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ABSTRACT 

Resource estimation is an essential aspect of the development process for any mining project. 

The geological domains are defined based on data obtained from boreholes, with the goal 

being to determine the mineral grades in the geological domains. Geostatistics assumes that 

the joint distribution of geological attribute values is consistent across homogeneous domains 

and is defined by a stationary covariance function. However, the nature of geological systems 

often contains uncertainties and variations in structure and behaviour. 

Sequential Gaussian and Sequential Indicator Simulation are one of several methods used for 

simulating continuous and categorical variables in 3D geological modelling. Despite its 

advantages, this method and other conventional techniques have been criticized for not 

effectively capturing local mean values, variance, and spatial continuity changes. 

The traditional algorithms used in the industry are not suitable for non-stationary geological 

domains, as they are designed for stationary target simulation variables. This thesis proposes 

using Multinomial Logistic Regression as an alternative method for simulating the spatial 

properties of non-stationary geological domains. The technique will be applied to a copper-

porphyry deposit that shows clear signs of non-stationarity. 

The mineral resource model will be created by weighting the copper grade estimates based 

on the probability of occurrence of different rock types in various geo-domains. The 

generated probability maps will be evaluated using various criteria, including visual 

inspection of realizations, probability maps, replicas of each geo-domain fraction, 

connectedness metrics, and trend analysis. 
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1 INTRODUCTION 

1.1 RESEARCH BACKGROUND 

Geological modelling is a crucial procedure preceding resource estimation characterized by 

distinguishing sub-units of the deposit known as the "geological domain". The deterministic 

approach implies that each geo-domain has homogeneous properties. Deterministic 

modelling involves estimating the grade distribution the according to geological 

interpretations, the data from survey boreholes, or by constructing a model based on those 

data points. By using this model, the geological domains within a deposit are described in a 

unique manner. This kind of splitting allows us better to describe each geo-domain's traits, 

especially grade distribution. However, it does not take into account uncertainties resulting 

from establishing boundaries between geological domains. Stochastic simulations were 

developed to overcome the limitations of the conventional deterministic approach. By 

providing a probabilistic description of geological domains, this approach provides a way to 

quantify uncertainty and enhance geological control for quantitative variables of interest in 

contrast to deterministic approaches (Dubrule, 1993; Dowd, 1994; Emery and González, 

2007a, 2007b). Target variables show homogeneous behaviour inside each geological 

domain. However, the boundaries of the domains are uncertain (Dubrule, 1993; Dowd, 1994; 

Emery and González, 2007a, 2007b).  

The subject of this thesis is Sequential Indicator Simulation (SIS), the stochastic method 

widely used in most commercial software, designed to simulate categorical variables (Journel 

& Alabert, 1988; Alabert, 1987; Journel & Isaaks, 1984; Journel, 1983). The technique was 

investigated and proposed by François Alabert (Alabert, 1987) and André Journel (Journel & 

Alabert, 1990). Different authors have constantly modified SIS (Goovaerts, 1994; Deutsch et 

al., 1992; Goovaerts et al., 1997; Gómez‐Hernández & Srivastava, 1990) since it is the most 

common geostatistical tool for simulation of geological domains. This project will focus on 

enhancing the current SIS algorithm to model the non-stationary geological domains. It then 

later will investigate the modelling of ore grade, taking into account the models obtained from 

the proposed SIS algorithm.   

 

1.2 PROBLEM STATEMENT 

The variogram-based stochastic simulation algorithms such as Sequential Indicator 

Simulation (Journel & Isaaks, 1984), plurigaussian simulations (Dowd et al., 2003) and 

truncated Gaussian simulation (Galli et al., 1994) were proposed as flawless, innovative 

techniques. Robust and straightforwardness of stochastic methods were proved by 



 
 

experimental and practical evidence. Moreover, stochastic simulation techniques can easily 

incorporate secondary (soft) information to produce more accurate realizations. A substantial 

disadvantage of variogram-based geostatistical methods is that they rely on stationary 

assumptions of the deposit.  

Stationary assumptions are valid only for homogeneous regionalized variables (Matheron, 

1971). There are two recognized types of stationarity assumptions. First-order stationarity 

expects the constant mean value of a categorical variable within the domain, while second-

order stationarity supposes a constant mean and also that the observed covariance between 

random points leans on the distance between those points. The practice shows that stationary 

assumptions could be more practical. Categorical variables denoting geo-domains display 

fluctuating spatial continuity as well as fluctuating mean values. Conventional methods are 

appropriate when a geological body does not have a precise contour. Another requirement is 

a detailed variogram analysis of spatial continuity (Mizuno and Deutsch, 2022). Examples of 

such structures are highly diagenetically altered facies. Therefore conventional Sequential 

Indicator Simulation technique could be better for modelling the complex heterogeneous 

geological domains. So distinguished issues are listed below: 

 The traditional SIS algorithm improperly reproduces the compactness and spatially 

adjacent geological properties essential in simulating geological domains. 

 Traditional SIS is unsatisfactory in the case of heterogeneous geological domains and 

features displayed at a large scale.  

Generally, SIS is capable of modelling non-stationary complex geo-domains by 

acknowledging spatially varying attributes like indicator mean value. (Deutsch and Journel, 

1992; Ravenne et al., 2002; Beucher et al., 1993). Although obtaining soft data is only 

sometimes straightforward, implementing this kind of information can be a clue for modelling 

non-stationary domains. Another problem is that interpretive geo-domains produced by 

explicit and implicit modelling are deterministic. In this regard, the derived deterministic 

model must be converted to a probabilistic model. One possible solution is to calculate the 

local proportions of geological domains at the target block node using the neighbouring data 

around that location (Madani & Emery, 2015). However, the method is entirely subjective, 

and the size of the window to include the neighbourhood data needs to be adequately 

formalised (Madani & Emery, 2017). 

Limitations of conventional Sequential Indicator Simulation can be neglected by combining 

this technique with Multinomial Logistic Regression. The rationale for choosing it is that 

MLR is powerful enough to produce soft data by using only the conditioning data. In this 



 
 

way, combining two techniques will allow higher accuracy in modelling non-stationary 

geological domains. The figure below represents the prime example of non-stationary 

domains that usually takes place in copper-porphyry deposits, i.e. the investigation is 

designed to model domains in and calculate grade distribution in such copper-porphyry 

deposits. 

 

Figure 1. Cross-section of copper-porphyry deposit – prime example of non-stationary geo-

domains (Belkacim et al, 2014). 

 

1.3 PROJECT OBJECTIVES 

This thesis focuses on using multinomial logistic regression to generate secondary data (soft 

data) and combining it with a non-stationary sequential indicator simulation to model 

heterogeneous geological domains at unsampled locations by using the information available 

at borehole data (hard data). The method proposed in this research needs soft data of 

geological domains at unsampled locations (target blocks). A multinomial logistic regression 

algorithm will be used to obtain the local probability (secondary information) of each 

geological domain at sample points and target grid nodes. In a nutshell, to model the 

heterogeneous geological domains at the target grid nodes stochastically, a non-stationary 

sequential indicator simulation paradigm will be used. An actual copper deposit will be used 

to test the proposed approach. Thus, this thesis aims to accomplish following objectives: 



 
 

 Develop an algorithm for non-stationary sequential indicator simulation.  

 Build the Machine Learning model based on Multinomial Logistic Regression and 

calculate the soft data, required for the latter steps. Check and assess the performance 

of the model on dataset of synthetic and real existing copper porphyry deposit.  

 Evaluate and compare the findings with a traditional sequential indicator simulation. 

 Validate the results using different statistical and geostatistical tools. 

Besides on being just testes on several case studies, this research aims to produce actual 

copper grade inside of deposit. Thus, additional specific objective for the case study II is 

composed as:  

 Estimate the copper grade inside of each geo-domains and produce final combined 

realizations of copper distribution along all three geo-domains by incorporating the 

simulation results.  

 

1.4 PROJECT SIGNIFICANCE TO THE INDUSTRY 

Resource estimation is the central pillar in the mining industry because all further mine 

development, investment amount, and perspective of the deposit project depend on the 

model of grades estimated entire the deposit and how reliable this model is. The mining 

business gains several advantages from the effective fulfilment of this thesis:  

1) First of all, the developed algorithm allows an alternative method of combining 

modern technologies with conventional ones. It can be applied in commercial 

software programs as an enhanced alternative to the classic technique of SIS.  

2) The second reason is that accurately built ore bodies will provide detailed 

information about the deposit, and minerals will be extracted more effectively than 

they could be. It can also decrease expenses on excavation at empty or poor-graded 

areas.  

3) Additionally, the automatized machine learning algorithms can potentially helps to 

get rid of human-made errors and enhance the reliability. Also, ML can increase 

computational speed and save the time for unnecessary validation, because ML 

continuously learns at mistakes thereby preventing their repetition.  

4) Finally, Multinomial Logistic Regression is a flexible tool as well as other Machine 

Learning algorithms, meaning that ML model could be modified for narrow task. 

 



 
 

2 LITERATURE REVIEW 

The ore properties must be thoroughly examined before starting the resource estimation 

procedure. Primarily these properties are associated with spatial variability and grade 

continuity. The foremost priority in the grade estimation of a mineral deposit is obviously 

geological modelling which has to proceed before resource estimation (Sinclair & Blackwell, 

2002; Abzalov, 2016; Rossi & Deutsch, 2014). Accurately creating models of ore grades 

found in a deposit has a significant impact on the long-term planning of a mining operation 

(Maleki et al., 2021). Geological borehole database itself consist of two main types of 

variables: categorical or discrete – variable (lithology, mineralization zones, alteration, rock 

type) and continuous (mineral grade, ore grade). The process of resource estimation usually 

starts from identifying the target domains from the whole deposit area (Rossi & Deutsch, 

2014; Emery & Séguret, 2020). In other words, the deposit is divided in certain zones – sub-

domains, and then continuous variables of interest are modelled inside of each of these sub-

domains by using of univariate and multivariate geostatistical tools. The main advantage of 

this method is that prediction over modelled continuous variables is not such complicated, 

since they are considered to be stationary and homogenous (Sinclair & Blackwell, 2002; 

Moon et al., 2006; Yunsel & Ersoy, 2011; Haldar, 2013; Rossi & Deutsch, 2014). Sets of 

non-overlapping geological domains produced as a result of splitting the mineral deposit into 

smaller parts are assumed to be stationary. Since geological domains are built based on the 

data from drill holes and examination by mining geologist, they own unique properties and 

cannot demonstrate totally homogeneous behavior (Dowd, 1986). The idea of assuming grade 

variability inside each geological domain as homogeneous proved to be unviable in practice 

because covariance and mean value of categorical variables are not constant throughout the 

target geological domain. Actually, identifying of estimation domains become very 

problematic. The challenge occurs because it tooks two stages, first estimation domains have 

to be distinguished from the borehole data and then modelled at the target points. Different 

approaches can be implemented for this purpose. The characterization of estimation geo-

domains could be made by interpretation of core logging information (Soltani & Hezarkhani, 

2011; Adeli & Emery, 2017). Therefore, the geological setting of the deposit plays a key role 

in determining the categorical variable of interest. To illustrate, when it comes to copper 

porphyry deposits, the estimation domains can be defined as mineralized zones (whether 

oxide or sulfide) or types of rock (Madani et al., 2021a). Similarly, lithology can be utilized 

as an estimation domain in iron deposits (Maleki et al., 2021; Hosseini et al., 2021).  



 
 

Defining geo domains can also be achieved through grade domaining, which involves 

delineating regions of similar grade within a deposit (Emery & Ortiz, 2005; Yunsel & Ersoy, 

2011; Iliyas & Madani, 2021). This approach allows for a more detailed estimation of the 

mineral resources within a deposit and can be a useful alternative to using mineralized zones 

or rock types as estimation domains. While the method of grade domaining is relatively 

straightforward, it is important to ensure that the resulting domains align with the geological 

interpretation of the sample points. This requires careful consideration of factors such as 

lithology, alteration, and structural controls on mineralization. By validating the grade 

domains against the geological logging data, a more accurate estimation of the mineral 

resources can be achieved. It is true that these methods, including defining estimation 

domains based on mineralized zones, rock types, or grade domaining, can be labor-intensive, 

time-consuming, and subject to subjective interpretation (Fouedjio et al., 2018). In particular, 

manual interpretation of geological data can be prone to errors and inconsistencies. 

Consider the case of two geological domains with unique properties. The clear sign 

of stationary domains is the presence of “hard boundaries”, meaning that these domains have 

inimitable properties and ore content. Real cases show that usually, ore bodies have 

complicated patterns. Mixed zones and transitional zones are everyday things inside the ore 

body, so the statement of strict grade transition cannot be confirmed in practice. Since this 

concept does not take place in practical cases, geostatisticians introduced a variogram analysis 

designed to split the experimental area into two domains and serve as a "soft boundary". It is 

impossible to define geological units precisely in practice, and geological errors are 

inevitable, particularly when the geological units are intermingled in a complicated manner. 

Consequently, the potential uncertainty associated with resources and reserves may need to 

be assessed appropriately, and a lack of precision or accuracy in grade estimates may result 

(Stegman, 2001). Furthermore, the estimation cannot be repeated as a result of the subjective 

interpretation of data and setting the hard boundaries by mining geologists. Uncertainties 

associated with geological domains must be addressed because it leads to a loss of accuracy 

of the estimated resources (Stegman, 2001). However, other factors that affect the geo-

domains are ignored within the conventional algorithms, and the whole unit is considered 

stationary. Further conducted investigations also followed this concept and proved efficiency 

by conducting geostatistical analyses (such as kriging and variogram analysis) and estimating 

resources inside each geo-domain (Duke and Hanna, 2001; Sarkar et al., 1990). This method 

allows to better examine the grade concentration inside each geo-domain. However, it fails 

to account for the uncertainty in the emplacement of the boundaries of the geological units. 



 
 

To address these challenges, there has been a growing interest in developing automated and 

semi-automated methods for defining geo domains in mineral deposits. These methods often 

utilize machine learning algorithms and other computational techniques to process large 

volumes of geological data and identify patterns and relationships that may not be apparent 

to human interpreters. A various technique such as hierarchical clustering, K-means, 

Gaussian mixture and other can be utilized to perform this kind of task. The geo-domains that 

emerge as a result, exhibit a patchy and disorganized spatial arrangement. Unfortunately, 

these clusters are not practical for mining operations, as it is crucial to design contiguous, 

connected, and compact domains that facilitate efficient extraction. 

While these approaches are still being refined and validated, they have the potential to greatly 

improve the efficiency and accuracy of mineral resource estimation. However, it is important 

to ensure that the results obtained through these methods are validated against existing 

geological data and expert knowledge to ensure their reliability. To address this problem, 

various clustering algorithms have been developed that consider the spatial interdependence 

of the data, enabling the creation of viable geo-domains that can be used for efficient mine 

planning and exploitation (Oliver & Webster, 1989; Ambroise et al., 1997; Scrucca, 2005; 

Romary et al., 2012; Romary et al., 2015; Fouedjio, 2016a; Fouedjio, 2016b; Fouedjio, 2017a; 

Fouedjio, 2017b; Fouedjio et al., 2018; Martin & Boisvert, 2018; D'Urso & Vitale, 2020). 

The resulting domains do not are compact and spatially connected, but at the same time they 

produce non-stationary geo-domains, that exhibit significant heterogeneity across the deposit. 

Therefore, implementation of advanced geostatistical interpretation tools required in order to 

produce geo-domains with proper configuration. The categorization of methods for this 

purpose is possible in two ways - deterministic and stochastic approaches. Deterministic 

methods can only anticipate a solitary geo-domain at untested locations, with no ability to 

quantify the uncertainty. On the other hand, the stochastic geostatistical techniques hold 

particular interest in this regard.  

 The most widely used method among others is Sequential Indicator Simulation (SIS), 

proposed by Journel and Alabert, 1987; Journel & Alabert, 1990. Nevertheless, SIS is not 

efficient in case of heterogeneous geo-domains, that exhibit large-scale geological 

characteristics. Consequently, conventional sequential indicator simulation may not be 

adequate for reproducing the desired compactness and spatial contiguity of geological 

features in modelling geo-domains. This is due to the fact that conventional sequential 

indicator simulation relies on the stationary property of the random function model and only 

utilizes the variogram as two-point statistics. In situations where geo-domains possess 



 
 

complex characteristics, one option is to employ secondary information (Deutsch, 2006) to 

enhance the modelling process. 

The present study introduces a novel methodology that integrates the multinomial logistic 

regression model with non-stationary sequential indicator simulation to generate secondary 

data for modelling heterogeneous geo-domains. The efficacy of this approach is demonstrated 

by applying it to a real copper deposit. The methodology involves employing a geo-clustering 

technique to characterize the geo-domains at sample points, followed by utilizing multinomial 

logistic regression to produce the local probability (secondary information) of each geo-

domain at sample points and target grid nodes. Finally, a non-stationary sequential indicator 

simulation paradigm is utilized to stochastically model the heterogeneous geo-domains at 

target grid nodes. Therefore, this thesis works aims following: 

 To present the theories of multinomial logistic regression, conventional and non-

stationary sequential indicator simulation;  

 To validate the proposed algorithm by applying it to a copper porphyry deposit; 

 To compare the outcomes with those of conventional sequential indicator 

simulation and evaluate them using various criteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3 METHODOLOGY 

3.1 HIERARCHICAL CASCADE SIMULATION 

The soft information in the form of probability maps will be implemented in geological 

control in the resource estimation stage. Since the ultimate goal of this thesis work is to 

estimate ore grade by incorporating soft information obtained as a result of Logistic 

Regression prediction over the target points, the total copper grade has to be estimated inside 

of each geological domain by the probability of occurrence of the corresponding geological 

domain.  

To estimate resources in copper deposits, the initial phase usually involves separately 

analyzing the variogram of copper grades in each geological domain. Even though the 

calculation of each sample variogram is based on a portion of the total available data (only 

those linked to the geological domain being studied), this method enables the capture of 

structural patterns specific to each lithotype, allowing the modelling of grade continuity in 

association with the deposit's lithology. An example of this is that the anisotropy may differ 

among lithotypes. 

The next stage involves creating ore grade models pertaining to a specific geological 

domain. To achieve this, kriging (using both indicator and ordinary methods) can be applied 

to model the grade within the geological domain being considered, along with the 

corresponding grade variogram as input. The outcome is a series of grade models, which can 

then be combined with probability maps of each geological domain. This combination allows 

for defining the ultimate grade model for each location, as shown in the given expression 

(Emery, & Gonzalez, 2007):  

𝐺𝑟𝑎𝑑𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  ∑𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

3

𝑘=1

(𝑘𝑡ℎ𝑑𝑜𝑚𝑎𝑖𝑛) 𝑥 𝐺𝑟𝑎𝑑𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑘𝑡ℎ𝑑𝑜𝑚𝑎𝑖𝑛)   
 

(1) 

This equation describes the methodology called Hierarchical Cascade Technique in 

the resource estimation paradigm. The total copper grade obtained by this method will likely 

show better estimation results compared to the one that neglects the influence of geological 

domains. 

The conventional way of assessing resources involves creating a model based on 

specific rock types and using kriging to estimate grades. This method assumes that the 

probability of a particular rock type being present is either 1 or 0, meaning there is no 

uncertainty. An example of this approach is illustrated in the figure, where the most probable 

rock type is used to define the boundaries. The new proposed methodology implies that grades 



 
 

associated with a certain rock type at a specific location are adjusted using a probability 

function that considers the uncertainty of whether that rock type is present or not. 

 

Figure 2. The deterministic lithotype modelling method involves selecting the most likely 

rock type at each location (Emery & Gonzalez, 2007). 

However, in the proposed methodology, the estimated grades for a particular type of 

rock at a given location are adjusted based on a probability function that accounts for the 

uncertainty surrounding the presence or absence of that type of rock. Figure 3 presents a 

comparison between the map of estimated grades and the map generated by deterministic 

lithotype modelling.  



 
 

 

Figure 3. Illustration of the models of copper grade. Obtained with (a), by deterministic and 

(b), by probabilistic lithotype modelling (Emery & Gonzalez, 2007). 

The one limitation of the Probabilistic modelling is producing artificial results because it 

assumes definite boundaries between domains, creating the appearance of a clear break in 

copper grade distribution that may not exist or may exist elsewhere. Additionally, 

deterministic lithotype modelling is heavily dependent on the mining geologist's 

interpretation and may result in significant variations in the grade model based on boundary 

contouring. In contrast, probabilistic geo-domain modelling is preferable as it avoids grade 

discontinuities in locations where the existence of geological boundaries is uncertain. This 

methodology incorporates two essential aspects of mineral resource evaluation (Emery & 

Gonzalez, 2007): 1) it considers the uncertainty of the ore body's geology through probability 

maps instead of a subjective interpretation of geological modelling, and 2) it accounts for the 

spatial continuity of copper grades within each geological unit using a specific variogram 



 
 

model for each lithotype, allowing for a fair characterization of the copper grade distribution 

in space. 

 

3.2  MULTINOMIAL LOGISTIC REGRESSION 

Correlation between target and predictor variables can be determined by using statistical 

methods such as Regression Analysis. Regression Analysis is an advanced technique that can 

identify the variation of target variables in relation to the specific independent variables, while 

other predictors remain fixed (Pearson, 1930; Galton, 1984; Allen, 1997). This supervised 

learning algorithm is designed for forecasting, prediction, and time-series modelling. The 

graph of regression analysis represents a best-line that goes through all points in the dataset. 

Spacing between points and best-line shows the strengths of the captured relationship. The 

general classification of Regression includes the following techniques (Pearson, 1930):  

 Linear Regression 

 Logistic Regression 

 Poisson’s Regression 

Several Machine Learning algorithms were compared with each other by various criteria as: 

speed of learning, number of required training samples, training speed, accuracy and 

flexibility – number of available parameters for tuning. Logistic Regression showed the best 

performance among other ML algorithms by almost all parameters. Obviously, this algorithm 

is the most suitable for the classification purposes. Therefore, Logistic Regression is the 

ultimate tool for providing an accurate probability measurement of each point along the entire 

area of interest. Figure 4 clearly illustrates the superiority of LR compared with other 

approaches.  

The ambiguity of the problem is that usually the deposit contains several geological domains. 

However, classical Logistic Regression is limited to handling binary categorical variables, 

resulting in only two outcomes: zero/one or success/failure. The way to circumvent and make 

Logistic Regression applicable for modelling non-stationary geo-domains is to use modified 

version of Logistic Regression, so-called “Multinomial Logistic Regression”. It is the 

extension of classical Logistic Regression, a supervised ML algorithm, designed to deal with 

multiclass classification problems (Long, 1997; Long & Freese, 2006).  



 
 

 

Figure 4. Comparison diagram of different ML algorithms. 

In multinomial logistic regression, a categorical variable 𝑌 with different possible outcomes 

𝑁 is part of the sample points 𝛽 = 1…τ (τ is the total number of observations). To calculate 

multinomial logistic regression for each geo-, a reference categorical variable N is chosen, 

and other variables are processed through the prediction process based on initial data. 

 

{
 
 

 
 𝐿𝑛

𝜇(𝑌𝛽 = 1)

𝜇(𝑌𝛽 = 𝑁)
= 𝜌1 + 𝜌11𝐾1 + 𝜌12𝐾2 +⋯+ 𝜌1𝑝𝐾𝑝

𝐿𝑛 =
𝜇(𝑌𝛽 = 2)

𝜇(𝑌𝛽 = 𝑁)
= 𝜌2 + 𝜌21𝐾1 + 𝜌22𝐾2 +⋯+ 𝜌2𝑝𝐾𝑝

 

… 

𝐿𝑛 =
𝜇(𝑌𝛽 = 𝑁 − 1)

𝜇(𝑌𝛽 = 𝑁)
= 𝜌𝑁−1 + 𝜌(𝑁−1)1𝐾1 + 𝜌(𝑁−1)2𝐾2 +⋯+ 𝜌(𝑁−1)𝑝𝐾𝑝 

 

 

 

 

 

(2) 

In the formula above  𝜇(𝑌𝛽 = 1) stands for the probability corresponding to the certain 

category, 𝜌1,2,…𝑝 is number of independent variables. Using of maximum likelihood technique 

will allow to solve this equation and determine the regression coefficient - 𝜌𝑁𝑝. To obtain 

regression coefficient associated with the independent variables 𝑁 – number of category and 

the 𝜌 independent variables, all equations are solved together. Once the regression 

coefficients are estimated, they can be used to predict the value of the dependent variable 

based on the values of the independent variables. 

Assuming the nominal dependent model and the condition that the final category has zero 

coefficients, the probability of being in each category at any given sample point 𝛽 and the 

probability of belonging to the 𝑁 category can be expressed by the formulas below. These 
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formulas take into account the values of the independent variables and the estimated 

regression coefficients associated with each category. The probability of falling into a 

particular category represents the likelihood of observing that specific outcome given the 

values of the independent variables.  

 
𝜇(𝑌𝛽 = 𝑛) =

𝑒𝜌
𝑛+∑ 𝜌𝑛𝑙𝐾𝑙

𝑝
𝑙=1

1 + ∑ 𝑒𝜌𝑛+∑ 𝜌𝑛𝑙𝐾𝑙
𝑝
𝑙=1𝑁−1

𝑛=1

, 𝑛 = 1,…𝑁 − 1 
 

(3) 

The similar formula works for the 𝑁𝑡ℎ category:  

 
𝜇(𝑌𝛽 = 𝑁) =

𝑒𝜌
𝑛+∑ 𝜌𝑛𝑙𝐾𝑙

𝑝
𝑙=1

1 + ∑ 𝑒𝜌𝑛+∑ 𝜌𝑛𝑙𝐾𝑙
𝑝
𝑙=1𝑁−1

𝑛=1

, 𝑛 = 1,…𝑁 − 1 
 

(4) 

It is also important to estimate the probability of presence inside of each category and inside 

of each target grid node. Following formula is designed to execute this estimation:  

 
𝜇(𝑌∗ = 𝑛) =

𝑒𝜌
𝑛+∑ 𝜌𝑛𝑙𝐾𝑙

𝑝
𝑙=1

1 + ∑ 𝑒𝜌𝑛+∑ 𝜌𝑛𝑙𝐾𝑙
𝑝
𝑙=1𝑁−1

𝑛=1

, 𝑛 = 1,…𝑁 − 1 
 

(5) 

The same principle also for the 𝑁𝑡ℎ category: 

 
𝜇(𝑌∗ = 𝑁) =

𝑒𝜌
𝑛+∑ 𝜌𝑛𝑙𝐾𝑙

𝑝
𝑙=1

1 + ∑ 𝑒𝜌𝑛+∑ 𝜌𝑛𝑙𝐾𝑙
𝑝
𝑙=1𝑁−1

𝑛=1

, 𝑛 = 1,…𝑁 − 1 
 

(6) 

 

3.3  SEQUENTIAL INDICATOR SIMULATION 

The main tool used in this thesis work is a stochastic simulation method known as Sequential 

Indicator Simulation or SIS. Sequential Indicator Simulation (SIS) is aimed at providing a 

statistical framework for modelling geological systems, specifically SIS aimed to model a 

various category. Generally, SIS is an extension of sequential simulation techniques. The 

subject of interest in this research is an algorithm proposed by Alabert and Journel (Alabert, 

1987; Journel & Alabert, 1990) called “sequential indicator simulation”. In this passage, the 

term "categories" refers to the geo-clusters or geo-domains that are created through 

unsupervised clustering techniques and are dependent on spatial factors. These clusters are 

completely separate from each other at all sampling points if they are identified in a 

deterministic manner. Once each sampling point is assigned to its corresponding geo-cluster 

in a deterministic way, the next step involves using conventional sequential indicator 

simulation to stochastically model the geo-clusters at unsampled locations, or target grid 

nodes. To do this, the geo-clusters (which act as hard conditioning data) are transformed into 

a matrix containing 𝑁 columns of hard indicator data. The decomposition principle of 



 
 

multivariate spatial distribution is a fundamental principle on which SIS relies. 

Decomposition creates a sequence of conditional distributions. The arbitrary order helps to 

avoid the production of artefacts. In this methodology, Indicator Kriging is utilized to estimate 

conditional distribution during the whole process at each step. A target category is estimated 

in each grid node using a random number in boundaries of 0 and 1. The SIS procedure 

continues till all target nodes are simulated. The following figure describes the SIS procedure 

in detail. 

𝐼𝑛𝑑(𝐾; 𝑛) =  {
1, 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑔𝑒𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝑛 𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑠 𝑎𝑡 𝐾  

0,                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 𝑛 = 1,…𝑁 − 1 

 

(7) 

 

Figure 5. A synopsis of sequential indicator simulation (Mizuno & Deutsch, 2022). 

Before starting the sequential simulation, conditional and random cumulative functions have 

to determine the following:  

 

{
 
 

 
 

𝑃𝑟𝑜𝑏 {𝑍(𝑥1)  <  𝑧1 | (𝑛)}

𝑃𝑟𝑜𝑏 {𝑍(𝑥2)  <  𝑧2 | (𝑛 + 1)}

𝑃𝑟𝑜𝑏 {𝑍(𝑥3)  <   𝑧3 | (𝑛 + 2)}
…

𝑃𝑟𝑜𝑏 {𝑍(𝑥𝑁) <  𝑧𝑁 | (𝑛 + 𝑁 − 1)}

 

 

 

 

(8) 

The main limitation of implementing sequential indicator methods in confirmed cases is the 

need for more knowledge of these functions. The new proposal by Journel and Alabert (1989) 

involved geostatistics in identifying unknown functions in spatial processes. Multi-Gaussian 

kriging is proposed for sequential Gaussian simulation (SGS) and Indicator Kriging for 

sequential indicator simulation (SIS). Originally, SIS was designed for the simulation of 

binary structures. SIS for multi-phase structures can be done in the following way: 

1) Choose a random path that occupies all target nodes of the grid 

2) Estimate the local probability of a point 𝑋  by the following formula: 



 
 

 𝐹(𝑁)  =  ∑ 𝜆𝛼𝐼𝑘(𝑋𝛼)𝛼  
 

(9) 

3) Pick a target grid node x0. Estimate the probability of belonging the target grid node 

𝑥0 to the phases (𝑋𝑘, 𝑘 = 1,…𝐾): 

 [𝑝𝑟𝑜𝑏{𝑥0  ∈  𝑋𝑘}]
∗  =  [𝐼𝑘, 𝑥0)]

∗ (10) 

Implementing a single structural model (global multi - phase model, for instance) assures that 

the total probability of [𝐼𝑘, 𝑥0)]
∗ equal to one. Otherwise, it requires to normalize the sum of 

probabilities or correct it by another way.  

 
∑ [𝑝𝑟𝑜𝑏{𝑥0  ∈  𝑋𝑘}]

∗
𝐾

𝑘=1
 =  1 

 

(11) 

The estimation of probability in target grid node is given by:  

 
[𝐼𝑘(𝑥0)]

∗  =   
[𝐼𝑘(𝑥0)]

∗

∑ [𝐼𝑘(𝑥0)]∗
𝐾
𝑘=1

 
 

(12) 

4) Create an additional variable [𝐽𝑖(𝑥0)] – an aggregate sum of [𝐼𝑘(𝑥0)]
∗: 

 
𝐽𝑖(𝑥0)  =  ∑ [𝐼𝑖(𝑥0)]

∗
𝑖

𝑗=1
 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1, 𝐾 

 

(13) 

A Monte Carlo simulation produces a random number with uniform distribution, which lies 

between zero and one. Figure 7 demonstrates all aspects of the Monte Carlo simulation. The 

final simulated value equals:  

 
𝐼𝑆𝑖(𝑥0)  =   {

1 𝑖𝑓 𝐽𝑖−1(𝑥0)  <  𝑝 ≤  𝐽𝑖(𝑥0)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

(14) 

5) The next simulating target grid node will use 𝐼𝑆𝑖(𝑥0) as a conditioning value. The 

process will continue until all target grid nodes have been reached.  

 



 
 

 

Figure 6. Illustration of Monte Carlo simulation for categorical variables using a pseudo-

cumulative histogram. (de Almeida, 2010). 

Different authors have mentioned the effectiveness of the SIS technique. The technique is 

versatile and straightforward. Also, SIS shows itself as a very flexible technique, especially 

in comparison with other stochastic simulation techniques. Nonetheless, some significant 

disadvantages have been highlighted, mainly due to the increase in conditioning data, which 

has a significant impact on  [𝐼𝑘(𝑥0)]
∗estimation. The estimation becomes problematic and 

inaccurate with increasing the amount of conditioning data. The produced outputs will 

significantly differ from the theoretical continuity model. That is why it is necessary to control 

the neighboring conditioning samples set chosen during the simulation. To solve this obstacle, 

Journel (1989) proposed to select n neighboring samples of the target x0 randomly. This 

allows for extending the range of cover in neighboring samples. It is also challenging to 

reproduce the proportions of each phase, especially those with low proportions, which is one 

of the primary goals of the simulation.  

Obviously, the main limitation initiated this thesis work is that SIS cannot work with non-

stationary domains. When dealing with heterogeneous geo-domains, such as geo-clusters 

with large-scale geological features, conventional sequential indicator simulation may not be 

the most effective method. The produced realizations appear patchy and unstructured. The 

simulated categories can be observed all over the deposit (pretending homogeneity), making 

this method extremely unreliable. This is because conventional SIS struggles to accurately 

replicate the compact and contiguous geological features that are desired in geo-cluster 

modelling. The issue arises from the fact that conventional Sequential Indicator Simulation 



 
 

relies on the stationary nature of random function models and only uses the variogram as a 

two-point statistic. To address this problem, utilizing secondary information (Deutsch, 2006) 

could be a viable option when dealing with such complex geo-cluster characteristics. To 

circumvent this problem, using soft data in the SIS algorithm can be of great help as this 

information instruct the algorithm to produce the non-stationary geological domains. 

Required soft data can be obtained from geophysical data and geological interpretation 

(Deutsch, 2006).  

 

3.4  SEQUENTIAL INDICATOR SIMULATION USING LOCAL 

MEAN (SIS_LM); SISIM PROGRAM  

This thesis work required using of additional enhanced computational program for producing 

final Sequential Indicator Simulation. This program is written for using by Matlab and was 

implemented for both simulation cases – without using the soft data and with incorporating 

the soft data results from the MLR. The program utilized for this thesis work is somehow 

similar to the BlockSIS program, proposed by Deutsch in 2006. The program requires the 

variogram parameters of indicators and residuals as input data. This variogram models are 

mainly built and fitted manually in Isatis.neo. Picture below shows the parameters of the 

program:  



 
 

 

Figure 7. SISIM Program parameters. 

The first line contains the information of file with conditioning data. In this study, 

conditioning data contains spatial parameters of target grid node and category. Lines 2 and 3 

stand for the number of geo-clusters and columns with coordinates specification. Next line is 

responsible for the value of global proportion of each geo-domain (category). This value 

shows how much certain category weights. The lines below are responsible for location of 

simulation output, variogram parameters including number of structures and nugget effect, 

type of kriging and other important parameters. The crucial line here is the line responsible 

for type of SIS. The program will initiate traditional simulation, if coded by 1 and non-

stationary, if coded by 3. Actually the option standing by the number 3 – non-stationary SIS 

with local mean probability is the proposed simulation method itself. 

 



 
 

3.5  PROPOSED SEQUENTIAL INDICATOR SIMULATION 

The proposed technique being suggested for the simulation of spatiotemporal geospatial data 

is known as non-stationary sequential indicator simulation. Geostatistics is the field of study 

that deals with the modelling of spatial phenomena. Non-stationary sequential indicator 

simulation is a technique used in geostatistics for simulating geospatial data that exhibit 

changes in their statistical properties over time and space. 

In simpler terms, this technique can model complex geospatial data with varying statistical 

properties such as trends, changes in variance, or other structures that are difficult to model 

using traditional geostatistical methods. The simulation process involves the use of various 

statistical models and techniques, including geostatistical models, time series models, or 

machine learning methods, to generate realistic geospatial data for research and testing 

purposes. 

The main objective of non-stationary sequential indicator simulation is to create simulations 

that reflect the dynamic and complex nature of geospatial data in a realistic and meaningful 

manner. This technique provides a trustworthy method for modelling categorical data with 

varying properties. In this method, non-stationary simple kriging is combined with residuals 

derived from the mean probabilities that vary locally (Deutsch, 2006). Non-stationary 

sequential indicator simulation offers a reliable algorithm to model the categorical data with 

heterogeneous characteristics. This algorithm uses a non-stationary simple kriging with 

residuals from the locally varying mean probabilities. It calculates the weights in the same 

way as stationary simple kriging, with locally varying mean values at every location. 

 
𝑖𝐿𝑀
∗ (𝑢; 𝑘) =  𝑝𝑘(𝑢) +∑ 𝜆𝛼[𝐼(𝑢; 𝑧𝑘) − 𝑝𝑘(𝑢𝛼)

𝑛

𝛼=1

] 
 

(15) 

To calculate the residuals 𝐈(𝐮; 𝐳𝐤) − 𝐩𝐤(𝐮𝛂) in this formula, a regression function is used on 

the conditioning data points. To obtain these residuals, a regression function must first be 

fitted to the sample points, which can predict the values at the target location to find 𝐩𝐤(𝐮). 

Since the spatial variation of each category depends on the geographic location of the sample 

points in heterogeneous geo-clusters, a regression function can be created using the 

coordinates as independent variables and the category as the dependent variable. However, 

linear regression is not suitable in this scenario due to the dependent variable being 

represented by integers. To analyze the residuals at the sample points, a variogram analysis 

should be conducted. 



 
 

As 𝐩𝐤(𝐮) and 𝐩𝐤(𝐮𝛂) in the equation represent estimated probabilities at the conditioning 

points and locally varying mean probabilities at the target grid nodes, a flexible regression 

function that can generate these local probabilities is required in the algorithm. Multinomial 

Logistic Regression (MLR) is proposed in this study to estimate these probabilities over the 

sample points and target grids. Once the probability 𝐢𝐋𝐌
∗ (𝐮; 𝐤) is estimated at the target 

location, the rest of the process is similar to traditional sequential indicator simulation. The 

proposed approach is referred to as "SIS-LM," while the traditional approach is referred to 

as "SIS-Trad." 

 

WORKFLOW  

The entire process of modelling non-stationary geological domains described in following 

steps:  

 Firstly, define geo-domain or category in area of interest by using sample data 

locations. 

 Identify main general trends of the categorical variables.  

 Apply Multinomial Logistic Regression for each geo-domain. Derive estimated 

probabilities at the sample points.  

 By using obtained probabilities and predicted values by MLR, determine the 

residuals and then use these residuals to deduce variogram models. 

 Determine the locally varying mean probability across the target grid nodes for each 

geo-cluster to obtain the trend component by utilizing the fitted multinomial logistic 

regression models. 

 Conduct the sequential indicator simulation using conventional and proposed 

sequential indicator simulation and produce realizations for comparison. 

 

 

 

 

 

 

 



 
 

4 RESULTS CASE STUDY 1 

4.1  OVERVIEW OF CASE STUDY 

The efficacy of the proposed sequential indicator simulation technique utilizing local 

probability means was evaluated through a thorough analysis of a synthetic dataset. The 

synthetic map was generated by means of Plurigaussian simulation, as elaborated by Madani 

(2021), with anisotropy parameters that maximized continuity in the North direction (as 

illustrated in Figure 8. The resulting reference map exhibited a pronounced heterogeneity, 

with distinct geo-domains clearly demarcated by color coding. Specifically, geo-domain 1 

(represented by the blue color) was observed on the left side of the grid, geo-domain 2 

(denoted by the green color) occupied the central region, while geo-domain 3 (indicated by 

the red color) was predominantly located on the right-hand side. 

 

Figure 8. The reference map produced with illustration of main categories: blue – geo-

domain 1, green – geo-domain 2, and red – geo-domain 3. 



 
 

In this particular case study, a random sampling technique was employed to select 50 and 100 

sample points from a dataset. These samples were then used as conditioning data for the 

simulation algorithms. When it comes to classification problems with more than two 

categories, the Multinomial Logistic Regression technique proves to be a suitable solution. 

The primary objective of this case study is to apply the Multinomial Logistic Regression 

technique on the selected data samples to create a predictive model. By utilizing this 

technique, it is expected that a high degree of accuracy can be achieved in the classification 

task. The main aims of this case study are:  

 Build a ML model base on Multinomial Logistic Regression. Run the algorithm and 

obtain classification report to understand the performance rate. 

 Retrieve probability values for the whole dataset and calculate residuals, which will 

used further as a soft data for Sequential Indicator Simulation. 

 Run conventional SIS and proposed SIS. 

 Compare results of both methods, choose the best and make conclusions. 

 

4.2  EDA 

A synthetic dataset contains 90,000 values with dimension coordinates and categorical 

variable responsible for the particular value’s geo-domain. Before building a ML model, the 

proper dataset has to be prepared. 50 and 100 sample points were chosen randomly and 

divided in proportion of 20% test values and the rest 80% train values. The values of 

coordinates – X, Y, Z were chosen as a feature variable and geo-domain as a target variable. 

In simple terms, MLR predicts the target variable – geo-domain by using feature variable – 

the coordinates of sample points. The ML algorithm was built on the base of 100 and 50 

values. Then this model was used to make prediction over the whole dataset consisting of 

90,000 values. The procedure was repeated several times using different number random 

values to evaluate the quality of the ML model. The classification report indicates that the 

estimated accuracy of the MLR model is 82%. Efforts to improve accuracy through parameter 

tuning and changing the test/train ratio did not have a significant impact on the overall 

accuracy in either case.  

The next step is the moderation of the predicted dataset. Initial Categorical values were 

converted into indicators. It is important to note that before performing the SIS-lm, the data 

must be coded into proper categories (0 or 1), and the residuals for each geo-domain must be 

calculated:  



 
 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (16) 

 

4.3  SEQUENTIAL INDICATOR SIMULATION 

Sequential Indicator simulation for this study was performed in Matlab software. As 

mentioned before, this study aims to perform SIS twice with the conventional and proposed 

technique. SISIM program was implemented for both cases.  

To provide unbiased results for this study, 100 realizations were generated using both the 

proposed SIS_LM - with local means and the traditional SIS_Trad. The target block grid 

dimension was set to 300m x 300m x 1m, forming in total 90,000 nodes, exactly the same as 

the reference map. As expected, the results from SIS_Trad were unstructured and patchy, 

both for 50 points and 100 points (Figures 9 and 10). The boundaries of geo-domains does 

not match with reference map, blocks appears in chaotic manner. Overall performance of 

SIS_Trad is very poor and unsatisfactorily.   

At the same time SIS_LM shows an excellent result almost similar to the reference map. 

Results of Proposed Methodology devoid of shortcomings of conventional technique. 

Boundaries between geo-domains are solid, structured and corresponds to the reference map. 

To illustrate the results, realization number 20 was randomly selected for 50 points and 100 

points (Figures 9 and 10). 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of realizations obtained by different techniques for 50 points; Left – 

Traditional SIS, Middle – Proposed SIS, Right – Reference map; blue: geo-domain 1, green: 

geo-domain 2, and red: geo-domain 3 (Amirzhan & Madani, 2022). 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Comparison of realizations obtained by different techniques for 100 points; Left 

– Traditional SIS, Middle – Proposed SIS, Right – Reference map; blue: geo-domain 1, 

green: geo-domain 2, and red: geo-domain 3 (Amirzhan & Madani, 2022). 

The significance of geological uncertainty in evaluating orebodies is emphasized, as it can 

impact the boundaries layout (Emery, 2007). This uncertainty can be represented by 

probabilistically modelling each categorical domain through conditional simulation. 

Probability maps are generated at a local scale to measure the uncertainty, which is calculated 



 
 

by determining the frequency of each rock unit's occurrence for each block in 100 conditional 

realizations. These maps reveal the risk of encountering a mineralized zone that differs from 

others. The regions with minimal uncertainty are either those with a high probability of a 

specific rock unit, indicating a low risk of not finding it, or those with a very low probability, 

indicating a high degree of certainty of not finding it. On the other hand, other regions, 

depicted in light blue, green, or yellow, are more uncertain. Figures 11 and 12 demonstrates 

that the proposed approach has produced more robust certainty regarding the presence of 

categories, especially in areas where the conditioning data may be limited.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 
 

Figure 11. Comparison of probability maps of each geo-domain obtained by different 

techniques for 50 points: Top – Traditional SIS for geo-clusters 1, 2 and 3; Bottom – 

Proposed SIS for geo-clusters 1, 2 and 3 (Amirzhan & Madani, 2022). 

 

 

 

 

 

 

  

 

  

  

 

 

 

 

 

 

 

 

Figure 12. Comparison of probability maps of each geo-domain obtained by different 

techniques for 100 points; Top – Traditional SIS for geo-clusters 1, 2 and 3; Bottom – 

Proposed SIS for geo-clusters 1, 2 and 3 (Amirzhan & Madani, 2022). 



 
 

To validate the results of the simulations, it is necessary to calculate the frequency of each 

geo-domain in the simulated data. This measure of global uncertainty provides a valuable 

way to compare the properties of the simulated data with the experimental data. Additionally, 

it shows how well each geo-domain is represented in the simulations. Table 1 presents the 

average global proportions of each geo-domain for the 100 realizations produced by the 

proposed approaches. Although there is a slight difference in the global proportions of each 

geo-domain between the two methods, both methods produce the global proportions 

accurately. 

Table 1 - comparison of global proportions reproduced by Traditional SIS and Proposed SIS 

with an original proportion (Amirzhan & Madani, 2022). 

 Geo-Domain 1 Geo-Domain 2 Geo-Domain 3 

Original proportion 

(Reference map) 
0.296  0.401 0.302 

SIS_LM (50 points) 0.318 0.411 0.270 

SIS_Trad (50 points) 0.297 0.422 0.279 

SIS_LM (100 points) 0.324 0.373 0.301 

SIS_Trad (100 points) 0.303 0.342 0.354 

 

Another approach to assess uncertainty is to determine the relative error (RE) between the 

estimated proportions and the actual proportions. Table 2 compares the RE of traditional SIS 

and SIS with local mean for 50 and 100 points. It can be observed that the proposed 

methodology produced Relative Error significantly lower than conventional technique. 

Overall results prove effectiveness of proposed methodology.  

Table 2 - comparison of relative errors evaluated by Traditional SIS and Proposed SIS with 

original proportion (Amirzhan & Madani, 2022). 

 Geo-Domain 1 Geo-Domain 2 Geo-Domain 3 Sum of errors 

SIS_LM (50 points) 0.005 0.025 -0.106 -0.006 

SIS_Trad (50 points) 0.006 0.052 -0.076 -0.016 



 
 

SIS_LM (100 points) 0.096 -0.06 -0.004 0.024 

SIS_Trad (100 points) 0.024 -0.147 0.171 0.048 

 

Another validation method used for this case study is comparison of Global Proportions for 

each method. Global Proportions of each geo-domains were calculated over the realizations 

for each case separately. Purpose of this manipulations is checking the reproducibility of 

Global Proportions over SIS_Trad and SIS_LM. In a nutshell, the Global Proportion 

histogram of each geo-domains were plotted according to values of these Global Proportions, 

calculated over all three geo-domains. After that original (reference) Global Proportion was 

superimposed on mean Global Proportion of each approach – SIS_Trad and SIS_LM. 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑜 − 𝑑𝑜𝑚𝑎𝑖𝑛 =  
𝑛𝑢𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠
 

 

(17) 

 

 

Figure 13. Comparison of global proportions of reference map, conventional SIS and 

proposed SIS (output from Matlab). 

As it can be seen from the histograms, proposed SIS has the value of Global Proportion 

almost the same reference’s. Traditional SIS failed in reproduction of Global Proportions, 

showing a huge deviation.  

Summarizing all of the above, Proposed SIS showed the way better results than Traditional 

SIS. Realizations visually showed the complete incapacity of SIS_Trad in case of modelling 

Proposed SIS 

Reference 

Traditional SIS 



 
 

of non-stationary geo-domains. Two steps of validation again demonstrated the superiority 

of Proposed SIS under the Traditional SIS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5 CASE STUDY 2 

5.1  GEOLOGICAL SETTING  

A real dataset copper-porphyry deposit was used as a source of information for executing the 

proposed algorithm. Detailed information of location, name and other geological parameters 

cannot be disclosed due to the privacy policy. The idea is to model the clustering variable (as 

it is identified as the estimation geo-domain in this deposit) and then model the copper grade 

inside of each geo-domain. In fact, this is the ultimate goal. However, before starting the 

modelling process, firstly need to do an exploratory data analysis for the target variable, 

copper.  

 

5.2  EDA 

The dataset pertains to a copper-porphyry drilling campaign with 67 boreholes arranged in a 

semi-regular pattern. The dataset of the case study shows a complete isotropic sampling 

pattern. This means that all variables of interest within the study area are identified and 

located at the exact sample coordinates. The primary continuous variables reported from 

borehole assaying were Cu (ppm), Mo (ppm) and four categorical variables (Clustering, 

Alteration, Rock Type, and Mineralization zones). To maintain confidentiality, the 

continuous variables were scaled, and local coordinates were mapped. The deposit is 

characterized by two categorical variables that consist of eleven mineralization zones, 

seventeen alteration types, and ten rock types.  



 
 

 

Figure 14. Visualization of sample points (boreholes) in planar view with Cu concentration. 

The general overview of the dataset shows that it consists of three main geo-domains with 

high, medium and low coper concentrations. The mineralization zones recognized through 

core logging include UNK, hypogene (HYP), CLS, supergene hypogene (SUP-HYP), 

oxidized (OXI), supergene (SUP), leached-hypogene (LEA-HYP), oxidized-supergene(OXI-

SUP), leached (LEA), leached-oxidized (LEA-OXI), leached supergene (LEA-SUP); The 

seventeen alteration types are phyllic (PHY), pyritic (PYR), propylitic (PRP), CAL, BLE, 

limestone (LIM), siliciclastic (SLC), NON, UNA, CLS, argillic (ARG), potassic (POT), 

HYD, sericitic (SER), and UNK, while the rock types include DAC, ALL, TON, LTT, tuffs 

(TUF), diorite (DIO-D), andesite (ANS), quartz diorite (QDI), CLS, diorite (DIO).  

 

 

 

 

 

 

 

 



 
 

 

Figure 15. Visualization of geo-domains in planar view. 

One of the initial steps in exploratory data analysis is to decrease the number of categories in 

Alteration, Rock Type, and Mineralization zones. This procedure is required since there is a 

numerous alterations and rock types. The aim is to decrease this number as much as possible 

and obtain 3-4 target categories, removing outliers and merge them. This procedure allows to 

calculate the associations, that will show the strength of connection between continuous and 

categorical variables. The boxplot is a best tool for performing this task since it visually shows 

the median value that helps to combine different alterations, rock types and mineralization 

zones. Whole procedure was done by using Isatis.neo.  

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

Figure 16. Initial (left) and newly formed Alterations (right). 

The Figure 16 shows the variety of Alterations and final combined Alterations. The grouping 

of alterations was based on the principle of combining two alterations with a similar median 

value. Thus, 3 alterations were extracted from the variety of alterations for the convenience 

of further calculation of Associations.  

 

Table 3 - The content of each newly formed Alterations. 

Medium Grade v1 == 'PHY' or v1 == 'PYR' 

Low grade v1 == 'PRP' or v1 == 'CAL' or v1 == 'BLE' 

High Grade 

v1 == 'LIM' or v1 == 'SLC' or v1 == 'POT' or v1 == 'NON' or v1 

== 'UNA' or v1 == '_' or v1 == 'CLS' or v1 == 'ARG' or v1 == 

'HYD' or v1 == 'SER' or v1 == 'UNK' 

 

 

The same procedure was implemented for Rock Type and Mineralization Zones. The boxplots 

are plotted between Cu grade – continuous variable and Rock Type/Mineralization Zones – 

categorical variables. Boxplot shows the copper concentration inside of each target 

categorical variables and copper grade in combined Rock Type/Mineralization Zones 



 
 

Figure 17. Initial (left) and combined Rock Type (right). 

respectively. In a nutshell, different rock types and mineralization zones were combined 

according to their median values. Figures below stands for the explanation of procedure done.   

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

Table 4 - The content of each newly formed Rock Type. 

1st  v1 == 'DAC' or v1 == 'ALL' or v1 == 'TON' 

2nd v1 == 'LTT' or v1 == 'TUF' or v1 == 'DIO_D' 

3rd v1 == 'ANS' or v1=='QDI' or v1 == 'CLS' or v1 == 'DIO' 

 



 
 

Figure 18. Initial (left) and combined Mineralization Zones (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 - The content of each newly formed Mineralization Zones. 

1st v1 == 'UNK' or v1 == 'HYP' or v1 == 'CLS'  or v1 == 'SUP-HYP' or v1 == 'OXI' or 

v1 == 'SUP' or v1 == 'LEA-HYP' 

2nd v1 == 'OXI-SUP' 

3rd  v1 == 'LEA' or v1 == 'LEA-OXI' or v1 == 'LEA-SUP' 

 

Results shows that geo-clusters are in very strong associations with alteration. This means 

that the obtained domains (clustering) are less in alignment with rock type and zones.  

The next step is to identify the association between: 

1- Clustering & Rock Type 

2- Clustering & Alteration  

3- Clustering & Zones 

4- Cu & Clustering  

5- Cu & Rock Type 

6- Cu & Alteration  



 
 

7- Cu & Zones 

 

Multivariate statistics tools were used due to the presence of several continuous and 

categorical variables. In resource estimation and priori data analysis, it is of interest to find 

the relationship between: 1- Continuous variables: e.g., between Fe & Mo 2- Categorical 

variables: e.g., between Alteration & Mineralization 3- Continuous and categorical variables: 

e.g., between Cu & Alteration. Clustering is the estimation domain of this deposit, then the 

goal is to find whether or not there are any associations between Clustering and other 

variables.  

To examine the correlation between continuous variables, the correlation coefficient was 

utilized. However, this method is not practical for categorical data. Instead, Cramer's V 

coefficient is recommended as an alternative (Cramér, 2016). 

 

𝑉 = √
𝜒2

𝑛(𝑞 − 1)
 

 

(18) 

In this equation 𝜒2 stands for the Chi-squared test statistic, derived from the contingency 

table, q is the minimal number of rows and columns in this table and n is the total samples 

amount.  

This coefficient is a measure of the dependency or association between discrete variables and 

ranges from 0 (poor association) to 1 (perfect association). The absence of association is 

defined by 0 <  𝑉 <  0.05, then weak association range lies between 0.05 <  𝑉 <  0.10, 

the range of moderate association starts from 0.10 and lasts till 0.15. The rest two range is 

for strong association between 0.15 <  𝑉 <  0.25 and more than 0.25 till the 1 mean that 

here is very strong associations. In order to compute the coefficient, the Chi-squared test 

statistic derived from the contingency table, the total number of sample locations, and the 

number of rows and columns within the table must be utilized. In situations where the 

objective is to determine the level of association between categorical and continuous 

variables, the continuous data can be transformed into categorical data by utilizing quartile 

thresholds. This permits the application of Cramer's V coefficient to assess the potential 

strength of association between the converted continuous variable and other categorical 

variables. Table 6 furnishes data pertaining to the degree of interrelationships and 

associations.  

Table 6 - Level of relationship between continuous-continuous variables (upper diagonal: 

Pearson linear correlation, and lower diagonal: Spearman non-linear correlation); categorical-



 
 

categorical variables (Cramer’s V coefficient); and continuous-categorical variables 

(Cramer’s V coefficient) 

 Cu Mo Zones Alteration Rock type Clustering 

Cu 1 0.1097 VS VS VS VS 

Mo 0.2948 1 M VS VS VS 

Zones VS M -- M VS W 

Alteration VS VS M -- VS VS 

Rock type VS VS VS VS -- S 

 

W - Weak association; M - Moderate association; S - Strong association; VS - very strong 

association. 

As can be seen, the correlation between Molybdenum and Copper is negligible (0.2948). 

Therefore, the presence of Molybdenum will be ignored and all further calculations will be 

made over the Copper. Mineralization Zones are associated very strongly rock type, and 

associated moderate with alteration. Alteration is in very strong associations with rock type 

and clustering. It also can be noticed that Copper is associated very strongly with zones, 

clustering, rock types and alteration while Molybdenum has moderate association with 

mineralization zones. In line with a common approach to modelling copper deposits, rock 

type appears to be a significant factor to consider when identifying estimation domains for 

modelling the continuous variables within the deposit. However, this method can overlook 

the impact of mineralization zones and alteration on the definition of the target estimation 

domains. To address this issue, machine learning algorithms can be employed to determine 

the domains by incorporating multiple variables. In this study, a clustering-based machine 

learning approach is used to identify the estimation domains, which takes into account not 

only rock types but also Cu, Mo, mineralization, alteration, and clustering. Determining ore 

grades is crucial because they directly affect the mining plan for this deposit. 

 

5.3  GEOSTATISTICAL MODELLING OF GEO-CLUSTERS 

The previous section's statistical analysis confirmed that the spatial variability of the resulting 

geo-clusters does not follow a stationary assumption. This leads to the use of geostatistical 

simulation methods that are designed for modelling such complex non-stationary geo-

domains. The non-stationary sequential indicator simulation method proposed in this study 



 
 

uses the residuals from a locally varying mean probabilities to stochastically model the entire 

geo-clusters of this copper deposit. The same block model previously identified for nearest 

neighborhood prediction is used, which consists of rectangular blocks with a mesh size of 

10𝑚 × 10𝑚 × 10𝑚, resulting in a total of 709,800 blocks for the entire deposit. 

After identifying the geo-clusters at sample points (boreholes), the next step is to fit 

multinomial logistic regression model over these points for each geo-domain and obtain the 

coefficients. The prediction will be made over the target variable - geo-domain by using 

feature variable - geographical coordinates (X, Y, Z). The aim is to create multinomial logistic 

regression models to predict the geo-clusters as a function of geographical coordinates. The 

procedure entirely repeats steps from case study I. Randomly chosen 50 and 100 points will 

be implemented for building ML model and then this model will make prediction over the 

whole dataset. Test/Train ratio also remains the same 20% and 80% respectively. The 

ScikitLearn library was selected as the tool to perform Multinomial Logistic Regression. 

 

Figure 19. Classification report of MLR model produced by Python, indicqating major 

properties. 

Like in previous case, the fitted model resulted a very high accuracy rate – 87%. Relying on 

the results of classification report, it can be concluded that calculations are reliable. Next step 

is to estimate the probability of each geo-cluster at sample points. The probability of each 

sample point was measured over all three domains, in order to increase the accuracy and 

ensure that final resulting probability is correctly filtered out of other two values. Since the 

probability usually varies from 0 to 1, increasing the likelihood of event occurrence with 

numerical value, the MLR model choose value that is closest to 1.  



 
 

 

Figure 20. Prediction made by MLR over the random 50 points. 

The block model (grid) was created by using Isatis.neo software and exported in csv file, 

which contains only a dimensional values (X, Y, Z coordinates) without a categorical 

variable, indicating geo-domain. The Machine Learning model was implemented on entire 

block, i.e., prediction was made over the 709,800 sample points. Soft information was derived 

by the same principle as for borehole values, the probability of each grid point was estimated 

and the values closest to 1 was chosen as a total probability value. 

 

Figure 21. Prediction made over the entire block model by MLR. 

Using the estimated probabilities at sample points, one can calculate the residuals:  

 𝐼𝑛𝑑(𝐾𝛽; 𝑛) −  µ(𝑌𝛽 = 𝑛)     (19) 

It can be done by subtracting the geo-cluster indicators 𝐼𝑛𝑑(𝐾𝛽; 𝑛) from the estimated 

probabilities - µ(𝑌𝛽 = 𝑛). To apply the proposed algorithm, the input (hard conditioning data) 

should be the sought residuals, thus requiring a variogram analysis. The anisotropy of each 



 
 

geo-cluster in the region was quantified, and two directions of anisotropy in the horizontal 

and vertical directions were identified.  

The initial step in resource estimation is to conduct a variogram analysis of the copper grades 

for each lithotype. Even though the sample variogram calculation only employs a fraction of 

the available data (those pertaining to the lithotype being examined), this approach allows 

one to capture the appropriate structural patterns for each lithotype and model the grade 

continuity based on the deposit's lithology. For example, it is evident that anisotropy varies 

across lithotypes. Spherical variogram models were fitted to the experimental variograms of 

the residuals and indicators, taking into account proper nugget effect and maximum and 

minimum continuities along the vertical and horizontal directions, respectively. 

 

Figure 22. The experimental variogram of residuals at Category 1 

𝛾𝑅𝑒𝑠−1 =  0.11𝑆𝑝ℎ(43𝑚, 24𝑚, 322𝑚). 



 
 

 

Figure 23. The experimental variogram of residuals at Category 2 

𝛾𝑅𝑒𝑠−2 = 0.01𝑛𝑢𝑔𝑔𝑒𝑡 + 0.03𝑆𝑝ℎ(20𝑚, 272𝑚, 599𝑚) + 0.04𝑆𝑝ℎ(598𝑚, 20𝑚, 598𝑚). 



 
 

 

Figure 24. The experimental variogram of residuals at Category 3 

𝛾𝑅𝑒𝑠−3 = 0.01𝑆𝑝ℎ(19𝑚, 99𝑚, 407𝑚). 



 
 

 

Figure 25. The experimental variogram of indicators at Category 1 

𝛾Ind−1 =  0.1084𝑆𝑝ℎ + 0.07642(20𝑚, 523𝑚, 600𝑚) +  0.10077𝑆𝑝ℎ(600𝑚, 20𝑚, 318.9𝑚). 

 



 
 

 
Figure 26. The experimental variogram of indicators at Category 2 

𝛾Ind−2 = 0.01775 𝑆𝑝ℎ + 0.16832𝑆𝑝ℎ(600𝑚, 328.5𝑚, 600𝑚). 

 



 
 

 
Figure 27. The experimental variogram of indicators at Category 3 

𝛾Ind−3 = 0.06709𝑆𝑝ℎ(25.92𝑚, 94.19𝑚, 575.2𝑚) + 0.09768𝑆𝑝ℎ(600𝑚, 416.5𝑚, 600𝑚). 

The variograms of residuals and indicators show finite sill, implying a stationary hypothesis 

for these variables. The next step involves computing the locally varying mean probabilities 

or trend component µ(𝑌∗  = 𝑛), 𝑛 = 1,…3,  which are obtained using the fitted multinomial 

regression function, with the geographical coordinates of the target grid nodes 𝑌∗as 

independent variables. The resulting maps are displayed in Figure 30. The estimated probable 

areas of each geo-cluster are consistent with their spatial distribution over the borehole 

dataset, as illustrated in Figure 28. Geo-clusters 1, 2, and 3 are highly likely to be found in 

the lower west, lower east, and upper central parts of the deposit, respectively. This 

information can serve as a secondary component for simulation using the proposed approach, 

by adding the estimation conditional probabilities of residuals to obtain the final estimated 

geo-clusters. 

 



 
 

These probabilities are then used along with the residuals, which are calculated over the sample 

points, and the derived variogram model for each residual as inputs into the proposed sequential 

indicator simulation algorithm.  

                                                                                                                                                      

The next step is incorporating soft data and run traditional and proposed SIS approaches. The 

comparison involves two cases, namely SIS-LM - proposed Sequential Indicator Simulation using 

non-stationary simple kriging integrated with soft data from Multinomial Logistic Regression, and 

SIS-Trad - conventional Sequential Indicator Simulation, which does not use secondary data. The 

comparison is done over the same block model that was discussed earlier, using an identical 

moving neighborhood for both cases. In order to retrieve unbiased and accurate results, 100 

realizations were produced by both methods. The results of 100 realizations for each method are 

shown in Fig. 29, where it can be observed that the proposed approach (SIS-LM) is better at 

reproducing the non-stationary characteristics of the geo-domains compared to the traditional 

SIS_Trad, which produced completely chaotic realization. All  

 

 

 

 

 

Figure 28. The probability maps for all three Geo-domains calculated by Python. Left for Geo-

Domain 1, Middle for Geo-Domain 2, Right for Geo-Domain 3. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 29. Comparison of realizations obtained by Traditional and Proposed SIS at the same 

elevations; Left – Traditional SIS; Right – Proposed SIS; blue: geo-domain 1, light blue: geo-

domain 2, and yellow: geo-domain 3. 

 

 

The probability maps can be used to estimate the uncertainty of the geo-domains on a node-by-

node basis. These maps can be generated by calculating the proportion of each geo-domains over 

the 100 simulations. The areas that have low uncertainty are represented by the color red, 

indicating that the risk of not locating the geo-domain is minimal, while areas with low probability 

are represented by a light blue color, signifying that there is a high level of certainty that the geo-

domain is not present in these areas. The areas represented by colors such as green or yellow 

indicate more uncertainty. The results obtained from the SIS-LM method are more reasonable and 

provide a better agreement with the spatial distribution of the geo-domains, which is similar to the 

conceptual model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 30. Probability maps obtained with 100 realizations for Proposed SIS and Traditional SIS. 

Top three realizations were produced by SIS_Trad. Bottom three realizations were produced by 

SIS_LM. 

The probability maps obtained of Traditional SIS shows a weak saturation in all three geo-

domains. Furthermore, the borders of geo-domains are not clear, they do not match with their 

actual locations. The maps show unreliable results, especially probability occurs at points that does 

not corresponds to certain geo-domain. In contrary, probability maps obtained by Proposed SIS 

shows completely opposite results with strongly saturated zones in all three geo-domains. 

According to obtained results, it could be concluded that Proposed SIS produced proper and 

reliable results in comparison with Traditional SIS. 

 

5.4  STATISTICAL VALIDATION  

The next step involves verifying the accuracy of the original trends for each geo-domain. To do 

this, the trend is calculated for each realization obtained using each SIS method, and then their 

averages are plotted against the coordinates. An example of this can be seen in Fig. 31, 32, 33, 

which displays the trends of each geo-domain along the northing, easting, and elevation.  

 

 

 

 

 

 

 

Figure 31. Trend analysis reproduction along easting over the simulation results for geo-domain 

1. Black line: original trend; Red line: average of trends over 100 realizations obtained with 

Proposed SIS; and Green line: average of trends over 100 realizations obtained with Traditional 

SIS. 

 

 

 



 
 

 

  

 

 

 

 

 

 

Figure 32. Trend analysis reproduction along easting over the simulation results for geo-domain 

2. Black line: original trend; Red line: average of trends over 100 realizations obtained with 

Proposed SIS; and Green line: average of trends over 100 realizations obtained with Traditional  

SIS. 

 

 

 

 

 

 

 

Figure 33. Trend analysis reproduction along easting over the simulation results for geo-domain 

3. Black line: original trend; Red line: average of trends over 100 realizations obtained with 

Proposed SIS; and Green line: average of trends over 100 realizations obtained with Traditional 

SIS. 

The trend reproduced by the Proposed SIS (SIS_lm) method is more consistent with the original 

trend when compared to the Traditional SIS (SIS_trad) method. In most cases, the Proposed SIS 

method outperforms the Traditional SIS method, indicating that the stronger the trend component, 

the more likely it is that the trend along the coordinate can be accurately reproduced. The reason 



 
 

Figure 34. Modelled Copper grade produced by Simple Kriging. Left is for geo-domain 1, 

Middle is for geo-domain 2, Right is for geo-domain 3. 

for the superior performance of the Proposed SIS method is due to its ability to incorporate the 

trend component into the simulation algorithm, which is informed by Multinomial Logistic 

Regression.  

 

5.5  COPPER GRADE MODELLING 

The next stage involves estimating the copper grade inside of each geo-domain. To obtain these 

models, simple kriging is utilized with the input of the associated grade variogram and the samples 

that belong to the respective geo-domain. Then estimation results were merged with simulation 

outputs, in order to define the ultimate copper grade inside of each geo-domain.  

The copper grade modelling uses preliminary kriging estimation to estimate the ore grade at each 

target node, build the block model and the combine this data with Traditional and Proposed 

Sequential Indicator Simulation results. Estimation was done by using SGeMS software. Both 

types of kriging – ordinary and simple were implemented for this study. Simple kriging produced 

trustworthy estimation maps, while estimation maps by ordinary kriging produced significant 

number of artifacts and shows low accuracy. Also, Simple Kriging is more reliable because final 

estimation maps does not affect by smoothing effect (overestimation of high grades and 

underestimation of low grades) as in case of Ordinary Kriging.  Therefore, outputs of ordinary 

kriging will be neglected and no longer used for the further steps. The kriging results are illustrated 

on Figure 34.  

 

 

 

 

 

 

 

 

 



 
 

Figure 35. Final Copper Grade Produced by Simple Kriging by combining with Proposed SIS at 

different elevations. Left for elevation #35, Middle for elevation #50, Right for elevation #55. 

Figure 36. Final Copper Grade Produced by Simple Kriging by combining with Traditional SIS 

at different elevations. Left for elevation #35, Middle for elevation #50, Right for elevation #55. 

 

 

The estimation results then were transferred in Matlab, where they were combined with simulation 

outputs of Traditional and Proposed SIS. This combination is necessary to modelling copper grade 

simultaneously in all three geo-domains. This is achieved using the following formula (Emery & 

Gonzalez, 2007): 

𝐺𝑟𝑎𝑑𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  ∑𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

3

𝑘=1

(𝑘𝑡ℎ𝑑𝑜𝑚𝑎𝑖𝑛) 𝑥 𝐺𝑟𝑎𝑑𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑘𝑡ℎ𝑑𝑜𝑚𝑎𝑖𝑛)   
 

(20) 

For the sake of unbiased comparison, final copper grade maps at the same elevations were 

selected from each of the approaches. Since the target grid consists of 70 level, the medium 

layers as #35, #45 and #55 were. Results are demonstrated on the Figures 35 and 36.  

 

 

 

 

 

 

 

 

 

 

 

 

                        

 

 

 

 

 

 

 



 
 

Total copper grade maps produced by integrating Proposed SIS performed significantly better 

than maps provided by Traditional SIS, as expected. Mainly Traditional SIS failed in 

reproducing of geo-domain #3. Moreover, realizations made by Traditional SIS has a missing 

upper-left corner. The Traditional SIS realizations also shows underestimation of low-grade 

zones and overestimation of high-grade zones which are consequences of smoothing effect. 

On the contrary, Proposed SIS proved to be less susceptible for this limitation of SIS_Trad.  

Also, poor quality and graininess are direct outcomes of smoothing effect. The maps of final 

copper grade again prove that Proposed SIS is more robust technique especially in cases of 

non-stationary domains as this copper-porphyry deposit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

6 DISCUSSIONS 

Sequential Indicator Simulation is a very straightforward, rapid and robust technique, however this 

study shows that Traditional SIS used in most of commercial software is unable to reproduce non-

stationary geological domains. Results of Proposed SIS are better by all criteria. Proposed SIS 

properly shows compact geo-domain, especially it is obvious in direct comparison with results of 

Traditional SIS. Moreover, realization obtained by Proposed SIS matches with original 

distribution of geo-domains calculated over the boreholes.  

Reliability of the resource estimation is the key factor in any mine project. This study does not 

require identifying geo-domain of interest, since dataset with distinguished geo-domains was 

provided. Therefore, the problem which can be met is properly point out boundaries of each geo-

domain. This procedure is very sensitive for subjective interpretation of geologists, thus the data 

provided cannot be always claimed as trustworthy. In particular, manual interpretation of 

geological data can be prone to errors and inconsistencies. Entailed consequences could decrease 

of accuracy in resource assessment and could be disastrous for further resource estimation and 

mine planning stages. The way to minimize errors related to this procedure is use geostatistical 

hierarchical clustering technique. 

Difficulties remain with the order relation problem and neighborhood due to the use of sequential 

indicator simulation as the base of proposed algorithm (Emery, 2004; Deutsch, 2006).  The 

proposed approach has potential for further improvement, particularly since the simulation process 

can be slow due to the abundance of hard data. One possible solution to this issue is to use parallel 

computing. Additionally, the proposed method can be tested on other datasets, coming from not 

only copper-porphyry deposits or by modelling several minerals simultaneously.  

Despite of proved efficiency of Proposed SIS, the realizations may exhibit patchiness along the 

borders of adjacent geo-domains or contain small spots of another geo-domain. One potential 

solution to overcome this issue is to employ an image cleaning algorithm based on a maximum a 

posteriori selection (Deutsch, 1998). This study provided pure results without implementation of 

cleaning algorithms.  

 

 

 



 
 

7 CONCLUSION 

In the field of geological modelling, creating accurate representations of non-stationary geological 

domains is critical for making informed engineering decisions. Traditional methods, such as 

sequential indicator simulation (SIS), have limitations in accurately capturing the complex spatial 

patterns and trends found in geological domains. However, recent developments in machine 

learning and statistical modelling have opened up new possibilities for improved geological 

modelling techniques. One such method is the use of sequential indicator simulation with local 

mean probabilities and residuals calculated from multinomial logistic regression. This approach 

allows for the modelling of secondary information and guidance in the modelling of non-stationary 

trends in geological domains. Compared to traditional SIS, this method results in more accurate 

representations of each geological domain, as demonstrated by improved probability maps and 

realizations with reduced error. This study proposes a novel technique for modelling various types 

of geological domains resulting from spatially-dependent clustering machine learning algorithms. 

The proposed method employs multinomial logistic regression to model secondary information 

and guide the modelling of non-stationary sequential indicator simulation trends. The resulting 

approach outperforms traditional SIS in terms of visual representation of geo-domains in resulting 

maps, reproduction of geo-domain proportions, and reproduction of indicator variogram, 

connectivity measures, and trend component. The proposed method can model any geo-domain, 

including geo-domains with trend components, and is designed to produce compact and 

contiguous domains. However, some minor patchiness or tiny spots of geo-domains at the borders 

of adjacent geo-domains may exist. This issue can be resolved using image cleaning based on 

maximum a posteriori selection. It is important to note that this approach utilizes sequential 

indicator simulation, and thus problems related to order relation and neighborhood still exist. 

Future research can explore non-stationary approaches using plurigaussian simulation or multiple-

point statistics. Overall, this proposed approach provides a potential avenue for better support for 

engineering decisions in geological modelling by improving the accuracy and reliability of 

geological domain representations. 
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9 APPENDICE  

A1. PYTHON CODE FOR BUILDING MULTINOMIAL LOGISTIC 

REGRESSION IN CASE STUDY I 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

#50 points 

points = pd.read_excel('file.xlsx') 

X = points[['X', 'Y', 'Z']] 

Y = points['Category'] 

rs = 42 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2,

 shuffle = True, random_state = rs) 

clf = LogisticRegression(random_state = rs, multi_class = 'multinomial').f

it(X_train, y_train) 

y_pred = clf.predict(X) 

print(classification_report(y_pred, Y)) 

X_vis = X.copy() 

X_vis['predictions'] = y_pred 

X_vis['Categories'] = Y 

X_vis.head() 

y_vis = np.array(X_vis['predictions']) 

points_pred = clf.predict(points[['X', 'Y', 'Z']]) 

points['predictions'] = points_pred 

first_proba = clf.predict_proba(points[['X', 'Y', 'Z']])[:, 0] 

second_proba = clf.predict_proba(points[['X', 'Y', 'Z']])[:, 1] 

third_proba = clf.predict_proba(points[['X', 'Y', 'Z']])[:, 2] 

points['1_proba'], points['2_proba'], points['3_proba'] = first_proba, sec

ond_proba, third_proba 

arr_proba = [] 

probas = clf.predict_proba(points[['X', 'Y', 'Z']]) 

cnt = 0 

for i in points['predictions']: 

    arr_proba.append(probas[cnt, i - 1]) 

    cnt+= 1 



 
 
points['proba_final'] = arr_proba 

points.head() 

#90 k  

data = pd.read_excel('50_with_proba.xlsx') 

data.head() 

data_pred = clf.predict(data[['X', 'Y', 'Z']]) 

data['predictions'] = data_pred 

first_proba = clf.predict_proba(data[['X', 'Y', 'Z']])[:, 0] 

second_proba = clf.predict_proba(data[['X', 'Y', 'Z']])[:, 1] 

third_proba = clf.predict_proba(data[['X', 'Y', 'Z']])[:, 2] 

data['1_proba'], data['2_proba'], data['3_proba'] = first_proba, second_pr

oba, third_proba 

arr_proba = [] 

probas = clf.predict_proba(data[['X', 'Y', 'Z']]) 

cnt = 0 

for i in data['predictions']: 

    arr_proba.append(probas[cnt, i - 1]) 

    cnt+= 1 

data['proba_final'] = arr_proba 

data 

from sklearn.linear_model import LogisticRegression 

model = LogisticRegression() 

model.fit(X_train, y_train) 

y_pred_test = model.predict(X_test) 

y_predict = model.predict(data[['X','Y', 'Z']]) 

data['predict'] = y_predict 

y_vis_2 = np.array(points['proba_final']) 

from matplotlib.colors import ListedColormap 

cmap_bold_2 = ListedColormap(['none']) 

fig = plt.figure(facecolor='blue') 

plt.figure(figsize = (15,10)) 

 

sc = plt.scatter(data[data.predict==1].X, data[data.predict==1].Y, c = dat

a[data.predict==3].proba_final, cmap='jet') 

plt.scatter(points['X'], points['Y'], edgecolors='w', facecolor='none') 

 

plt.title('Category 1', size=20) 

plt.xlabel('Easting', size=20) 

plt.ylabel('Northing', size=20) 

 



 
 
cbar = plt.colorbar(sc, ) 

cbar.ax.set_yticklabels([0,0.2,0.4,0.6,0.8,1.0]) 

 

# cbar.ax.set_ylim(bottom=0) 

 

plt.rcParams['axes.facecolor']='#03045c' 

 

#plt.fill(150, 150, "b")  

ax = plt.gca() 

ax.set_xlim([0, 300]) 

ax.set_ylim([0, 300]) 

plt.xticks(range(0,350,50)) 

fig = plt.figure(facecolor='blue') 

plt.figure(figsize = (15,9)) 

 

sc = plt.scatter(data[data.predict==2].X, data[data.predict==2].Y, c = dat

a[data.predict==2].proba_final, cmap='jet') 

plt.scatter(points['X'], points['Y'], edgecolors='w', facecolor='none') 

 

plt.title('Category 2', size=20) 

plt.xlabel('Easting', size=20) 

plt.ylabel('Northing', size=20) 

 

cbar = plt.colorbar(sc, ) 

cbar.ax.set_yticklabels([0,0.2,0.4,0.6,0.8,1]) 

cbar.ax.locator_params(nbins=6) 

cbar.ax.set_ylim(bottom=0) 

 

plt.rcParams['axes.facecolor']='#03045c' 

 

plt.fill(150, 150, "b")  

ax = plt.gca() 

ax.set_xlim([0, 300]) 

ax.set_ylim([0, 300]) 

plt.xticks(range(0,350,50)) 

fig = plt.figure(facecolor='blue') 

plt.figure(figsize = (15,10)) 

 



 
 
sc = plt.scatter(data[data.predict==3].X, data[data.predict==3].Y, c = dat

a[data.predict==3].proba_final, cmap='jet') 

plt.scatter(points['X'], points['Y'], edgecolors='w', facecolor='none') 

 

plt.title('Category 3', size=20) 

plt.xlabel('Easting', size=20) 

plt.ylabel('Northing', size=20) 

 

cbar = plt.colorbar(sc, ) 

cbar.ax.set_yticklabels([0,0.2,0.4,0.6,0.8,1.0]) 

 

# cbar.ax.set_ylim(bottom=0) 

 

plt.rcParams['axes.facecolor']='#03045c' 

 

#plt.fill(150, 150, "b")  

ax = plt.gca() 

ax.set_xlim([0, 300]) 

ax.set_ylim([0, 300]) 

plt.xticks(range(0,350,50)) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

A2. MATLAB CODE FOR SEQUENTIAL INDICATOR SIMULATION   
%clear 

%z=load('all_predicted_.txt'); % Final predicted map 

%z=tb_r; 

%data=load('randomly_selected.txt'); % randomly selected dataset 

i = 1; % the number o fcolumn in z 

nx = 78; ny = 130;nz=70; level = 35; % number of blocks in x, y, and z, 

level: it is the corresponidng plane, in 2D, level is 1.  

nreal=100; 

figure(1); 

 %real =  mean(cu(:,1:100)==3,2);  

 real =  calc_trad(:,1);  

 % real =  sisim_TEST_trad(:,15);  

real = reshape(real,nx*ny,nz); 

      set(gcf,'DefaultAxesFontName','Times','DefaultAxesFontSize',14) 

      pcolor(reshape(real(:,level),nx,ny)');  

      axis('image'); 

      shading('flat'); 

      xlabel('Easting');  

      ylabel('Elevation'); 

      title('SIS__LM Hierarchical SK lvl 60') 

    colormap('jet') 

 %  hold on; plot(borehole(:,1)-min(borehole(:,1)),borehole(:,2)-

min(borehole(:,2)),'wo') 

   caxis([0.1 0.40]) 

  return 

      figure(2); 



 
 
   %real = mean(sis_trad(:,1:100)==3,2);  

  real = calc_lm(:,7); 

  % real = sisim_TEST(:,1); 

 real = reshape(real,nx*ny,nz); 

      set(gcf,'DefaultAxesFontName','Times','DefaultAxesFontSize',14) 

      pcolor(reshape(real(:,level),nx,ny)');  

      axis('image'); 

      shading('flat'); 

      xlabel('Easting'); 

      ylabel('Northing'); 

      title('SIS__LM Hierarchical OK lvl 60') 

    colormap('jet') 

  hold on;  

 % hold on; plot(data_50(:,1),data_50(:,2),'wo') 

  caxis([0.1 0.40]) 

   return  

    figure(3); 

% real = mean(sisim_TEST(:,1:100)==4,1);  

  real = grid_2(:,6); 

  % real = sisim_TEST(:,1); 

 real = reshape(real,nx*ny,nz); 

      set(gcf,'DefaultAxesFontName','Times','DefaultAxesFontSize',14) 

      pcolor(reshape(real(:,level),nx,ny)');  

      axis('image'); 

      shading('flat'); 

      xlabel('Easting'); 

      ylabel('Northing'); 

      title('Category 2') 



 
 
    colormap('jet') 

  hold on;  

 % hold on; plot(data_50(:,1),data_50(:,2),'wo') 

 % caxis([0 1]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

A3. SISIM PROGRAM SOR SIS_LM AND SIS_TRAD 

                  Parameters for SISIM 

                  ******************** 

  

START OF PARAMETERS: 

data.out                         % file with conditioning data 

1 2 3                            %        columns for data coordinates 

4                                %        column(s) for data values 

5 6 7                         %        columns for local mean of 

probability for each category 

0.179604262 0.52438936 0.296006378      %        global proportion for 

each category 

grid_2.out                    % file with coordinates of locations 

targeted for simulation 

1 2 3                            %        columns for location coordinates 

1 2 3                             %        columns for local mean of 

probability for each category 

1 10 10 10                   %        gridded locations (1=yes, 0=no)? 

mesh size (0 0 0 if not gridded) 

3                                % number of categories 

2 0.00605                              % Category 1:number of nested 

structures, nugget effect 

1 0.10632   20  20  246   0 0 0 1       %        1st structure: it cc a1 

a2 a3 ang1 ang2 ang3 b 

1 0.04575   600  328  600 0 0 0 1       %        1st structure: it cc a1 

a2 a3 ang1 ang2 ang3 b 

2 0.00918                            % Category 2:number of nested 

structures, nugget effect 

1 0.02562   20  20  246   0 0 0 1      %        1st structure: it cc a1 a2 

a3 ang1 ang2 ang3 b 



 
 
1 0.14247   600  328  600 0 0 0 1       %        2st structure: it cc a1 

a2 a3 ang1 ang2 ang3 b 

2 0.00220                           % Category 3:number of nested 

structures, nugget effect 

1 0.05703   20  20  246   0 0 0 1     %        1st structure: it cc a1 a2 

a3 ang1 ang2 ang3 b 

1 0.09494  600  328  600 0 0 0 1     %        2st structure: it cc a1 a2 

a3 ang1 ang2 ang3 b 

600 600 600                        % neighborhood for original data: 

maximum search radii in the rotated system 

0 0 0                            %                                 angles 

for search ellipsoid 

0                                %                                 divide 

into octants? 1=yes, 0=no 

40                                %                                 number 

of data per octant (if octant=1) or in total 

600 600 600                        % neighborhood for simulated nodes: 

maximum search radii in the rotated system 

0 0 0                            %                                   if 

scattered locations: angles for search ellipsoid 

0                                %                                                           

divide into octants? 1=yes, 0=no 

40                                %                                   

number of nodes per octant (if octant=1 and scattered) or in total 

1                                % kriging type: 1=SK, 2=OK 

1                                % SIS type: 1=traditional, 2=Bayesian 

Updating, 3=non-stationary with local mean probability 

100                                % number of realizations 

3                                % number of refinements (multiple grid 

simulation) (0=not used) 

1                                % random simulation sequence? 

(1=yes,0=regular simulation sequence) 

9236548                          % seed for random number generation 



 
 
sisim_TEST_trad.out                        % name of output file 

0                                % create a GSLIB header in the output 

file? 1=yes, 0=no 

  

Available model types: 

        1: spherical 

        2: exponential 

        3: gamma (parameter b > 0) 

        4: stable (parameter b < 2) 

        5: cubic 

        6: Gaussian 

        7: cardinal sine 

        8: J-Bessel (parameter b > 0.5) 

        9: K-Bessel (parameter b > 0) 

       10: generalized Cauchy (parameter b > 0) 

       11: exponential sine 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

A4. PYTHON CODE FOR BUILDING MULTINOMIAL LOGISTIC 

REGRESSION IN CASE STUDY II 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

#50 points 

points = pd.read_excel('data.xlsx') 

X = points[['X', 'Y', 'Z']] 

Y = points['Category'] 

rs = 42 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2,

 shuffle = True, random_state = rs) 

clf = LogisticRegression(random_state = rs, multi_class = 'multinomial').f

it(X_train, y_train) 

y_pred = clf.predict(X) 

print(classification_report(y_pred, Y)) 

X_vis = X.copy() 

X_vis['predictions'] = y_pred 

X_vis['Categories'] = Y 

X_vis.head() 

y_vis = np.array(X_vis['predictions']) 

points_pred = clf.predict(points[['X', 'Y', 'Z']]) 

points['predictions'] = points_pred 

first_proba = clf.predict_proba(points[['X', 'Y', 'Z']])[:, 0] 

second_proba = clf.predict_proba(points[['X', 'Y', 'Z']])[:, 1] 

third_proba = clf.predict_proba(points[['X', 'Y', 'Z']])[:, 2] 

points['1_proba'], points['2_proba'], points['3_proba'] = first_proba, sec

ond_proba, third_proba 

arr_proba = [] 

probas = clf.predict_proba(points[['X', 'Y', 'Z']]) 

cnt = 0 

for i in points['predictions']: 

    arr_proba.append(probas[cnt, i - 1]) 

    cnt+= 1 



 
 
points['proba_final'] = arr_proba 

points.head() 

#90 k  

grid = pd.read_excel('grid.xlsx') 

grid.head() 

grid_pred = clf.predict(grid[['X', 'Y', 'Z']]) 

grid['predictions'] = grid_pred 

first_proba = clf.predict_proba(grid[['X', 'Y', 'Z']])[:, 0] 

second_proba = clf.predict_proba(grid[['X', 'Y', 'Z']])[:, 1] 

third_proba = clf.predict_proba(grid[['X', 'Y', 'Z']])[:, 2] 

grid['1_proba'], grid['2_proba'], grid['3_proba'] = first_proba, second_pr

oba, third_proba 

arr_proba = [] 

probas = clf.predict_proba(grid[['X', 'Y', 'Z']]) 

cnt = 0 

for i in grid['predictions']: 

    arr_proba.append(probas[cnt, i - 1]) 

    cnt+= 1 

grid['proba_final'] = arr_proba 

grid 

from sklearn.linear_model import LogisticRegression 

model = LogisticRegression() 

model.fit(X_train, y_train) 

y_pred_test = model.predict(X_test) 

y_predict = model.predict(grid[['X','Y', 'Z']]) 

grid['predict'] = y_predict 

y_vis_2 = np.array(grid['proba_final']) 

from matplotlib.colors import ListedColormap 

cmap_bold_2 = ListedColormap(['none']) 

fig = plt.figure(facecolor='blue') 

plt.figure(figsize = (15,10)) 

plt.scatter(grid[grid.predict==1].X, grid[grid.predict==1].Y, c = grid[gri

d.predict==1].proba_final, cmap='jet') 

#plt.scatter(points['X'], points['Y'], c = y_vis_2, cmap = 'jet', edgecolo

rs='w' ) 

plt.title('Category 1', size=20) 

plt.xlabel('X', size=10) 

plt.ylabel('Y', size=10) 

cbar = plt.colorbar() 

cbar.ax.set_yticklabels([0,0.2,0.4,0.6,0.8,1]) 



 
 
cbar.ax.set_ylim(bottom=0) 

#cbar.ax.set_ylim(top=1) 

plt.rcParams['axes.facecolor']='#03045c' 

#plt.fill(150, 150, "b")  

ax = plt.gca() 

#ax.set_xlim([0, 300]) 

#ax.set_ylim([0, 300]) 

#plt.xticks(range(0,350,50)) 

 

fig = plt.figure(facecolor='blue') 

plt.figure(figsize = (15,10)) 

plt.scatter(grid[grid.predict==2].X, grid[grid.predict==2].Y, c = grid[gri

d.predict==2].proba_final, cmap='jet') 

#plt.scatter(points['X'], points['Y'], c = y_vis_2, cmap = 'jet', edgecolo

rs='w' ) 

plt.title('Category 2', size=20) 

plt.xlabel('X', size=10) 

plt.ylabel('Y', size=10) 

cbar = plt.colorbar() 

cbar.ax.set_yticklabels([0,0.2,0.4,0.6,0.8,1]) 

cbar.ax.set_ylim(bottom=0) 

#cbar.ax.set_ylim(top=1) 

plt.rcParams['axes.facecolor']='#03045c' 

#plt.fill(150, 150, "b")  

ax = plt.gca() 

#ax.set_xlim([0, 300]) 

#ax.set_ylim([0, 300]) 

#plt.xticks(range(0,350,50)) 

 

fig = plt.figure(facecolor='blue') 

plt.figure(figsize = (15,10)) 

plt.scatter(grid[grid.predict==3].X, grid[grid.predict==3].Y, c = grid[gri

d.predict==3].proba_final, cmap='jet') 

#plt.scatter(points['X'], points['Y'], c = y_vis_2, cmap = 'jet', edgecolo

rs='w' ) 

plt.title('Category 3', size=20) 

plt.xlabel('X', size=10) 

plt.ylabel('Y', size=10) 

cbar = plt.colorbar() 

cbar.ax.set_yticklabels([0,0.2,0.4,0.6,0.8,1]) 



 
 
cbar.ax.set_ylim(bottom=0) 

#cbar.ax.set_ylim(top=1) 

plt.rcParams['axes.facecolor']='#03045c' 

#plt.fill(150, 150, "b")  

ax = plt.gca() 

#ax.set_xlim([0, 300]) 

#ax.set_ylim([0, 300]) 

#plt.xticks(range(0,350,50)) 
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