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Abstract
The typical drug development process involves multiple stages, including target iden-
tification, target validation, lead discovery, lead optimizations, ADMET evaluation,
and several phases of clinical trials leading to registration [27]. This standard flow
usually spans around 17 years, with the chances of successful drug registration being
only 1 out of 5000 [26].

To facilitate in-silico studies, various tools like RDKit [28], Open Babel [29],
SWISS-MODEL [32], and AutoDock Vina [30] have been developed. However, the
decentralized development of many frameworks has given rise to challenges like ver-
sion conflicts, platform dependencies, complex installations, and scattered knowledge.
This makes it difficult and time-consuming for new researchers to get onboarded in the
domain, often requiring several weeks or even half a year to study existing frameworks
and workflows.

My framework, DDBox, aims to address these issues by consolidating the most
popular tools into a single platform. By doing so, it not only simplifies in-silico
studies but also contributes to knowledge sharing in the in-silico drug design field.

Keywords — Toolbox, Framework, Python Package, Platform, In-Silico Drug
Discovery, De Novo Molecular Design, Drug-Target Affinity, Benchmark, Docking,
System Design, Drug Design.
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Chapter 1

Introduction

1.1 Drug discovery

Figure 1-1: Standard Workflow.

In earlier times, researchers discovered medicinal compounds from plants using

random screening and trial-and-error techniques [35], which involved conducting ex-

periments on animals and humans. While this approach did yield results, it also posed
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considerable risks to researchers. Given the limited availability of systematic knowl-

edge back then, this method was practical in exploring potential medicinal properties.

With the advancement of science, society, and human knowledge, drug develop-

ment techniques have evolved to become safer and less hazardous. Nowadays, there is

a standardized process for drug development, which includes several ordered stages:

target identification, target validation, lead discovery, lead optimization, ADMET

evaluation, and multiple phases of clinical trials leading to drug registration (see

figure 1-1) [27].

In recent years, in-depth research on medications and plants has resulted in a

gradual reduction in the need for testing drugs in-vivo on animals and humans during

clinical trials. This progress stems from a better understanding of medicinal proper-

ties and an increased focus on developing safer and more efficient drug development

approaches.

1.2 A drug from the molecular perspective

Figure 1-2: Aspirin Molecule. SMILES: O=C(C)Oc1ccccc1C(=O)O.
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Figure 1-3: Docking of aspirin into the binding pocket of MMP-9. Atoms and bonds
were displayed as sticks, protein was displayed as solid ribbon, and the binding
pocket was displayed as surface (In Silicon Approach for Discovery of Chemopre-
ventive Agents - Scientific Figure on ResearchGate [92]).

From a molecular perspective, a drug refers to a chemical substance (see figure

1-2 of aspirin molecule) that interacts with specific molecules within the body, pre-

dominantly proteins or enzymes, in order to produce a therapeutic effect. Drugs can

achieve this by either binding to the target molecules and altering their activity or

by inhibiting their function entirely (see figure 1-3 of docking of aspirin molecule).

However, it’s important to note that in some instances, drugs may also bind to other

molecules within the body, leading to potential side effects or unintended interactions

[80].

The design of a drug molecule is carefully crafted to enhance its interaction with

the target molecules, utilizing specific features such as shape, charge, or other chemical

properties of the target site [81]. For instance, some drugs are intentionally shaped

to resemble natural ligands that bind to the target protein, while others are designed

to attach to a specific region of the protein, effectively blocking its activity . The

effectiveness of a drug relies on its ability to bind selectively to the target molecule

while minimizing any unintended effects on other molecules and potentially harmful

side effects [82].
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Drugs can be grouped into different categories, primarily based on their molecular

structure and how they work in the body. One classification includes small molecules,

which are typically organic compounds with a molecular weight below 1000 Da, mak-

ing them the most common type of drugs. On the other hand, biologics are large

molecules derived from living cells, including proteins, antibodies, and nucleic acids,

among others.

The molecule that a drug interacts with is often called its "target protein" or

"receptor." This target protein can be found on the surface of a cell, where it serves as

a receptor for neurotransmitters or hormones. Alternatively, it may be an intracellular

protein that plays a role in specific signaling pathways within the cell.

Drugs can interact with their target molecules in various manners. For instance,

certain drugs directly bind to the active site of the protein, while others may attach to

a different site, leading to a conformational change in the protein. Additionally, some

drugs bind reversibly, while others do so irreversibly. The strength of the binding can

influence the drug’s potency and the duration of its action.

The specificity of a drug’s interaction with its target molecule primarily relies on

the molecular complementarity between the drug and the target site. This comple-

mentarity involves various factors, including electrostatics, hydrogen bonding, and

hydrophobic interactions.

It’s crucial to consider that drugs can interact with other molecules in the body,

leading to potential side effects or unintended outcomes. For instance, some drugs

might bind to off-target proteins, resulting in toxicity, or interact with other drugs to

produce undesired interactions [37].

Creating a new drug usually involves a multi-step process that combines molecular

design, chemical synthesis, and testing both in laboratory settings (in-vitro) and in

living organisms (in-vivo) to evaluate its effectiveness, safety, and how it behaves in

the body (pharmacokinetics). Nowadays, computational methods, such as molecular

modeling and machine learning, are indispensable tools in drug discovery. These tech-

niques help researchers in designing and improving new drug candidates by predicting

their behavior and interactions with target molecules.
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1.3 Drug studies

1.3.1 In-silico

In-silico pharmacology, also known as computational therapeutics or computational

pharmacology, is an increasingly prominent field that aims to harness the power of

software-based methods to gather, analyze, and integrate biological and medical data

from diverse sources. This discipline delves into the intricacies of using this data

to construct computer models or simulations that can predict outcomes, propose hy-

potheses, and ultimately drive advancements and improvements in medical treatments

and medicine.

The utilization of in-silico techniques has become vital in the quest for discovering

new drugs. These methods have the potential to revolutionize the entire drug develop-

ment process by identifying and exploring new potential treatments more affordably

and in less time. Computer-aided drug design (CADD) techniques play a significant

role in minimizing the need for animal testing in experiments, promoting the devel-

opment of safer medications, and repositioning existing drugs for novel applications.

By employing these methods, medicinal chemists can effectively design, discover, de-

velop, and optimize drugs. In contrast, traditional drug discovery methods often

involve expensive and random screenings of artificial or organic compounds.

1.3.2 In-vitro

In the pre-clinical trials stage, researchers have data on the effectiveness of a drug

candidate against a specific disease or infection. However, vital information regard-

ing how this chemical behaves in terms of pharmacokinetics, toxicity, safety, and

metabolism in humans remains unknown. Therefore, it becomes essential to deter-

mine the initial dosage and thoroughly assess all the mentioned criteria. It’s worth

noting that only one out of every 5000 substances that undergo pre-clinical testing

ultimately receives approval as a viable drug [26].

The safety pharmacology stage plays a crucial role in the pre-clinical develop-
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ment of drugs, with the primary goal of detecting any possible harmful effects of

a medication on the major physiological systems of the human body. Historically,

pharmaceutical safety testing heavily relied on animal studies, but there is a growing

trend toward utilizing in-vitro tests with established tissues and cell lines. This shift

allows for more precise and controlled assessments of a drug’s safety profile before

advancing to clinical trials.

In-vitro studies, which take place outside of a living organism, have been tradi-

tionally regarded as more cost-effective compared to in-vivo testing. Although they

are less expensive, researchers need to carefully consider whether in-vitro tests are

the most suitable choice for their specific research objectives. While in-vitro assays

can be valuable for detecting potential carcinogenic or hazardous reactions, they may

not always fully capture the complexity of interactions that occur within a living sys-

tem. Hence, researchers must weigh the advantages and limitations of in-vitro studies

before deciding on the appropriate approach for their investigations.

In drug efficacy evaluations, researchers focus on determining the concentrations

of drugs that lead to specific pharmacological effects, such as affinity, potency, and

effectiveness. To achieve this, they place the drug in a pre-defined volume, such as

a test tube or a well of a plate, and then analyze its effects at both molecular and

physiological levels. This method allows researchers to design compounds that have

the potential to efficiently target and combat specific proteins, making it a valuable

tool in drug development and design.

1.3.3 In-vivo

The term "in-vivo" pertains to processes occurring within a living organism, and it is

logical to perform tests within a living model. In addition to using rats, rabbits, and

other higher mammals, animals can also serve as in-vivo models. This stage in the

drug discovery process is crucial as it showcases how various chemicals affect complex

organisms like animals. Animals are employed in in-vivo testing because of their

close genetic resemblance to humans, which preserves most biological pathways and

the intricacy of the entire body system, something that cannot be replicated in-vitro
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studies.

Figure 1-4: Application: triptolide, aconitine, chlorogenic acid, treatment to zebrafish
at 5 dpf. (A) Untreated. (B) 0.5% DMSO. (C) 0.1µM of triptolide treatment led to
zebrafish renal edema, pericardial edema, and cardiovascular toxicity. (D) 100µM of
aconitine treatment led to zebrafish having renal edema and pericardial edema. (E)
100µM of chlorogenic acid treatment led to zebrafish showing swim bladder loss and
delayed yolk sac absorption. Author: Song et. al. (Validation, optimization, and
application of the zebrafish developmental toxicity assay for pharmaceuticals under
the ICH S5 [93]).

Zebrafish have gained significant popularity in preclinical research, particularly

in in-vivo testing, due to several advantages they offer over other animals such as

rats, rabbits, and mammals. Utilizing zebrafish allows scientists to minimize the use

of more complex animals and adhere to the 3Rs principles, which focus on the Re-

placement, Reduction, and Refinement of animal usage in preclinical research [83].

Zebrafish exemplify the 3R principle as they are highly adaptable to different environ-

ments and experimental conditions compared to some rodents, effectively bridging the

gap between in-vitro and in-vivo studies. Additionally, they are more cost-effective

to house, maintain, and breed. Their genetic similarity to humans, sharing approxi-

mately 70% of human DNA [84], facilitates the assessment of drug efficacy and toxicity

and enables better extrapolation of results to human use. Overall, zebrafish present a

more efficient and cost-effective approach to preclinical research, reducing the reliance

on other animal models [38].
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1.4 Data-driven drug discovery

Developing new medicines is important for the economy and public health. But it

can be tough because many drugs fail during testing, and the ones that make it

to the market don’t always make enough money. This makes the process long and

expensive. We also have a lot of data to handle, so we need better ways to analyze

it. That’s where data-driven approaches come in handy. They help us discover drugs

more effectively and accurately. So, using data-driven methods is becoming more and

more important in drug discovery.

Data-driven drug discovery is a process that involves using computational and

data science tools to analyze extensive datasets, such as genomic, proteomic, clinical,

and chemical data, to discover new drug targets and candidates [85, 86]. The main

idea is that the abundance of data in biology and medicine can help identify potential

drug targets and candidates more efficiently than traditional methods. By analyzing

large datasets, data-driven drug discovery can reveal hidden relationships and pat-

terns that may not be evident through human intuition or conventional laboratory

techniques. Successful examples include finding correlations between new and exist-

ing drugs, evaluating model performance on subsets of the dataset, and uncovering

hidden patterns in molecules.

Data-driven drug discovery offers diverse implementation methods, utilizing vari-

ous types of data, such as genomic and proteomic data, for target identification. For

example, machine learning algorithms can analyze gene expression data to identify

genes that show differential expression in disease states, potentially serving as drug

targets. In Drug Target Binding Affinity (DTA), data-driven approaches employ

machine learning algorithms to predict the properties of new molecules from vast

chemical libraries. Deep learning algorithms, for instance, can predict the binding

affinity of a molecule to a target protein, leading to the development of more effective

and selective drugs. Moreover, data-driven techniques can aid in de novo molecular

design [2] by analyzing extensive datasets of known molecules and calculating their

latent space to generate novel molecules for screening. Additionally, data-driven ap-
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proaches can optimize clinical trials by examining comprehensive patient datasets.

Machine learning algorithms can identify patient subgroups that are more likely to

respond to specific treatments, resulting in more targeted and personalized clinical

trials.

Data-driven drug discovery holds immense promise in speeding up and improv-

ing the drug discovery process by facilitating the efficient identification of new drug

targets and candidates. However, it is essential to acknowledge the limitations and

challenges associated with this approach. One crucial factor is the quality and quan-

tity of available data, as insufficient or unreliable data can hinder accurate predictions.

Another consideration is the reliability of machine learning algorithms, which need

to be carefully assessed and validated to ensure their suitability for the task at hand.

Additionally, it is crucial to validate the results obtained through data-driven meth-

ods in the laboratory to ensure their accuracy and relevance before proceeding to

the next stages of drug development. By approaching data-driven drug discovery

with caution and rigorously validating the results, researchers can leverage the full

potential of this approach and pave the way for more successful and impactful drug

discoveries.

1.5 De-novo molecular design

De novo molecular design [2] is an innovative approach to drug discovery that involves

creating entirely new molecules from scratch using computational methods and algo-

rithms (see sample generative models in figure 1-5). Unlike traditional drug design,

which focuses on modifying existing compounds, de novo design aims to develop

molecules with specific desired properties right from the beginning.

The process of de novo design typically follows a series of steps. It starts with

identifying the molecular target, which is the specific biological or chemical process

that the molecule is intended to interact with. Next, a library of potential molecular

structures is generated using sophisticated computational methods, such as molecular

modeling and simulation. These generated structures are then thoroughly evaluated
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and ranked based on various criteria, such as their predicted properties, including

drug-likeness or potential toxicity.

De novo molecular design offers researchers the opportunity to explore a wide

array of possibilities and craft novel molecules with customized properties to suit

various applications, particularly in drug development. This exciting approach holds

the potential for innovative and precise drug discovery, enabling the creation of more

effective and targeted therapies.

Following the selection of top candidates, the subsequent crucial phase in de novo

drug design involves refining and optimizing these molecules through a series of it-

erations. This iterative process entails fine-tuning the structure of the molecule,

carefully placing specific functional groups, and adjusting other molecular properties

to bolster their potential as promising drug candidates. The ultimate objective is to

enhance their efficacy and therapeutic potential, paving the way for successful drug

development.

Once the molecules are refined, they undergo laboratory synthesis, and their bio-

logical activity and therapeutic potential are tested in in-vitro or in-vivo experiments

to validate their efficacy.

In recent years, deep learning models have made significant strides, particularly in

natural language processing, for example Transformers [87]. These advancements have

led to the development of generative machine learning models applicable to de-novo

drug design, for example Transmol [88]. These models utilize deep neural networks

and are trained to recognize molecular structures. They can then generate entirely

new molecular entities without relying on predetermined sets of building blocks and

chemical transformations. This approach shows great promise in accelerating the

discovery of novel chemical compounds and potentially reducing the time and costs

associated with drug development. It opens new avenues for innovative drug discovery

and optimization.

The de novo molecular design method is a data-driven approach used in drug dis-

covery to create new drug compounds. This technique involves employing an encoder

model to generate points in the latent space and a decoder model to retrieve the latent
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space. By selecting a specific point in the latent space with desired characteristics,

researchers can synthesize new drug candidates. The success of de novo molecular

design relies on the statistical analysis between the newly generated molecules and

existing ones. However, it’s important to note that de novo design doesn’t guarantee

the efficacy of the new drug, and rigorous pre-clinical and clinical trials are necessary

before its production.

While de novo design has shown promising results in various studies, it remains

a relatively new and challenging field with several obstacles that require careful con-

sideration. One of the primary concerns is the accuracy of the computational models

used to generate new molecules, as the success of de novo design hinges on the reliabil-

ity of these models. Moreover, the chemical space itself is highly intricate and diverse,

posing complexities in identifying novel and effective drug candidates. Additionally,

current synthesis techniques have limitations in creating complex molecular struc-

tures, which further complicates the process. Despite these challenges, researchers

are optimistic about the potential of de novo design in accelerating drug discovery

and streamlining drug development, making it an area of active exploration and de-

velopment. Continued research and advancements in this domain will be pivotal in

overcoming these obstacles and fully harnessing the capabilities of de novo molecular

design.

1.6 Genertive Models

Generative models are computational models used in drug discovery to generate new

small molecule candidates with desired properties. These models use machine learn-

ing algorithms and deep learning techniques to learn patterns in large datasets of

molecules and their properties, and then use that knowledge to generate new molecules

with similar properties.

There are various types of generative models used in drug discovery, including

variational autoencoders (VAEs), recurrent neural networks (RNNs), and generative

adversarial networks (GANs) (see sample generative models in the figure 1-5). VAEs
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Figure 1-5: Generative Models. Author: Xia et. al. (Graph-based generative models
for de Novo drug design [94]).

are used to learn the probability distribution of the training data and generate new

samples from that distribution. RNNs are used for sequence modeling, which is useful

for generating molecules with specific patterns or structures. GANs are used to gen-

erate new molecules by learning the distribution of the training data and generating

new samples that are difficult to distinguish from real data.

These models can be trained on a variety of chemical and biological data, such as

chemical structure and activity data, gene expression data, and clinical data. By using

these generative models, drug discovery researchers can generate new molecules with

desired properties, potentially accelerating the drug discovery process and reducing

the cost of drug development.

Generative models can be utilized to produce new molecules that have specific

properties, such as high potency or solubility, once they have been trained using deep

learning algorithms. These new molecules can then be synthesized and tested in a

laboratory setting to determine their biological activity and assess their potential for

use in drug development.

Generative models can speed up drug discovery by simulating the generation of

new compounds without the need for extensive experimental screening and synthesis,

potentially saving both time and money. They can also be used to search for novel

24



chemical structures that traditional methods may not easily identify.

However, one of the challenges of using generative models is finding a balance

between the novelty and quality of the generated molecules. The models must pro-

duce diverse molecules with desirable properties that are chemically feasible, while

ensuring that the generated molecules are safe and effective. To achieve this balance,

the models must be thoroughly validated and tested to ensure that the generated

molecules meet the required standards.

Despite these challenges, generative models have the potential to revolutionize

the drug discovery process and lead to the development of new and more effective

treatments for a variety of diseases.

1.7 DTA Models

Drug-target affinity (DTA) models are computational models used in drug discovery

to predict how well small molecules bind to specific targets, such as proteins or en-

zymes. The strength of this interaction, known as the binding affinity, is a crucial

factor in determining the biological activity and potential efficacy of a drug candidate.

DTA models use a variety of computational methods, such as molecular docking,

molecular dynamics simulations, and machine learning algorithms to predict the bind-

ing affinity of small molecules to their targets. To train these models, large datasets

of small molecules and their corresponding binding affinities are used. Once trained,

the models can be used to predict the binding affinity of new small molecules, poten-

tially accelerating the drug discovery process by helping to identify promising drug

candidates more efficiently.

There are two main types of DTA models [91]: ligand-based [89] and structure-

based [90].

Ligand-based models use the properties of known ligands to predict the affinity

of new molecules. They assume that molecules with similar structures have similar

binding affinities. These models use molecular descriptors to encode the structural

and physicochemical properties of small molecules and their ligands.
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Structure-based models, on the other hand, use the 3D structure of the target and

the small molecule to predict the binding affinity. These models take into account

protein conformational changes, solvent, and ligand flexibility, which can affect the

binding affinity.

DTA models can be used in virtual screening, where large libraries of small

molecules are screened against a target to identify potential drug candidates. DTA

models help to prioritize the molecules that are most likely to bind to the target and

have the desired biological effect.
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Chapter 2

Literature Review

2.1 Molecular Representations

2.1.1 BoW

The Bag-of-words (BoW) molecule representation is a method for representing molecules

in a format that can be processed by a computer. This approach is similar to the

BoW model used in natural language processing. To use this method, a molecule

is first converted into a string of characters or a sequence of atom types, which is

then processed using a tokenization algorithm to create a set of features, or "words".

These features are typically individual atoms or pairs of neighboring atoms. Each

molecule is then assigned a frequency vector, which represents the frequency of each

feature in the molecule. This vector is mostly empty, with only a few non-zero values

[44].

One limitation of the BoW molecule representation is that it does not consider

the spatial arrangement of atoms in the molecule, which can be important in de-

termining its behavior and properties. Other methods, such as graph-based or 3D

conformations, can be used to account for this information.
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2.1.2 Graph Representation

In cheminformatics, graph representation is a popular way to represent molecules,

which captures both structural and topological information. This approach represents

the atoms and bonds of a molecule as nodes and edges in a graph, respectively. Each

atom is a node, and each bond is an edge, with the atom and bond type encoded as

node and edge labels. Additional attributes such as charges and hybridization can be

included as node properties.

There are different types of graph representations for encoding molecular struc-

tures, including adjacency matrix-based and edge list-based representations. Adja-

cency matrix-based representations use a matrix to represent the molecule, with rows

and columns corresponding to atoms and matrix elements corresponding to the edges.

Edge list-based representations use a list of edges, where each edge is represented as

a tuple of two atoms and a bond type.

Graph representations are advantageous because they can capture spatial and

topological information, which can be used to identify substructures and molecular

patterns to aid in drug discovery. Additionally, graph representations can be easily

analyzed using graph theory algorithms to extract meaningful features and patterns

from the molecular structure [45].

2.1.3 SMILES

SMILES (Simplified Molecular Input Line Entry System) is a text-based notation

system that represents the structure of molecules in a simple and compact way.

In SMILES notation, each atom in the molecule is represented by its atomic

symbol, and the bonds between the atoms are represented by different symbols, such

as "-" for a single bond, "=" for a double bond, and "#" for a triple bond. For

example, the SMILES notation for water (H2O) is "O-H-H", where "O" represents

the oxygen atom and "H" represents the hydrogen atoms.

SMILES notation can represent more complex structures, such as cyclic and

branched molecules. Rings in a molecule can be represented by enclosing the atoms in
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the ring with a set of numbers, and branches can be represented by using parentheses

and numbers to indicate the position of the branches. For example, the SMILES

notation for benzene (C6H6) is "c1ccccc1", where the lowercase "c" indicates an aro-

matic ring, and the SMILES notation for isobutane (C4H10) is "CC(C)C", where the

parentheses indicate a branch [43].

2.1.4 InChi

InChI (International Chemical Identifier) is a standard text-based notation system

that represents the structure of molecules in a unique and machine-readable format

[46].

InChI notation contains several layers of information, including the connectivity of

the atoms, the stereochemistry of the molecule, and the tautomeric and protonation

states of the molecule. It also includes a fixed-length identifier called the InChIKey

that uniquely identifies the molecule.

The InChI notation is designed to be both human-readable and machine-readable,

making it useful in various applications, such as chemical informatics, chemical database

management, and chemical property prediction. InChI notation can be generated

from a molecular structure using software tools that implement the InChI algorithm,

which generates a unique and canonical representation of the molecular structure.

InChI notation provides a standardized way of representing molecules that can be

easily shared and communicated between different software tools and databases. It is

also designed to be robust and flexible, allowing for the representation of a wide range

of chemical structures. Many scientific journals and publications recognize InChI as

the standard format for reporting chemical structures.

2.1.5 Molecule descriptors

Molecule descriptors play a vital role in cheminformatics and computational chem-

istry by providing numerical representations of chemical compounds. These descrip-

tors encode a wide range of properties and characteristics of the molecules, enabling
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researchers to perform various tasks such as similarity analysis, virtual screening, and

predictive modeling. RDKit, a popular cheminformatics toolkit, offers over 200 de-

scriptors (see table 4.1) for any given molecule, providing a rich set of information

for analysis [28].

Many descriptors in RDKit’s second category often contain zero values for certain

molecules (see table 4.1). This occurs because some molecular properties may not

be applicable to all compounds, resulting in zero values for those specific descriptors.

Despite these zero values, RDKit’s extensive collection of descriptors still offers valu-

able insights into the chemical nature and behavior of molecules, facilitating a deeper

understanding of their potential applications in drug discovery and other areas of

research.

2.2 Databases and Datasets

• Zinc: The ZINC dataset is a vast collection of over 1 billion commercially avail-

able small molecules for drug discovery [47]. It includes diverse compounds and

is regularly updated by the University of California, San Francisco. Researchers

can search, filter, and predict molecular properties using this valuable resource.

Specialized subsets for specific applications are also available.

• BindingDB : BindingDB is a comprehensive and publicly accessible database of

experimentally determined binding data for protein-ligand complexes [48]. It

contains over 1 million protein-ligand interactions involving 9,000 proteins and

360,000 small molecules. The data is manually curated from scientific literature,

ensuring reliability and quality. Researchers can utilize various web-based tools

and interfaces for searching, filtering, and analyzing the binding data, as well as

predicting the binding affinity of new molecules using computational methods.

• PubChem: PubChem is a freely accessible public database maintained by the

NCBI that contains information on millions of chemical substances and their

biological activities [49]. It provides comprehensive data on various molecules,
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including chemical structures, molecular weights, physical and chemical prop-

erties, and pharmacology and toxicity information. Researchers can use Pub-

Chem to search, filter, and predict molecular properties, making it a valuable

resource for drug discovery and development research. The database also offers

specialized subsets for specific applications, catering to different research needs.

• ChEMBL: ChEMBL is a freely accessible database maintained by the EBI that

contains information on over 2 million bioactive molecules and their targets,

along with associated biological activity data [50]. The dataset includes detailed

information on molecular structures, physicochemical properties, pharmacology,

and toxicity. ChEMBL is a valuable resource for drug discovery research, as

it allows researchers to search, filter, and predict molecular properties using

computational methods. Additionally, the database offers specialized subsets

for specific research needs, making it a user-friendly tool for drug development

studies.

• Protein Data Bank : The Protein Data Bank (PDB) is a freely accessible database

managed by the wwPDB that provides detailed 3D structural information on

complex molecules like proteins and nucleic acids [51]. With over 170,000 struc-

tures, the PDB offers a comprehensive dataset of atomic coordinates, experi-

mental data, and metadata. Researchers in structural biology and related fields

can access this valuable resource to explore various molecular structures, ranging

from small peptides to large protein complexes and viruses. The PDB facili-

tates easy search, filtering, and analysis of structural data, enabling researchers

to study structure-activity relationships and identify potential drug targets.

2.3 Docking

Molecular docking is an important computational method utilized in drug discovery

and molecular biology to predict and study the interactions between two molecules,

typically a protein (receptor) and a small molecule (ligand) [52, 53]. Through simu-
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lations, it examines how these molecules bind together, providing insights into their

structural characteristics and the strength of their interactions.

In drug discovery, molecular docking plays a vital role in understanding how po-

tential drug candidates interact with target proteins at a molecular level. The primary

objective is to find molecules that can selectively bind to specific target proteins and

modify their function, either by inhibiting or enhancing their activity. This process is

crucial in identifying promising drug candidates for further development and testing

in experimental studies and clinical trials.

2.3.1 Searching functions

Molecular docking utilizes search functions to explore small molecule conformations

for the best binding to a target protein. The goal is to find the most favorable

orientation that minimizes energy and maximizes interactions with the protein.

Methods for exploring conformational space in molecular docking include:

• Exhaustive search: Evaluates the entire conformational space on a grid, but it’s

computationally intensive and time-consuming.

• Monte Carlo search: Randomly samples the conformational space and accepts

or rejects moves based on energy, often used with simulated annealing to improve

efficiency [56].

• Genetic algorithm: Evolves a population of conformations, selecting the best-

performing ones for efficiency and focusing on promising conformations [55].

• Fragment-based search: Divides the small molecule into fragments, exploring

their conformational space separately, and combining the best-performing con-

formations for the final pose [57].

2.3.2 Scoring functions

Molecular docking employs scoring functions to assess the suitability of small molecule

binding to a target protein. These functions predict the binding affinity and identify
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the binding mode with the lowest energy. Various types of scoring functions are used

in molecular docking:

• Empirical Scoring Functions: Based on experimental observations and use sim-

ple mathematical equations to calculate binding affinity [58].

• Physics-Based Scoring Functions: Grounded on physics principles, they use

molecular mechanics to calculate interaction energy. [59]

• Knowledge-Based Scoring Functions : Founded on statistical analysis of known

protein-ligand complexes, they use descriptors to predict binding affinity [60].

• Machine Learning Scoring Functions : Utilize machine learning algorithms like

neural networks and support vector machines to learn the relationship between

physicochemical properties and interaction energy [61].

2.4 Metrics and evaluation

2.4.1 Generative models’ metrics

Generative models like GANs and VAEs are used in drug discovery to create new

molecules, but assessing their usefulness is challenging. Researchers evaluate the

generated molecules using various measures:

• Chemical validity : Ensuring the molecules adhere to organic chemistry rules

and are stable, using tools like RDKit.

• Diversity : Checking that the generated molecules are distinct from each other,

using clustering or similarity metrics like Tanimoto similarity.

• Property optimization: Assessing if the molecules have desired properties like

binding affinity or solubility through virtual screening or experimental assays.

• Novelty : Verifying that the generated molecules are new and not already known

in databases like ChEMBL, PubChem, or ZINC.
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• Scalability : Ensuring the generative models can efficiently produce large num-

bers of molecules for practical applications like virtual screening.

2.4.2 DTA models’ metric

DTA models predict how a drug molecule interacts with a target protein. Various

measurements assess their effectiveness:

• Binding affinity : Indicates the strength of drug-target interaction, measured

through methods like isothermal titration calorimetry or molecular dynamics

simulations.

• Cross-validation: Evaluates model performance on different data subsets to

assess generalizability and avoid overfitting.

• ROC curve: Plots sensitivity against 1-specificity for different binding affini-

ties, assessing the model’s ability to distinguish true positive and false positive

bindings.

• Precision-Recall curve: Shows precision against recall for different cutoffs, useful

when dealing with imbalanced data in positive and negative samples.

• AUC-ROC : Measures the model’s ability to differentiate between interacting

and non-interacting drug-target pairs.

• AUC-PRC : Measures the model’s ability to retrieve positive interactions with

high precision.

• Accuracy : Calculates the percentage of correctly predicted interactions out of

the total interactions in the test set.

• F1 score: Balances precision and recall, providing a single metric for model per-

formance ranging from 0 to 1, with higher values indicating better performance.
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2.4.3 ADMET

ADMET is crucial in drug development, encompassing absorption, distribution, metabolism,

excretion, and toxicity. Common metrics to evaluate ADMET properties of small

molecules include:

• Solubility : Measured using techniques like shake-flask or HPLC methods, it

influences drug bioavailability and dosage.

• Permeability : Assessed through in-vitro models like Caco-2 cells or PAMPA, it

determines a molecule’s ability to cross biological membranes.

• Metabolic stability : Evaluated through in-vitro or in-vivo models such as liver

microsomes or rat pharmacokinetics, it gauges a molecule’s durability in bio-

logical systems.

• Plasma protein binding : Assessed using in-vitro methods like equilibrium dial-

ysis or ultrafiltration, it examines a molecule’s attachment to plasma proteins

affecting distribution and bioavailability.

• CYP inhibition: Determined by in-vitro assays like IC50 or Ki values, it as-

sesses the inhibition of cytochrome P450 enzymes, which can cause drug-drug

interactions.

• Toxicity evaluations : Measure potential harm using in vitro or in vivo models

like cell viability assays or animal toxicology studies, focusing on hepatotoxicity,

cardiotoxicity, and genotoxicity as common endpoints.

2.4.4 Workflow

In drug development, in-silico studies play a crucial role in narrowing down potential

candidate drugs for costly and ethically complex in-vivo studies. To conduct these

in-silico studies, researchers have access to various widely used libraries and tools,

each serving specific purposes.
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For tasks involving individual molecules and visualization, RDKit and OpenBabel

are commonly employed by researchers. RDKit offers a rich set of functions and

molecule descriptors, making it valuable for analyzing and characterizing molecules.

Additionally, it allows easy conversion of 2D representations to other 2D formats,

further enhancing its utility. Due to its effectiveness in performing molecular-level

tasks and computing descriptors, RDKit has become popular among researchers for

tasks like converting molecules and calculating molecule descriptors.

In in-silico studies, data-driven approaches extend beyond the functionalities of

RDKit, leveraging libraries like PyTorch, pandas, NumPy [78], and TensorFlow [79]

to implement machine Learning and deep Learning methodologies. De novo drug

design, for instance, involves creating neural networks to learn patterns and compute

a latent space from the trained model. This space is then used to navigate and

generate new molecules, enabling the discovery of promising drug candidates.

Another application is in Drug-Target Interaction (DTA) prediction models. By

training these models on datasets containing successful drug-target pairs, researchers

can predict the binding affinity of existing drugs to new targets. This approach

eliminates the need for time-consuming and costly clinical studies, streamlining the

drug development process.

Once successful candidates are identified from the generated models, researchers

conduct docking experiments to understand how these candidates interact with spe-

cific targets. This step is critical in studying the binding poses of ligands and cal-

culating their binding affinities with receptors. Various tools, such as OpenBabel,

PyMol, AutoDock Vina, and SWISS-MODEL, come into play during this process.

OpenBabel is essential for converting ligand 2D shapes into 3D structures, while

SWISS-MODEL generates consistent 3D protein models. AutoDock Vina handles

the molecular docking, and PyMol aids in the visualization of docking results.

By following this workflow, researchers streamline the drug candidate selection

process, leading to improved ADMET evaluation and increasing the likelihood of

successful drug development and registration. These data-driven approaches offer

valuable insights and advancements in drug discovery, potentially revolutionizing the
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pharmaceutical industry.

2.4.5 Benchmarks

Benchmarks play a crucial role in evaluating the effectiveness of generative models by

providing standardized datasets and evaluation protocols. In de novo drug design, two

widely recognized and publicly accessible benchmarks are MOSES and Guacamole.

Among them, MOSES is more popular due to its user-friendly interface and available

metric computing functions. On the other hand, Guacamole is less favored mainly

because of its lack of clear documentation and user-friendliness.

Within the MOSES benchmark [64], several metrics are utilized to assess genera-

tive models. These include distribution difference metrics, internal diversity metrics,

novelty, validity, uniqueness, filters, FCD (Frechet ChemNet Distance) [63], Tanimoto

distance, scaffold similarity, and Fréchet ChemNet Distance. Each of these metrics

provides valuable insights into the model’s performance and the quality of generated

molecules.

In Drug-Target Interaction (DTA) prediction, researchers can access diverse datasets

like DREAM [65] and KIBA [66]. Additionally, publicly available cheminformatics

datasets can be used to construct suitable datasets for DTA models. A crucial metric

in DTA prediction is the binding affinity, which quantifies the strength of interaction

between a drug and a target protein. Accurate binding affinity predictions are vital

for identifying potential drug candidates with strong binding capabilities to specific

target proteins. Furthermore, binary classifications are often applied in DTA predic-

tion models to categorize drug-target interactions as either positive or negative.
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Chapter 3

Related Works

DeepChem [67], ChemML [68], OpenChem [69], Chainer Chemistry, and TorchDrug

[70] are all powerful tools and libraries in the field of cheminformatics and drug

discovery, each with its unique features and capabilities.

• DeepChem: DeepChem [67] stands out as a versatile Python library specifi-

cally designed for deep learning in chemistry and materials science. It offers a

wide range of tools and models to predict molecular properties, conduct virtual

screening of small molecule libraries, and handle molecular data efficiently.

• ChemML: ChemML [68], another Python library, specializes in machine learning

applications for chemistry and materials science. With a focus on molecular

and materials property prediction, it provides robust data handling tools and

pre-trained machine learning models, enabling accurate predictions for various

chemical and material properties.

• OpenChem: OpenChem [69] is a comprehensive platform offering free and open-

source access to deep learning tools tailored for chemistry and cheminformatics.

With molecular data handling capabilities for fingerprints, SMILES strings,

and molecular graphs, OpenChem’s deep learning models deliver accurate pre-

dictions of molecular properties like solubility, toxicity, and binding affinity.

Additionally, it excels in molecular generation and design, utilizing generative

models, reinforcement learning, genetic algorithms, and Bayesian optimization.
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• Chainer Chemistry : Chainer Chemistry is a powerful framework built upon

Chainer, a popular deep learning library. Chainer Chemistry extends Chainer’s

capabilities with a focus on chemical informatics tasks, including molecular

property prediction, molecular generation, and virtual screening. Its seamless

integration with Chainer allows users to leverage the extensive deep learning

functionalities of both libraries for cheminformatics applications.

• TorchDrug : TorchDrug [70] is a specialized library built on top of PyTorch, a

widely used deep learning framework. It offers tailored tools and models for

drug discovery and cheminformatics, empowering users to predict molecular

properties, generate new molecules, and optimize molecules for specific prop-

erties. With PyTorch as its foundation, TorchDrug provides an accessible and

efficient platform for deep learning in chemical research.
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Chapter 4

Framework

4.1 Problem definition

The staggered development of software tools has led to various challenges in onboard-

ing new members to de novo drug design. As a researcher, newcomers encounter

difficulties with software installations, inadequate access to computational resources,

slow network connections, software version conflicts, and other issues that are inher-

ent to decentralized management. Additionally, a lack of knowledge about existing

approaches and solutions further hinders their ability to freely embark on develop-

ment.

The main problem is the absence of a straightforward and comprehensive frame-

work that covers all aspects of in-silico studies in drug design. Such a framework

should explicitly outline the fundamental principles and systematic approaches for

developing drug design workflows. It should consist of modular components that

guide users through the drug development process, ensuring a clear understanding

of their objectives. While some researchers may excel in computer science or data

science, they might lack expertise in chemistry or biology, which are not crucial skills

in data-driven drug development. As a result, the framework must be user-friendly

and accessible to individuals without a background in chemistry or biology, as de

novo drug design primarily involves discovering new molecules through data-driven

techniques.
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4.2 Design

I have created a framework that offers essential and valuable functionalities for drug

design. My solution revolves around the development of a centralized platform and

a helpful tool to assist in crucial tasks, including computing metrics, docking ligands

to receptors, downloading datasets, and calculating molecule descriptors for various

drug development studies. The framework comprises three key components: a server,

a library for local computations, and a library for remote computations. Utilizing

remote computations and a centralized platform addresses several gaps in drug de-

sign, proving to be promising solutions. Notably, implementing a leaderboard on the

centralized server holds tremendous potential to significantly benefit drug design.

The framework is guided by the following core principles:

• Encompassing all in-silico workflows within a single tool, ensuring comprehen-

sive coverage.

• Eliminating computational limitations for researchers, enabling seamless and

efficient work.

• Embracing an open-source approach, making the framework accessible to ev-

eryone.

• Allowing customization for individuals who require a private server for team

collaboration.

• Simplifying metric computations, providing commonly used metrics for researchers’

convenience.

• Facilitating the submission of successful candidate drugs to a centralized server,

allowing interested parties to study and contribute reports.

• Providing a diverse range of benchmark metrics and datasets to support robust

evaluations.
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• Sharing knowledge about the entire drug design workflow through practical

examples.

• Prioritizing user-friendliness to ensure ease of use for all individuals utilizing

the framework.

The significance of a centralized server lies in its ability to accommodate bi-weekly

changing datasets and facilitate the reevaluation of existing approaches and models.

By maintaining the latest dataset updates and conducting reevaluations through a

leaderboard, the centralized server becomes a valuable resource for studying various

models and approaches effectively.

Given time constraints, I have successfully accomplished the following functional-

ities: local computation of MOSES metrics, remote computation of MOSES metrics,

a torch data loader for the MOSES dataset, approximately 200 molecule descriptors

(see table 4.1), a centralized server for data management, local docking capability,

remote docking, and caching.

4.3 Modules

The framework contains three main modules for fulfilling research needs (see figure

4-1).

• The DDBox Data Server : The DDBox Data Server is a centralized server specif-

ically created to store data and handle remote tasks, such as metric computation

and docking (see figure 4-2). Within this server, various services are integrated,

including PostgreSQL for the storage of molecules and receptors, Redis for opti-

mization functionalities, Celery for background computations like docking and

metric calculation, and FastAPI as the primary application server to process

user requests. As per its philosophical design, this module is intended to in-

clude a leaderboard, support multiple datasets, host various docking software,

serve as a platform for enthusiastic researchers, act as a bridge to in-vitro stud-

ies, and facilitate the generation of reports.
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Figure 4-1: DDBox Architecture

• The DDBox Package: The DDBox Package is an all-encompassing framework

that includes data loaders, metrics, and docking software (see figure 4-2), mak-

ing it well-suited for conducting local computations. This package is beneficial

for local studies, but it might necessitate computational resources that are not

readily available at all times. As per its philosophical design, this module is in-

tended to feature visualizations, multiple dataset loaders, information retrievals,

various docking software, and a framework for De Novo generative and DTA

models.

• The DDBox Remote Package: The DDBox Remote Package functions as an

interface framework tailored for remote computations. It provides similar func-

tionalities to the DDBox Package, but the actual computations are performed

on the server side, potentially resulting in improved work performance. As per

its philosophical design, this module is intended to be similar to the DDBox

Package, with the distinction that it should be seamlessly integrated with the

DDBox Data Server to carry out remote computations.
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Figure 4-2: AutoDock Vina result and PyMol visualization.

4.4 Functionalities

The DDBox data server provides around 200 descriptors for molecules in the MOSES

dataset. These descriptors serve various purposes, such as data analysis, training

machine learning and deep learning models, and conducting diverse studies. However,

it’s important to note that many molecules have zero values for the 2nd category

descriptors.

You can extract InChi, InChi Key, and SMILES representations from a molecule

object using DDBox Package. While both RDKit and DDBox Package have the same

descriptors, using only RDKit requires additional time to write conversion logic and

leads you to wait for the conversion process to be completed, which typically takes

about 4-8 hours. To address this issue, the DDBox data server has already computed

these values on the server side. As a result, you can simply download the computed

descriptors using the torch dataset class implementation in DDBox Package, saving

you time and effort in the computation process.

The DDBox Data server contains the MOSES dataset, which includes molecules

with pre-calculated descriptors. Researchers can easily access this dataset by down-

loading it through the torch dataset class implementation using either DDBox or

DDBox Remote. The download process is made efficient by utilizing cached API
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endpoints on the server side.

In the event that new data or changes are made on the DDBox Data Server, users

must delete the local cache and re-initialize the torch dataset instance to ensure they

obtain the latest updates. The framework is designed cache API endpoints for some

time. When the cache is expired, new data is downloaded.

To enhance the framework’s capabilities, it should include information retrieval

APIs from various public archives such as PDB, ChEMBL, PubChem, DrugBank,

and more. This information retrieval integration will allow researchers to access and

utilize additional relevant information for their analyses and studies.

Within the DDBox Package, you can find the MOSES metrics, which are used

to evaluate De Novo generative models. I consider the MOSES dataset as a strong

foundation for the framework development due to its popularity. Nevertheless, the

framework’s overarching design philosophy should encompass the incorporation of

multiple benchmark metrics.

Remote computation is a highly valuable feature that provides researchers with

the freedom to overcome resource limitations. A significant advantage of remote

computation is its application during model training. As the evaluation process may

require several hours, researchers can avoid wasting time by conducting evaluations

asynchronously while continuously training the model. This approach ensures an

efficient use of time and computing resources.

4.5 Hardware Requirements

The DDBox data server is built using Docker and Docker Compose. Each container

takes up around 250MB of RAM space, and the stack comprises five containers:

PostgreSQL, Redis, Minio, Celery, and FastAPI. Except for Redis, each of the four

containers uses approximately 250MB of RAM space, and there is potential for further

optimization. The DDBox package and DDBox Data Server demand a powerful CPU,

such as M1 or CUDA support. On M1 Linux/amd64 architecture, docking typically

requires around 2 minutes, while on M1 arm64 architecture, it takes only about 5

46



seconds. Most metric computations are executed on the CPU, necessitating the use of

a robust CPU. Only the FCD distance metric computation requires a GPU instead of

a CPU. To achieve optimal performance and faster metric computation, having both

a powerful CPU and GPU support is advantageous. However, without a powerful

CPU or GPU, computations may take up to 1 hour or even a day. Allocating more

than 8GB-16GB of RAM for DDBox Package and DDBox Data Server is advisable.

Additionally, you may need 8GB-16GB of hard disk space for DDBox Package caches,

which store downloaded datasets with numerous attributes, and 128GB-256GB of

hard disk space for DDBox Data Server due to caching optimizations. This can

sometimes pose challenges due to resource limitations for some users.
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Table 4.1: List of Molecule Descriptors

InChi InChi Key SMILES
BalabanJ BertzCT Chi0

Chi0n Chi0v Chi1
Chi1n Chi1v Chi2n
Chi2v Chi3n Chi3v
Chi4n Chi4v EState_VSA1

EState_VSA10 EState_VSA11 EState_VSA2
EState_VSA3 EState_VSA4 EState_VSA5
EState_VSA6 EState_VSA7 EState_VSA8
EState_VSA9 ExactMolWt FpDensityMorgan1

FpDensityMorgan2 FpDensityMorgan3 FractionCSP3
HallKierAlpha HeavyAtomCount HeavyAtomMolWt

Ipc Kappa1 Kappa2
Kappa3 LabuteASA MaxAbsEStateIndex

MaxAbsPartialCharge MaxEStateIndex MaxPartialCharge
MinAbsEStateIndex MinAbsPartialCharge MinEStateIndex
MinPartialCharge MolLogP MolMR

MolWt NHOHCount NOCount
NumAliphaticCarbocycles NumAliphaticHeterocycles NumAliphaticRings
NumAromaticCarbocycles NumAromaticHeterocycles NumAromaticRings

NumHAcceptors NumHDonors NumHeteroatoms
NumRadicalElectrons NumRotatableBonds NumSaturatedCarbocycles

NumSaturatedHeterocycles NumSaturatedRings NumValenceElectrons
PEOE_VSA1 PEOE_VSA10 PEOE_VSA11
PEOE_VSA12 PEOE_VSA13 PEOE_VSA14
PEOE_VSA2 PEOE_VSA3 PEOE_VSA4
PEOE_VSA5 PEOE_VSA6 PEOE_VSA7
PEOE_VSA8 PEOE_VSA9 RingCount
SMR_VSA1 SMR_VSA10 SMR_VSA2
SMR_VSA3 SMR_VSA4 SMR_VSA5
SMR_VSA6 SMR_VSA7 SMR_VSA8
SMR_VSA9 SlogP_VSA1 SlogP_VSA10

SlogP_VSA11 SlogP_VSA12 SlogP_VSA2
SlogP_VSA3 SlogP_VSA4 SlogP_VSA5
SlogP_VSA6 SlogP_VSA7 SlogP_VSA8
SlogP_VSA9 TPSA VSA_EState1

VSA_EState10 VSA_EState2 VSA_EState3
VSA_EState4 VSA_EState5 VSA_EState6
VSA_EState7 VSA_EState8 VSA_EState9
fr_Al_COO fr_Al_OH fr_Al_OH_noTert

fr_ArN fr_Ar_COO fr_Ar_N
fr_Ar_NH fr_Ar_OH fr_COO
fr_COO2 fr_C_O fr_C_O_noCOO
fr_C_S fr_HOCCN fr_Imine
fr_NH0 fr_NH1 fr_NH2
fr_N_O fr_Ndealkylation1 fr_Ndealkylation2

fr_Nhpyrrole fr_SH fr_aldehyde
fr_alkyl_carbamate fr_alkyl_halide fr_allylic_oxid

fr_amide fr_amidine fr_aniline
fr_aryl_methyl fr_azide fr_azo

fr_barbitur fr_benzene fr_benzodiazepine
fr_bicyclic fr_diazo fr_dihydropyridine
fr_epoxide fr_ester fr_ether
fr_furan fr_guanido fr_halogen

fr_hdrzine fr_hdrzone fr_imidazole
fr_imide fr_isocyan fr_isothiocyan
fr_ketone fr_ketone_Topliss fr_lactam
fr_lactone fr_methoxy fr_morpholine
fr_nitrile fr_nitro fr_nitro_arom

fr_nitro_arom_nonortho fr_nitroso fr_oxazole
fr_oxime fr_para_hydroxylation fr_phenol

fr_phenol_noOrthoHbond fr_phos_acid fr_phos_ester
fr_piperdine fr_piperzine fr_priamide

fr_prisulfonamd fr_pyridine fr_quatN
fr_sulfide fr_sulfonamd fr_sulfone

fr_term_acetylene fr_tetrazole fr_thiazole
fr_thiocyan fr_thiophene fr_unbrch_alkane

fr_urea qed
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Chapter 5

Future Works

The framework must possess scalability, capable of accommodating a large number of

users. To handle high loads, the implementation involves utilizing solutions such as a

database cluster and caching. Achieving scalability is made possible through the use

of a storage cluster (Minio), database cluster (PostgreSQL), broker cluster (Redis),

and horizontal scaling of the server application. Computational power is harnessed

through the M1 processor, and it can be configured to support CUDA, potentially

leading to excellent performance.

The incorporation of visualization tools into the framework holds the potential to

enhance its utility in In-silico studies, providing researchers with interpretable data.

Possible integrations of visualization tools encompass molecule visualization, receptor

visualization, docking visualization, and more.

A centralized server is intended to serve as a platform for potential drug candi-

dates, which will be queued for in-vitro studies. Positioned as an intermediary element

within the drug design process, researchers will be able to select ligands that have suc-

cessfully passed multiple in-silico studies for further in-vitro investigations. Moreover,

the reports generated by observers will undergo validation by authorized members.

Developing a centralized system for drug design represents a significant and highly

valuable study, addressing the current lack of a centralized platform and standardized

workflow that incorporates an accessible set of tools and resources. Presently, these

tools are scattered across various workflows, with many complementing each other,
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making it advantageous to consolidate them into a single, user-friendly framework.

The inclusion of a leaderboard is a highly promising and essential feature of the

framework, significantly increasing its potential to become a standard platform in the

field of drug discovery. However, the development of this leaderboard poses challenges

in terms of system design and handling special cases, such as dataset updates, re-

computation of benchmark metrics, model submission, versioning, and management.

A well-designed centralized system holds the potential to add substantial value to

drug development. At present, the framework offers a basic set of tools that meet the

fundamental requirements for in-silico drug design research and workflow. It is a work

in progress, with incremental improvements expected. The success of the framework

will be determined by monitoring its usage statistics and popularity among engineers.

The framework currently has several internal functions that lack optimization

and are not generalized for different platforms, except for Linux and MacOS. Unfor-

tunately, Windows support is not yet included in the framework.

Although certain libraries under the framework have default CUDA support, the

framework itself requires explicit support for CUDA. For the MVP, parallel compu-

tations have been disabled, but future optimization efforts are planned to include

parallel computations and improve computation speeds. I see these optimization

tasks as the next development steps for the framework.
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Chapter 6

Conslusion

I have dedicated approximately 60-100 hours to working on integrations, exploring

implementation methods, and extensively studying drug discovery articles. I am

confident that newcomers may have to go through the same learning process or become

acquainted with it. The efforts I have invested can potentially save many hours of

future research and aid engineers and scientists in swiftly integrating themselves into

the Drug Discovery domain.

The tool offers datasets, metrics, docking capabilities, and helper functions to

facilitate seamless and efficient work, enabling a rapid start. By introducing this

platform and providing the framework, it has the potential to make a substantial

contribution to the domain. It effectively addresses various challenges related to

dataset updates, dataset downloads, benchmarking platforms, leaderboards, remote

computations, and resource limitations. The framework’s versatile applications en-

compass molecular docking, data analysis, machine learning model construction, deep

learning model development, statistical analysis, and more.

Adopting an open-source approach for the framework’s development could bring

significant advantages to both the project’s future and the research domain. By

embracing an open-source model, the framework can undergo continuous enhance-

ment and incremental improvements, overseen and managed by the community itself.

Community-driven management ensures a consistent evolution of the framework, fos-

tering swift advancements that have the potential to make valuable contributions to
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the entire Drug Design domain. Ultimately, this collaborative effort aims to establish

the framework as a standard tool for enthusiastic researchers.

The framework currently incorporates solely MOSES benchmark metrics and

datasets. However, there are additional benchmarks like Guacamole, as well as di-

verse datasets used in Drug Design. In the future, the framework should aim to

support all popular datasets and benchmarks. A challenging aspect of the framework

lies in handling dataset changes, which necessitate re-evaluating submitted models,

incurring potential costs. To address this issue, a viable solution is to design a flow

that includes dataset updates as a platform feature. This entails recalculating the

leaderboard whenever dataset updates occur. At present, utilizing static data from

the MOSES benchmark serves as a suitable starting point due to its popularity and

simplicity.

The current version of the framework includes datasets, docking, metric computa-

tions, and molecule descriptors, which form the essential components. However, there

are additional features that should be developed, such as visualization tools, configu-

ration editing, support for various metrics, benchmarks, and platforms, integration of

other docking software, incorporation of diverse datasets, leaderboard functionality,

and scalability, among others. The overarching goal of the framework is to encompass

and streamline all workflows in Drug Design, serving as an intermediary platform that

connects data-driven engineering to in-vitro studies.

Considering my personal objectives, I strongly believe that the framework holds

significant value for engineers involved in drug design.
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