylindrical surface, 

such as a spur or helical gear tooth face, is a spherical involute profile. Its generation is based 

on spherical trigonometry and can be defined by the direct definition method by a point 

unwrapped from a base cone circle. 

The surface contact parametric model described earlier was utilized to simulate the 

engagement of a straight bevel gear set with misalignment errors and assess their impact on 

transmission, stress, and contact trace. A specific straight bevel gear set with dimensions listed 

in Table (4), was used as a sample for numerical examples. Double crowning was employed as 

a design modification to improve the resilience of the contact pattern against misalignments. 

These modifications were a combination of tip relief and one of the longitudinal tooth face 

crowning, which were only applied to gear 1. 

 

Table 5.  Simulation parameters of standard straight bevel gear pair. 

Parameters Symbol Gear 1  Gear 2 

Number of teeth 𝑁1, 𝑁2 39 32 

Shaft angle, (deg) ∑  90˚ 

Module, mm 𝑚 2.5 

Pressure angle, (deg) 𝛽  20˚ 

Base cone angle, (deg) 𝛼𝑖 47.79˚ 36.53˚ 

Outer cone angle, (deg) 𝛿𝑖 52.90˚ 41.64˚ 

Face width, mm 𝑏 14 

Poisson’s ratio 𝜗1,2 0.3 

Modulus of Elasticity, GPa E 206 

Maximum load capacity, kN P 2.675 

Applied load, kN Po 1.5 

 

 Figure (31) shows the coordinate system of a misaligned two-bevel gear system, where 
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misalignment is caused by three axial displacements (along the x, y, and z-directions) and one 

angular displacement (around the y-axis). Deviation around the x- and z-axes does not 

contribute to misalignment in bevel gears because of the canonical shape of bevel gears, which 

is considered in a spherical coordinate system.  

 

Figure 31. The following are examples of coordinate systems for misalignments: (a) angle 

change (in-plane misalignment), (b) center distance shift along y-axis, (c) pinion axial 

displacement along x-axis, and (d) gear axial displacement along z-axis. 

 

 Parametrically, the axial displacement can be represented as a shift along the axes, 

resulting in a non-zero value for the axial distance 𝑎 12 between the coordinate systems, as shown 

in Equation (47). On the other hand, angular displacement will cause in-plane deviation and a 

change in the shaft angle, as shown in Equation (48).  

 

𝑎 12={ ∆𝐴, ∆𝐸, ∆𝐺 }                                    (47) 

 

𝛴𝑜 = 𝛴 − ∆𝛾                                                     (48) 

 

Table (6) shows the values of misalignments used during the simulation of straight bevel gears 

meshing. 

 

Table 6.  Simulation parameters of alignment errors. 

Misalignments  Value 

Change of shaft angle, ∆γ (deg) 0.2° 

Change of centre distance, ∆𝐸  (mm)  0.1 

Axial displacement of pinion, ∆𝐴  (mm) 0.1 

Axial displacement of gear, ∆𝐺  (mm) 0.1 
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Figure 32. Straight bevel gear pair illustration provided by Kisssoft program. 

 

Insufficient or excessive amount of crowning in the crossed surfaces of bevel gears can 

result in edge tooth contact and interrupted transmission, as illustrated in Figures (33) and (34). 

The transmission function in Figure (33) is a curved line that does not intersect, indicating that 

insufficient crowning has been applied in the presence of misalignment. This is further 

confirmed by the contact trace results shown in Figure (34), which display partial contact with 

the edge of the tooth surface. 

 

 

Figure 33. With a slight modification, transmission error function is used when the pinion is 

displaced axially. 
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Figure 34. Bevel gear surface with contact ellipses and contact paths. 

 

To prevent edge contact and achieve continuous transmission in the presence of different 

misalignments, double crowning was applied to the driven gear. The simulation results indicated 

that the most effective tooth surface modification for achieving smooth transmission is through 

tip relief crowning. On the other hand, applying longitudinal modifications without tip relief 

crowning led to an intermittent transmission error function. However, after incorporating an 

appropriate amount of tip relief modification, the transmission function became continuous, as 

shown in Figure (35). 

 

 

Figure 35. Transmission error with parabolic crowning, tip relief, and center distance change. 

 

The simulation results show that changes in the longitudinal modification have a direct 
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impact on the location of the path contact. Additionally, different types of misalignment have 

varying effects on the location of the contact trace and transmission error. For example, in Figure 

(36), it is evident that a certain amount of longitudinal crowning can produce acceptable results 

for one type of misalignment error, such as a deviation in center distance (∆E), but unacceptable 

results for another error, such as axial displacement of the gear (∆G). Therefore, it is crucial to 

determine the appropriate amount of profile and lead modification that will yield satisfactory 

results for various types of alignment errors), which is consistent with earlier research [92,93]. 

 

 

    (a)                                                                         

 

  (b) 

Figure 36. Path of contact, maximum contact pressure, and contact ellipses with equal 

amounts of tip relief and parabolic crowning are all affected by the following: (a) change in 

center distance, ∆E; (b) axial displacement of gear, ∆G. 

 

Figure (37) demonstrates that an overabundance of lead modification alters the direction 

of the contact trace and focuses it nearer to the middle of the tooth surface compared to a 

minimal amount of crowning, as depicted in Figure (36a). Additionally, the major axis of the 
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elliptical contact becomes shorter, suggesting an increase in contact pressure. It can be observed 

from Figure (37) that an increase in the magnitude of the longitudinal modification results in 

nearly an 80% increase in contact pressure. 

 

 

Figure 37. Maximum contact pressure, contact ellipses, and contact paths with significant 

lead modification. 

 

 As previously stated, lead profile crowning can be categorized into three types. The 

simulation results indicate that there is minimal disparity among them when meshing straight 

bevel gears, as demonstrated in Figure (38), where the transmission error function of each 

crowning differs by only one or two arc seconds. Similarly, the stress analysis outcomes do not 

display significant differences among the simulation results of distinct longitudinal 

modifications at various shaft angle misalignments, as depicted in Figure (39). 

 

Figure 38. For the case of shaft angle misalignment, transmission error function with three 
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forms of longitude crowning. 

 

Figure 39. Maximum contact pressure for three types of longitude crowning at various shaft 

angle misalignments. 

 

 5.2 Spiral bevel gear  
 

 The spherical involute profile is an extension of the involute plane profile, which is used 

to represent the tooth face of cylindrical surfaces such as spur or helical gears. It can be defined 

using the direct definition approach, which utilizes spherical trigonometry and unwraps a point 

from a base cone circle. The parametric definition of the spherical involute profile is given in 

terms of (𝑢𝑖 , 𝑣𝑖) in the plane. 

 

𝑟 𝑖 = [

𝑅𝑖  (𝑐𝑜𝑠(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛼𝑖)𝑐𝑜𝑠(𝛽𝑖 ± 𝜗𝑖) + 𝑠𝑖𝑛(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛽𝑖 ± 𝜗𝑖)

𝑅𝑖  (𝑐𝑜𝑠(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑠𝑖𝑛(𝛼𝑖)𝑠𝑖𝑛(𝛽𝑖 ± 𝜗𝑖) − 𝑠𝑖𝑛(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑐𝑜𝑠(𝛽𝑖 ± 𝜗𝑖)

𝑅𝑖  𝑐𝑜𝑠(𝛽𝑖  𝑠𝑖𝑛(𝛼𝑖))𝑐𝑜𝑠(𝛼𝑖)

]         (48) 

 

where 𝑅𝑖 is a radius vector specified in (𝑢𝑖 , 𝑣𝑖 ) as follows, and 𝛼𝑖 is the base cone angle, 𝛽𝑖 is 

the involute generating angle  

 

𝛽𝑖 =
1

𝑠𝑖𝑛(𝛼𝑖)
𝑐𝑜𝑠−1 (

𝑐𝑜𝑠(𝑢𝑖)

 𝑐𝑜𝑠(𝛼𝑖)
) ,                               (49) 

 

  𝑅𝑖 = 𝑣𝑖.                                                           (50) 
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The parameter 𝑣𝑖 spans the distance from the inner to outer cone, while the parameter 𝑢𝑖 spans 

the angle from the inner to outer cone. A formula can be derived for logarithmic tooth surfaces 

with a spherical involute profile.  

𝜗𝑖 =
1

𝑠𝑖𝑛(𝛼𝑖) cotΦ
log

𝑅𝑚

 𝑅𝑖
.                                                     (51) 

 

The logarithmic function 𝜗𝑖 is defined with a spiral angle Φ and mean cone distance 𝑅𝑚. 

Figure (40) shows that the involute tooth surface of a spiral bevel gear can be created using 

Equations (48-51) in a parametric way. 

 

Figure 40. An involute spiral bevel gear tooth surface generated graph. 

 

 The process of measuring units can be made simpler and more organized by using non-

dimensionalization techniques. We offer a non-dimensionalization method for measuring the 

strength and size of gears, which involves comparing them to certain properties of the gear 

material, such as the module m, Young's modulus E, and gear thickness �́�. By doing so, any 

length 𝑙   and force magnitude �́�can be standardized using the following equations: 
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𝑙 =
𝑙

𝑚
,                                                             (52) 

 

𝐹 =
�́�

𝐸𝑚�́�
     (56) 

 

 The subsequent analysis considers all magnitudes as non-dimensional in accordance 

with the aforementioned rule. 

 The quality of transmission and contact performance of spiral bevel gears can be 

negatively affected by misalignments, leading to transmission errors, unbalanced load 

distribution, and tooth edge contact. This can cause a significant increase in the noise and 

vibration of gearboxes. To examine the tooth contact performance of modified spiral bevel gear 

drives with alignment problems and tooth crowning, a new parametric model of surface contact 

was utilized. This model simulated the engagement of spiral bevel gears with misalignments 

and assessed their impact on transmission, stress, and contact path. The simulation used a gear 

configuration with 𝑁1 = 𝑁2 = 17, the shaft angle Σ = 90°, the module 𝑚 = 1, the spiral angle 

Φ = 35°, and a face width of 𝑏 = 4.8. Three types of misalignments were applied during the 

simulation, including two linear alignment errors and one angular alignment error represented 

by ΔE, ΔH, and Δγ, respectively. Figure (41) shows an illustration of the coordinates of a spiral 

bevel gear system in the presence of misalignment. The design modifications implemented 

double crowning, which combined tip/root relief with longitudinal parabolic tooth face 

crowning applied only to the meshing tooth, to improve the contact pattern's resistance to 

inevitable misalignments. This modification aimed to enhance the tooth contact performance 

and reduce noise and vibration in the gearbox. 

 

Table 2,  Crowning design for various alignment error  

Types of 

Misalignments 

Range of 

misalignments 

Value 

Tip/Root relief 

Parameters 

Parabolic Modification 

parameters 

Angular 

misalignment, ∆γ  

 0° − 0.2° 𝑐𝑡 = 0   𝐿𝑡 = 0  𝑐1 = 0.002 − 0.02  

 

Linear 

misalignment, ∆𝐸   

0.02 − 0.1  𝑐𝑡 = 0.04 − 0.08 

𝐿𝑡 = 0.16  

𝑐1 = 0.002 − 0.02  

 

Linear 

misalignment, ∆𝐻   

0.02 − 0.1 𝑐𝑡 = 0.04 − 0.08 

𝐿𝑡 = 0.16 

𝑐1 = 0.002 − 0.02 
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Table (6) provides information on the magnitude of different types of misalignment and 

tooth surface modification used in the simulation. Figure (42) illustrates the contact path 

trajectory in the absence of misalignment and with various angular deviations. The contact path 

trajectory remains almost the same, with only minor movement towards the tooth tip despite a 

significant angular deviation. The simulation also indicates that the angular alignment error does 

not affect the transmission error, which is determined to be zero. 

 

 

(a)                                                                                        (b) 

 

(c) 

Figure 41. Coordinate systems diagram for spiral bevel gears with alignment issues. 
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Figure 42. Path contact results from the engagement of a spiral gear pair with various 

angular misalignments. 

 

In Figure (43), the path of contact with contact ellipses is displayed for a deviation in 

angle (Δγ) of 0.2° and the implementation of longitudinal parabolic crowning (𝑐1 = 0.002), but 

without profile modification like tip/root relief (𝑐𝑡 = 0 ; 𝐿𝑡 = 0). The figure illustrates that the 

contact stress ratio remains relatively constant throughout the engagement. The contact ellipses 

and stress ratio of the engagement were determined using the following parameters: elastic 

modulus 𝐸1 = 𝐸2 = 210 × 103 𝑁/𝑚𝑚2, Poisson's ratio 𝜈1= 𝜈2 = 0.3, and a non-dimensional 

normal load of 𝐹 = 55.5 × 10−6.  
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Figure 43. The tooth contact ellipses and the stress ratio at angular misalignment 𝛥𝛾 = 0.2° 
and with longitudinal parabolic crowning. 

 

Figure (44) shows how the contact trajectory changes with linear displacement (ΔE) in 

a spiral bevel gear system, which is a marked difference from the contact path presented in 

Figure (42), which is consistent with earlier research [94,95]. A greater ΔE value causes a 

significant deviation in the contact trace. Tooth surface modification was implemented correctly 

to achieve continuous parabolic TE functions for ΔE=0.04, Figure (45). This was accomplished 

by incorporating lead and profile crowning parameters of 𝑐1 = 0.02, 𝑐𝑡 = 0.08 and 𝐿𝑡 = 0.16. 

However, when a higher ΔE is used, the modifications are insufficient, leading to a 

discontinuous but still parabolic transmission function. 

 

 

Figure 44. Comparison of the path of contact with different linear misalignments and double 

crowning. 
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Figure 45. Transmission results for spiral gear meshing at linear misalignment (∆𝐸) 

 

Figure (46) displays the stress ratio and contact ellipses for an alignment error of 

ΔE=0.08, while using tooth surface modification parameters 𝑐1 = 0.005, 𝑐𝑡 = 0.04 and 𝐿𝑡 =

0.16. The figure indicates that stress levels increase gradually from the tooth tip towards the 

middle, then decrease again towards the root. 

 

 

Figure 46. The stress ratio and contact ellipses in the condition of linear misalignment. 

 

Figures (47-49) illustrate the results of spiral bevel tooth meshing under linear z-axis 

misalignment (Δ𝐻). Compared to the case where tooth contact is aligned, the contact trajectory 

now deviates downwards towards the tooth root. Despite using the same amount of crowning 
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and profile modification as in the previous case (𝑐1 = 0.02, 𝑐𝑡 = 0.08, 𝐿𝑡 = 0.16), the 

maximum transmission error amplitude reached almost 820 arcsec when Δ𝐻 = 0.04, which is 

less compared to the previous case where linear misalignment along the y-axis (Δ𝐸 = 0.04,) 

resulted in a transmission function amplitude of 920 arcsec. Moreover, the slight increase in the 

alignment error value shows that the deviations between the contact path are relatively small 

compared to Figure (46). Additionally, one noteworthy characteristic of the transmission 

function is its asymmetry, as seen in Figure (48). Previous research provided by Litvin et al. [1] 

had assumed that the transmission function would follow a parabolic function, but this is not 

always the case and does not accurately represent the transmission of spiral bevel gear teeth 

contact. Litvin et al. [1] posited that the transmission error (TE) resulting from gear 

misalignment, would follow a parabolic pattern, expressed as ∆𝜑 = −𝑎𝜑1
2 . However, it is 

evident from prior research conducted by other researchers [96-98] and our simulations that, in 

certain instances, it may exhibit asymmetry or irregularity. 

 

 

Figure 47. Path contact results in different linear misalignments ∆𝐻. 
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Figure 48. Transmission error in case of  linear misalignment ∆𝐻. 

 

 

Figure 49. Stresses and contact ellipses for a spiral bevel gear system with a linear 

misalignment of 𝛥𝐻 = 0.08. 

 

Figure (49) displays the contact trace, contact ellipses, and stress ratio at the top, middle, 

and root of the tooth, where the misalignment value ∆H was chosen as 0.08, and the modification 

parameters were 𝑐1 = 0.005, 𝑐𝑡 = 0.04 and 𝐿𝑡 = 0.16. The figure indicates that the stress 

reaches its peak at the middle of the tooth face. Next, we examine a combined misaligned case, 

as shown in Figure (50a), where modifications were applied with parameters 𝑐1 = 0.005, 𝑐𝑡 =

0.08 and 𝐿𝑡 = 0.16. It is evident that the differences in the contact path for various misalignment 

values are more pronounced. Furthermore, Figure (51) demonstrates that the transmission 
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amplitude increases up to 1500 arcsec when combined misalignments were applied, 𝛥𝐸 =

𝛥𝐻 = 0.04. To focus the contact path more towards the center of the tooth face, we increased 

the modification parameters to 𝑐1 = 0.02, 𝑐𝑡 = 0.08 and 𝐿𝑡 = 0.16, as seen in Figure (50b). 

 

 

(a) 

 

 

(b) 

Figure 50. The contact path with various combined linear misalignments with (a) 𝑐1 = 0.005 

and (b)  increased amount of longitudinal parabolic crowing 𝑐1 = 0.02. 
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Figure 51. TE results of various combined linear misalignments. 

 

 

The results indicate that adding more adjustments can regulate the contact trajectory, but 

it could also result in higher stress levels, which aligns well with previous studies [95-98]. This 

is apparent from the comparison of Figures (52a) and (52b), where the same amount of profile 

crowning was implemented (𝑐𝑡 = 0.08 and 𝐿𝑡 = 0.16) but with different longitudinal parabolic 

crowning parameters 𝑐1 = 0.005 and 𝑐1 = 0.02  in Figure (52a) and Figure (52b), respectively. 

It is noticeable that the stress ratio increased by 1.2-1.4 times in Figure (52b) compared to Figure 

(52a). 

 

 

(a) 
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(b) 

 

Figure 52. Stress ratio and contact ellipses for combined  linear misalignments at  ∆𝐸 =
∆𝐻 = 0.08 and (a) 𝑐1 = 0.005, (b) 𝑐1 = 0.02. 

 

Figure (53) displays the outcomes of varying combinations of linear misalignment 

values of ∆E and ∆H on stress ratio (σ) and pitch point deviation (δ). Pitch point deviation refers 

to the difference between the location of the pitch point (𝑣𝑜) and the central contact point (𝑣1) 

in a misaligned gear tooth, represented as 𝛿 = 𝑣1 − 𝑣𝑜. As previously demonstrated, the results 

from Figure (53) indicate that ∆E has a greater impact on stress and contact deviation compared 

to ∆H. Additionally, it is apparent that the stress ratio increases with increasing levels of 

misalignment, reaching its maximum at  ∆𝐸 = ∆𝐻 = 0.1. In all simulation cases illustrated in 

Figure (53), the same value of modification parameters were implemented (𝑐1 = 0.005, 𝑐𝑡 =

0.08 and 𝐿𝑡 = 0.16). 
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Figure 53. An illustration of the results of stress ratio (𝜎) and pitch point deviation (𝛿) based 

on different and combined values of linear misalignments (∆𝐸 and ∆𝐻). 
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Chapter 6. Computational assessment of conventional TCA 

method 

 

  6.1 Testing the conventional TCA model 
 

 The conventional gear tooth contact analysis (TCA) model originally proposed by Litvin 

et al. [1] is independently reproduced in this section. Based on the basic principles, it is shown 

that the fundamental parametrization of the conventional model, although mathematically 

correct, has computational drawbacks. To simulate the standard solution presented by Litvin 

et.al [1], the computational environment of Wolfram Mathematica was employed. The contact 

between two C1 spur involute surfaces with similar properties was considered for a single 

meshing position. The parameters of the surfaces are shown in Table (8). 

 

Table 8.  Spur gears parameters 

 Parameters Gear 1    and     Gear 2 

Number of teeth 25 

Module, mm 2.5 

Pressure angle, degree 20 

Face width, mm 25 

 

The surfaces in the contact problem were designed to have rotation axes parallel to each 

other, similar to standard spur gear designs (𝑤1||𝑤2). The parametrization of the involute 

surfaces was carried out using a general equation based on specific parameters 𝑢𝑖 and 𝑣𝑖, which 

were chosen according to the machine tool setup. To localize the surface contact, additional 

variables were included in the involute surface equation. This was done to ensure that the contact 

problem had a single point solution, which is consistent with manufacturing procedures for 

profile modification such as tip and root relief and crowning. The parametric equations for the 

involute are as follows:  

 

 𝑥𝑖 = 𝑟𝑏(𝑐𝑜𝑠(𝜃𝑖) + 𝜃𝑖  𝑠𝑖𝑛(𝜃𝑖)) + 𝛿𝑥  ,  

                   𝑦𝑖 = 𝑟𝑏(𝑐𝑜𝑠(𝜃𝑖) − 𝜃𝑖  𝑠𝑖𝑛(𝜃𝑖)) + 𝛿𝑦 ,    𝑖 = 1,2 (57) 

 𝑧𝑖 = 𝑣𝑖 ,  
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the base radius of which is 𝑟𝑏, where 𝜃𝑖 is the involution angle described by Equation (2).  

The modification applied to the tooth surface is denoted by 𝛿𝑥 and 𝛿𝑦, with the latter 

being a longitudinal parabolic modification that is applied throughout the modeling process.  

The current simulation assumes that there is no misalignment when the teeth are 

transferring. To achieve point contact, a small modification has been made to the gear tooth 

meshing by applying a parabolic shape with 𝑎𝑝 = 0.0001 𝑚𝑚−1 and 𝛿𝑥 = 0. This results in the 

contact being concentrated in the center of the tooth surfaces. Figure (54) shows the contact 

trajectory obtained using the TCA model proposed by Litvin. To determine the position of the 

contacts, an initial value needs to be chosen to start the iterative process of solving the nonlinear 

equations of gear coupling. In this case, the center of the surfaces is chosen as the starting values 

for the unknown parameters of the second gear tooth (𝑢2, 𝑣2), while a value that is 0.03 rad close 

to the correct solution of the first contact and nearly 0.3 rad close to the last contact is selected 

for the unknown angle parameter (𝜙2). The final result is obtained after numerous simulations 

that are repeated until the program stops issuing divergence-related warning messages. 

However, despite significant support in the initial value selection, the model provides an 

erroneous answer for some contact points. By "erroneous outcomes," we mean points where the 

iterations either move the approximation away from the required root or lead exactly to the 

starting point. 

 

 

Figure 54. Inconsistencies in the contact path of the spur gear tooth surface are caused by 

unconverged points, as indicated by the red dashed circle. 

 

 Litvin et al. [2,3] found that the TCA algorithm is more sensitive to the angle position 

parameter 𝜙2 compared to other parameters such as 𝑢1, 𝑣1, 𝑢2 and 𝑣2. They also noted that in 

order to achieve convergence, it is important to first determine the angular location of the mating 
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surface. To address this issue, a computationally intensive parametric sweep needs to be carried 

out before using the TCA model. To determine the pitch point contact position in space, 1000 

randomly generated starting values on the (𝑢1, 𝑣1)-plane (first surface, 𝑆1) are applied to the 

TCA method, as shown in Figure (55a). The results of the solution (range) are presented in 

Figure (55b), where no single point converged. During the 1000 simulations, the midpoint of 

the second surface S2 is selected as the initial value for the 𝑢2
0 𝑎𝑛𝑑 𝑣2

0  parameters, and 𝜑2
(0)

  is 

set to zero.  

0 

(a) Domain                                                                 (b) Range                                                            

Figure 55. The simulation results for 1000 random points on the tooth surface are displayed, 

with (a) showing the starting guess values for the iterative process, and (b) displaying the 

outcomes of Litvin's solution, where hardly any point converged. 

 

The data presented in Figure (56) demonstrates the effectiveness of the implicit TCA 

model in converging to various initial values of the angle parameter, 𝜑2
(0)

. As previously stated, 

the algorithm is heavily reliant on the value of 𝜑2
(0)

, with values close to the correct answer 

resulting in greater convergence. At an initial angle of 𝜑2
(0)

=-1.1 rad, only 480 out of 1000 points 

converged, resulting in a convergence rate of 48%, while the number of converged points 

increased to 670 with an initial angle of 𝜑2
(0)

=-1.15 rad. Finally, almost all points converged for 

𝜑2
(0)

=-1.2 rad, resulting in a pitch point contact position in space for both surfaces of: 𝑢1 =

31.103 𝑚𝑚; 𝑣1 = 12.5 𝑚𝑚 ;  𝑢2 = 31.402 𝑚𝑚; 𝑣2 = 12.5 𝑚𝑚; 𝜑2 = −1.6 rad at 𝜑1 =

1.5707 rad. All of the cases examined had the same conditions as the previous analysis, which 

used the midpoints of 𝑆2 as the initial values for the parameters 𝑢2
0 𝑎𝑛𝑑 𝑣2

0, respectively. These 

results emphasize the need to perform either a parametric sweep or use a large number of random 

initial conditions to ensure convergence of the implicit Litvin's model and prevent incorrect 

results, which in both cases is time-consuming and computationally complex. 
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                    (a) [𝜑2
(0)

= −1.1 𝑟𝑎𝑑]                                                  (b) [𝜑2
(0)

= −1.15 𝑟𝑎𝑑]                                                               

 

(c) [𝜑2
(0)

= −1.2 𝑟𝑎𝑑] 

Figure 56.  Converged and non-converged values on the initial value guess cloud for Litvin’s 

model with different starting values for 𝜑2
(0)

 are demonstrated, where the starting values for 

𝜑2
(0)

 close to the correct solution for (a) 0.5 rad; (b) 0.45 rad; (c) 0.4 rad. 

The TCA method was applied to the domain of 1000 randomly generated starting values 

for (𝑢1
(0)

, 𝑣1
(0)

, 𝜑2
(0)

)-parameters to determine the pitch point contact position in space, as shown 

in Figure (57a). Figure (57b) displays the solution results (range), where all points failed to 

converge. The initial value for the 𝑢2
(0)

 and 𝑣2
(0)

 parameters during the 1000 simulations was 

selected as the midpoint of the second surface.  

 

(a)                                                                               (b) 

Figure 57. The results of Litvin's solution are shown in (b) for 1000 random points generated 

for the simulation, where (a) displays the starting guess values for the iterative process. It was 

found that almost no single point converged during the simulation. 
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To achieve a higher convergence rate than Figure (57) for 1000 initial random values in 

(𝑢1
(0)

, 𝑣1
(0)

, 𝜑2
(0)

) - space, the range of the randomly generated angular parameter 𝜑2
(0)

 was 

restricted to−1 𝑟𝑎𝑑 < 𝜑2
(0)

< −1.7 𝑟𝑎𝑑, which was closer to the most converged solution 𝜑2 =

−1.6 rad obtained in the previous simulation, as shown in Figure (56). As a result, the simulation 

yielded 818 converged points out of 1000, as seen in Figure (58). 

 

 

(a)                                                                                  (b) 

Figure 58. The results of the conventional TCA model for 1000 randomly generated starting 

points are shown in (a) and (b), where (a) displays the initial guess values and (b) presents the 

solution outcomes. 81.8% of the 1000 points converged to a single correct solution, which is 

represented as a blue dot. 

 

It is important to note that we are examining the most basic contact model of a spur gear 

pair, assuming no misalignments. However, additional adjustments are required to determine 

the contact position, such as narrowing the range of initial starting values. Additionally, it is 

sometimes necessary to visually inspect the results to confirm that the correct contact has been 

identified, since the model can produce inaccurate or divergent outcomes. As with iterative 

methods such as Newton Raphson, unsuccessful convergence may be due to the initial guess 

being too far from the root or the function not being continuous in the region being searched for 

the root. 

Further, the same simulation process is performed for the spur gear, but with a presence 

of 0.1° in-plane misalignment. Figure (59) illustrates the computed contact path. We used the 

centers of the surfaces as the starting values for the 2nd gear tooth's unknown parameters 

(𝑢2, 𝑣2), as we did in the previous case. However, for the unknown angle parameter, 𝜙2, we 

chose a value that is 0.03 rad close to the right answer for the first contact and almost 0.3 rad 

close to the last contact. The results demonstrate that, despite strong initial value selection 

support, the model produces incorrect answers at several contact points. 
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Figure 59. The contact path along the tooth surface of the in-plane misaligned spur gear is 

depicted, and despite careful guess value selection, some points were not able to converge, as 

indicated by the red dashed circle. 

The conventional TCA method was used to determine the pitch point contact position in 

space for misaligned spur gear by employing 1000 randomly generated starting values, as 

depicted in Figure (60a). In order to increase the rate of convergence, we restricted the range of 

the selected random angular parameter 𝜑2
(0)

 to be within −1 𝑟𝑎𝑑 < 𝜑2
(0)

< −1.7 𝑟𝑎𝑑. As shown 

in Figure (60b), the simulation yielded an 80% convergence rate out of the 1000 points. 

 

 

(a)                                                                               (b) 

Figure 60. The outcomes of 1000 simulations using random starting points are depicted, 

where (a) displays the initial guess values and (b) exhibits the consequences of the 

conventional TCA model. In the image, a blue dot represents the accurate answer to which 

800 points out of the 1000 converged. 

 

Next, to fairly test the ability of the conventional TCA model , we have repeated exactly 

the same simulation process performed by Litvin et.al in [81] for aligned and misaligned helical 

gear engagement. The parametrization of the helical gear tooth surfaces in space, using the given 

parameters (𝑢𝑖 , 𝑣𝑖), was expressed by applying a general involute equation.   

 



85  

           𝑥𝑖 = 𝑢𝑖  𝑐𝑜𝑠 (cos−1 (
𝑟𝑏 (cos𝜃𝑖+𝜃𝑖 𝑠𝑖𝑛(𝜃𝑖))

𝑢
) + sin−1 (

𝑣𝑖  sin 𝛽

𝑟𝑏
)) + 𝛿𝑥  , 

                   𝑦𝑖 = 𝑢𝑖  𝑠𝑖𝑛 (cos−1 (
𝑟𝑏 (cos𝜃𝑖+𝜃𝑖 𝑠𝑖𝑛(𝜃𝑖))

𝑢
) + sin−1 (

𝑣𝑖  sin 𝛽

𝑟𝑏
)) + 𝛿𝑦 ,    (58) 

 𝑧𝑖 = 𝑣𝑖 ,  

 

This expression includes the helix angle (𝛽), the involution angle (𝜃𝑖), and the tooth 

surface modification function (𝛿𝑥,𝑦). To objectively evaluate the TCA model, we have chosen 

the same parameters as in [81] for the pairs of helical gears and the crown size with 

misalignments, as shown in Table (8), which specifies the parameters of the contacting surfaces. 

 

Table 9.  Helical gears parameters 

Parameters Gear 1    and   Gear 2 

Number of teeth 25                 77 

Module, mm 5 

Pressure angle, degree 27.5 

Helix angle, degree 20                 20 

Face width, mm 40 

Cross angle, degree 0 

Parabola parameter of profile 

crowning 

1.4×10-3           8×10-5 

 

 To determine the contact path, the system of non-linear equations in Equations (26-32) 

can be solved numerically. However, the accuracy of this solution heavily depends on the 

selection of proper initial "guess values" due to the complexity of the contact equations. When 

the initial values are not selected appropriately, the numerical algorithm may result in an 

inaccurate solution with flawed contacts or insufficiently converged solutions, as illustrated in 

Figures (61-62). Incorrect results can be produced when the iterations return to the initial point 

or move the approximation farther from the required root. In Figure (61a) and (61b), the results 

of aligned helical teeth engagement and contacts in the presence of an alignment error 𝛥𝜆 =

−3 arcmin are shown. In both cases, the value of 𝜑2
(0)

 is close to the correct solution for 0.05 

rad, but the starting values for the 𝑢2
0  and 𝑣2

0 parameters are randomly chosen. In Figures (62a-

b), the same cases of contact path are shown, but now 𝜑2
(0)

 is close to the correct solution for 

0.05 rad, and the starting value is close to the actual contact for for 𝑢2
0 − 𝑢2

𝑠𝑜𝑙=4.89  mm and 
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𝑣2
0 − 𝑣2

𝑠𝑜𝑙=1.44 mm. From Figures (61-62), it can be concluded that even with reasonable 

assumptions about the initial values, we cannot always rely on the results without human 

observation. 

 

 

(a) 

 

(b) 

Figure 61. Path contact demonstration using arbitrarily selected starting values for the 

𝑢2
0 𝑎𝑛𝑑 𝑣2

0  parameters, but with a near approximation to the right solution for 0.05 rad for 

angle parameter 𝜑2
0. (a) Path contact solution that is aligned; (b) misaligned result with an in-

plane deviation of 𝛥𝜆 = −3 𝑎𝑟𝑐𝑚𝑖𝑛. 

 

 

(a) 
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(b) 

Figure 62. The path contact of helical gears where the initial value close to actual contact for  

𝑢2
0 − 𝑢2

𝑠𝑜𝑙 = 4.89 𝑚𝑚 𝑎𝑛𝑑 𝑣2
0 − 𝑣2

𝑠𝑜𝑙 = 1.44 𝑚𝑚 and 𝜑2
(0)

 close to right solution for 0.05 

rad. (a) The contact trace is aligned; (b) the contact is misaligned with an in-plane deviation 

of 𝛥𝜆 = −3 𝑎𝑟𝑐𝑚𝑖𝑛. 

  

The pitch point contact position of parallel axes helical gears with Δ𝜆 = −3 𝑎𝑟𝑐𝑚𝑖𝑛 in-

plane misalignment in space was calculated using a set of 1000 randomly generated starting 

values for the (𝑢1
(0)

, 𝑣1
(0)

, 𝜑2
(0)

)-parameters, as shown in Figure (63a). However, none of the 

points were able to converge, as illustrated in the solution range displayed in Figure (63b). 

 

(a)                                                                               (b) 

Figure 63. The simulation results were obtained by analyzing 1000 random points on the 

surface of helical gear teeth. The starting guess values are depicted in (a), while the results of 

Litvin's solution, in which almost no single point converged, are shown in (b). 

 

The simulation procedure shown in Figure (63) was repeated in Figures (64-65), but with 

a reduced range of the randomly generated angular parameter 𝜑2
(0)

, which was limited to 

−1.7 𝑟𝑎𝑑 < 𝜑2
(0)

< −1.3 𝑟𝑎𝑑. The upper limit was close to the solution by −1.3 𝑟𝑎𝑑 − 𝜑2
𝑠𝑜𝑙 =

−0.335 rad and the lower limit was close to the solution by −1.7 𝑟𝑎𝑑 − 𝜑2
𝑠𝑜𝑙 = −0.065 rad, 

where the actual solution is 𝜑2
𝑠𝑜𝑙 = −1.635 𝑟𝑎𝑑. The proportion of convergence was better than 

in Figure (63), but still only 13-15%. Additionally, as depicted in Figures (64b-65b), some 
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points approached the correct solution, but did not reach it. As previously mentioned, the 

traditional TCA model-based system of nonlinear equations can produce several converged 

solutions, but some of them may not lead to the actual point of contact. The number of Newton-

Raphson iterations was increased to determine whether the failed converged points would 

eventually reach the precise root. However, the analysis demonstrated that the results remained 

consistent, indicating that this model can produce inaccurate outcomes. 

 

 

(a)                                                         

 

      

 (b) 

Figure 64. The results of simulating 1000 random points on the surface of an aligned helical 

gear tooth contact where: (a) initial guess values; (b) Litvin's solution, where only 13.5% of 

the 1000 points converged to the correct answer (blue dot). 



89  

 

(a)                                                         

 

      

 (b) 

Figure 65. The simulation results were obtained by analyzing 1000 random points on the 

surface of misaligned helical gear teeth. The starting guess values are depicted in (a), while 

the results of Litvin's solution, where only 14.2% of the 1000 points converged to the correct 

solution (blue dot), are shown in (b).  

 

 

 6.2 Comparison of conventional and new TCA method for spur 

gears 
  

 The set of nonlinear equations proposed by Litvin et al. [1] can be used to determine the 

path of contacts, but the success of the numerical solution heavily relies on the selection of 



90  

suitable initial guess values due to the complicated nature of the contact equations. Inappropriate 

initial values can lead to incorrect results, as shown in Fig (66a), where the numerical algorithm 

may produce faulty contacts or fail to converge to the correct solution. Incorrect outcomes refer 

to points where the iterations either return to the starting point or lead to an approximation that 

is different from the required root. However, the new model is able to produce dependable 

results with no divergence, as depicted in Fig (66b). 

 

 

(a) Conventional TCA model 

 

 

(b) Novel TCA model 

 

Figure 66. The path of contacts on the spur gear tooth surface, where (a) some locations 

failed to converge due to inappropriate guess values for the parameter 𝜙2, despite the fact 

that the selected guess values were within 0.2 rad of the correct response for the real pitch 

point contact solution. 

 

 In this section's preceding and subsequent modeling process, the gear parameters 

included: 𝑁1 = 52 and 𝑁2 = 72, module 𝑚 = 1, pressure angle 𝛼 = 20𝑜, and face width 𝑏 =
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11.42. Both the module and tooth width have been non-dimensionalized. The gear pair is 

illustrated in Figure (67). To achieve point contact between the tooth surfaces, a parabolic 

alteration with longitudinal crowning coefficient 𝑎1 = 0.002857  was implemented on the first 

gear. 

 

 

Figure 67. The schematic representation of a spur gear pair. 

 

Table 10. Convergence outcomes of two algorithms 

Model Percent of 

convergence of 5000 

guess starting points 

Mean iteration steps 

per converging point 

Total time of 

convergence of 5000 

points
(a)

 

Conventional TCA  

 

27.32% 5.53 839.62 𝑠𝑒𝑐 

Proposed novel TCA 

 

99.98% 4 232.09 𝑠𝑒𝑐 

(a) Failed convergence points were swapped out for new random points until the convergence rate reached 100%. 

 

Table (9) presents the results of the convergence of two methods, obtained using an 

equal number of randomly generated 5000 starting points on the uv-plane, in order to ensure a 

fair comparison of the two models. The table shows that the conventional method resulted in 

only about 27% of the initial points converging, while the proposed model successfully 

converged practically all initial points, indicating high reliability and robustness to initial value 

selection. It should be noted that the proposed model had only a few non-convergent points, 
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which were located along the edge of the tooth surface. In addition, the table clearly indicates 

that the conventional TCA solution required almost twice the number of iterations and overall 

convergence time for the 5000 points compared to the proposed model. 

 

(a) 

 

(b)                                                                                             

 

 (c) 

 

Figure 68.  Converged and non-converged values are shown on the guess cloud on the uv-

plane with 1000 randomly selected points, where (a) the imposed initial guess values 

(domain), (b) the results of the conventional TCA solution (range) with some correct contact 

solution, and (c) the proposed new solution (range) with fully converged results. The blue dots 

denote converged points, while the red crosses denote non-converged points or points that 

converged erroneously. 
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Compared to the conventional approach [1], the new TCA solution requires fewer 

equations and uses explicit calculation. The effectiveness of the new solution is demonstrated 

through a simulation where 1000 random starting values are used with the Newton-Raphson 

method, and it shows numerical convergence and insensitivity to the initial value chosen. Figure 

(68) displays the convergence outcomes of the two models, with Figure (68a) showing the 

domain of the 1000 initial random points produced for each technique. The solution results are 

displayed in Figures (68b) and (68c), where the conventional model only has approximately 

25% of points that converge around the actual contact solution, while the new model produces 

100% convergent results. 

 

  

(a)  Domain                                                                         (b) Range                    

Figure 69.  Convergence outcomes of conventional TCA model, where (a) random 

variables  (domain), and (b) its result of  Litvin's non-linear equations (range). 

 

 

 (a)  Domain                                                                         (b) Range 

Figure 70.  Convergence outcomes of novel TCA model, where (a) random 

variables  (domain), and (b) its result of  Litvin's non-linear equations (range). 
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Figures (69) and (70) display the solutions obtained from both models using the same 

initial values.  The results reveal that for the conventional TCA approach, point "1" failed to 

converge and remained at its original location, while point "3" converged but with the incorrect 

outcome. On the other hand, point "2" converged correctly. However, for the new nonlinear 

equations with two unknowns, all points converged accurately. In the conventional TCA 

technique, the selection of the initial value significantly impacts the convergence, and it is 

essential to establish the angular position of the meshing surface to locate the point of 

convergence [2]. In contrast, the new model resolves this issue by precisely calculating 

𝑢2, 𝑣2 , 𝜙2 using the new parameterization and explicit geometric relations mentioned earlier. 

Additionally, reducing the number of free variables in the new model improves the likelihood 

of convergence, reduces the iteration steps, and speeds up computation time. 

 

6.3 Comparison of conventional and novel TCA methods for 

straight bevel gear 
 

 In this section, the comparison analysis was performed for straight bevel gears, and it 

was shown that the non-linear equation system for TCA (tooth contact analysis) represented by 

Equations (26-32) can be solved numerically to determine the path of contacts or transmission 

errors. However, due to the complexity of the contact equations, the accuracy of the numerical 

solution is highly dependent on selecting appropriate initial "guess values." If the initial values 

are not chosen correctly, the numerical algorithm may produce inaccurate contacts or fail to 

converge, as illustrated in Figure (71). 

 

Figure 71. Even though the chosen guess value was within 92% of the correct answer, the 

route of contacts on the straight bevel gear tooth surface where one point failed to converge 

due to an inappropriate guess value of the parameter 𝜙2. 
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Table 3. Comparison of convergence result of two models. 

Solution description Average iteration 

steps per converging 

point 

Total time of 

convergence of 

1000 points
(a)

 

Percentage of 

convergence of 1000 

random starting 

points
(b)

 

Conventional Litvin’s 

solution 

6.42 68.31  𝑠𝑒𝑐 29.4% 

Proposed new solution 4 39.58 𝑠𝑒𝑐 100% 

(a) Until the convergence reached 100%, failed convergence points were switched out for new random 

ones. 

(b) Convergence rate from one loop as a percentage 

 

Table (10) displays the convergence results for both methods. To ensure a fair 

comparison between the two models, 1000 random starting points were generated at the (𝑢1, 𝑣1)-

plane and applied to each solution method. The table shows that only about 30% of the initial 

points applied to Litvin's solution converged, while all starting points converged successfully in 

the proposed novel model. Furthermore, the total convergence time for 1000 points in Litvin's 

solution is almost twice as long as that of the proposed model. 

 

(a) 
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      (b)                                                                                  (c) 

Figure 72. Results of convergence of a cloud of 1000 randomly chosen guesses, where (a) the 

applied initial guess values (domain), (b) the results of Litvin's solution (range) with some 

concentration around the correct contact point, and (c) the proposed new solution (range) 

with fully converged results at the single correct point. 

 

Figure (72) depicts the convergence results of the two models. Figure (72a) displays the 

domain of 1000 randomly generated initial values applied to each method. Figures (72b) and 

(72c) show the solution results (range), where Litvin's model generates only approximate results 

with some concentration around the genuine contact point. On the other hand, the novel model 

provides an exact solution with 100% convergence. 

 

 

6.4 Comparison of two TCA methods for spiral bevel gear 
 

To consider the capabilities of the conventional and proposed TCA model, a comparative 

analysis was performed for spiral bevel gears. Table (11) demonstrates that the results of 

simulation process where the new model has several advantages. Firstly, it requires fewer 

iterations and less time to converge compared to the conventional model. Secondly, it is more 

accurate with a lower average absolute error. The results of 1000 simulations with different 

initial values show that the new model has a higher probability of convergence, while the 

conventional model only has a 36% success rate. This indicates that the conventional model is 
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more sensitive to the input starting values. To run the iterative calculation process for the 

conventional TCA model, five random variables must be applied for its five unknown free 

parameters.  

 

Table 12. Computational results of two methods  

 Average steps per 

iteration toward 

convergence 

Average 

convergence 

time 

Probability of 

convergence  

Mean absolute 

errors 

Conventional  

model 

43 0.0633 𝑠𝑒𝑐 35.8% 10-3 

Proposed new 

model 

21 0.0409 𝑠𝑒𝑐 100% 10-10 

 

 

Figure (73a) displays the 1000 generated random variables for each parameter, with the 

position of the bubble indicating the applied variable for the 𝑢2, 𝑣2 and 𝜑2 parameters, and the 

color and size of the bubble indicating the applied variable for the 𝑢1 and  𝑣1 parameters. Figure 

(73b) shows the convergence result of the conventional TCA model, where all successfully 

converged points will be located in the same position in the (𝑢2, 𝑣2, 𝜑2)-space with the same 

color and size. 
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(a) 

 

 

(b) 

Figure 73. Convergence result of conventional TCA model where: (a) generated two 

dimensional 1000 random variables; (b) solution with 36% of convergence in five dimensional 

parametric space. 

  

(a)                                                                      (b) 

Figure 74. Convergence result of new TCA model where: (a) generated two dimensional 1000 

random variables; (b) solution with 100% of convergence in five dimensional parametric 

space. 

 

 The proposed model has a significant advantage over the conventional model in that it 
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only has two unknown free parameters. This means that to start the iterative process and 

calculate the contact position of the engagement tooth, only two variables need to be applied, 

and the other parameters can be calculated by back substitution to Eqs. (33-43). Figure (74a) 

illustrates the 1000 generated random variables in two dimensional (𝑢1, 𝑣1) space, and Figure 

(74b) shows the results of the new TCA algorithm. All 1000 generated variables for each 

parameter 𝑢1 and 𝑣1 lead to convergence, and thus, on a five-parameter plot (𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝜑2), 

all points have the same position, color, and size. Figures (75) and (76) compare the paths of the 

contact solution performed by the two TCA methods. In the conventional model, an inaccurate 

choice of initial values can lead to an erroneous contact position, where the iterations process 

either leads exactly to the starting point or takes the approximation away from the desired root. 

However, in the proposed model, due to the updated computational process, this problem does 

not arise.  

 

 

 

(a)                                                                       
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 (b) 

Figure 75. Path contact solution of two methods, where (a) conventional and (b) proposed 

model.  

 

 

(a)                                                                                        (b) 

Figure 76. The path contact solution for (a) conventional and (b) proposed model in space. 
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Chapter 6. Conclusions  

 

 6.1 In the end 

 

The PhD dissertation presents a novel Tooth Contact Analysis (TCA) method for 

evaluating the contact of gears in transmission systems. The proposed method is designed to 

overcome the issue of convergence in the conventional TCA algorithm proposed by Litvin et al. 

[1-3], which requires careful selection of initial values for the iterative process. By transforming 

the same contact conditions as in the conventional model, the new TCA method reduces the five 

conventional nonlinear tooth contact equations with five free parameters to a system of two 

nonlinear equations with only two unknown parameters, resulting in a more robust, explicit, and 

fast converging algorithm. 

The proposed method is implemented in the Wolfram Mathematica computational 

environment to analyze the contact characteristics of various types of gears, including the impact 

of tooth surface to various misalignments and tooth surface modifications. The study also 

investigates the effects of three types of longitudinal crowning and tip/root profile relief of tooth 

on gear meshing. The proposed model is compared with the conventional TCA method for 

various gear systems in terms of accuracy, computational efficiency, and convergence 

probability, where the findings demonstrate the superiority of the new TCA method. 

Furthermore, the efficiency and accuracy of the proposed TCA model enables the determination 

of acceptable values for tooth modifications and the identification of the most suitable design 

approach for different types of gears in a timely manner, thereby demonstrating its significant 

potential for enhancing the technology and quality of gears in various fields. 

The study utilized the developed model to analyze the impact of different in-plane and 

out-of-plane angular misalignment on crowned spur and helical gears. The evaluation was based 

on parameters such as the path of contact, maximum contact pressure, and transmission error 

(TE). To assess the sensitivity, three different types of lead crowning were employed, namely 

parabolic, circular, and logarithmic modifications. These modifications were expressed 

mathematically in terms of the planar coordinates of the tooth surface of both spur and helical 

gears. Metrics were developed using the TE function and contact pressure to compare the 

performance of each crown design. The study identified the optimal design based on these 

metrics. Also, the investigation highlights the importance of considering different crown designs 
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and their impact on gear performance in the presence of angular misalignment. The simulation 

results indicate that out-of-plane misalignment causes a more significant increase in TE and 

deviation of contact path from the tooth surface center than in-plane misalignment. For spur 

gears, the logarithmic crown produced smaller negative effects on the TE function than 

traditional crowning type as parabolic for both misalignment types, although the improvement 

in contact path was not substantial. The differences in results between modifications were 

smaller for in-plane misalignment than out-of-plane misalignment. In the case of helical gears, 

circular crowning produced a smaller shift in the path of contact for in-plane misalignment, 

while parabolic crowning showed better results for out-of-plane misalignment. The logarithmic 

crowning consistently gave smaller values for TE in all cases. However, for large misalignment 

angles, the difference between traditional modifications and logarithmic crowning was 

significant. The shift of the contact path from the tooth center during gear meshing was almost 

an order of magnitude larger for helical gears than spur gears. The logarithmic profile was found 

to be effective for extreme misalignments due to its increased curvature at the edges, while the 

circular and parabolic crowning profiles presented singularities at the tooth edge. The maximum 

contact pressure varied with different crown profiles, with logarithmic crowning generally 

resulting in higher pressure for both spur and helical gears. 

The study suggests that in the case of straight and spiral bevel gears, tip relief crowning 

has a greater effect on transmission error function than lead modification. It also indicates that 

it is impossible to achieve a continuous transmission function without tip relief modification, 

and that longitudinal modification is necessary to avoid edge contact. Therefore, the study 

recommends the use of double crowning with appropriate amounts of modification for the bevel 

tooth surfaces in the presence of any type of misalignment to avoid tooth edge contact and 

smooth transmission to avoid shock loads and noise. It was also founded that a certain value of 

profile crowning can help avoid edge contact or intermittent transmission at the deviation of 

centre distance, but the same amount of modification can lead to undesirable results at another 

misalignment type like axial displacement. The method of changing the contact trajectory by 

altering the quantity of crowning was illustrated in comparison to the results without additional 

crowning. The study further compares three types of crowning used to modify the tooth surface 

in the longitudinal direction and suggests that the differences between them are not significant. 

The conventional TCA method has been subjected to critical analysis in terms of the 

convergence and accuracy of its numerical iterative calculation process. The analysis revealed 

that the method is sensitive to the initial guess values, particularly the starting value of the 

angular position, which results in around 30% convergence for most gear systems, including 
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spur, helical, and bevel gears. These convergence problems are attributed to the complexity of 

the non-linear equations and the presence of several roots for the unknown parameters. As a 

result, the conventional TCA method can lead to divergence, infinite looping, or random loss of 

convergence. Although an automatic guess value determination approach was proposed to 

mitigate this problem [2,3], it is computationally expensive and impractical. On the other hand, 

the proposed method demonstrates its superiority in terms of the probability of convergence, 

where almost in all cases achieved 100% convergence. Moreover, the proposed method stands 

out for its speed and accuracy of calculations. Therefore, the conventional TCA method's 

convergence and accuracy issues indicate a need for improved approaches like the proposed 

method to overcome these challenges. Overall, the proposed method has the potential to 

contribute to the development of more efficient and reliable gear systems for various industrial 

applications, such as aerospace, automotive, and power transmission. 

 

 

 6.2 Further research  

 

 The proposed method can also serve as a starting point for further research in the field 

of gear design and optimization. For example, future studies could explore the effects of 

different gear materials, crowning, and loading conditions on the performance of zerol bevel 

gears. Furthermore, the proposed method could be extended to other types of gears, such as 

worm or cycloidal gears, to investigate their contact characteristics and performance under 

different operating conditions.  

This method would offer a more comprehensive understanding of the contact pattern and 

tooth stresses in the zerol bevel, cycloidal and worm gears. Overall, this research plan would 

contribute to advancing the understanding of the performance and durability of gears and could 

potentially lead to improved design and manufacturing practices. In addition, numerical 

simulations can complement experimental findings that can be obtained from the “8-axis Rotary 

Test Bed”, providing a more comprehensive understanding of tooth contact behavior. The “8-

axis Rotary Test Bed” is a testbed with a CNC router machine where we can place gearboxes to 

experimentally simulate tooth contact under various conditions, shown in Figure (78). The 

simulated results can be used in conjunction to validate the accuracy of the method and 

determine how different factors, such as tooth geometry, load and lubrication, influence tooth 

contact behavior. This will assist in forecasting kinematic, dynamic, and failure modes, as well 
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as optimizing tooth profile modification to minimize harmful noise and vibration and regulate 

transmission error. The high-stiffness “8-axis Rotary Test Bed” enables gear contacts and 

dynamic behaviors to be replicated in-the-loop, simulating realistic deterministic and quasi-

chaotic operating conditions, including misalignments, shock loads, and rattling.  

 

Figure 78. The 8-axis Rotary Test Bed with a CNC router machine.   
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