EXTREME POINTS OF THE UNIT BALL OF AN OPERATOR SPACE

M. Kaneda*

Department of Mathematics, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan; *mkaneda@nu.edu.kz

ABSTRACT.

Answering Pedersen's question [1], I characterized extreme points of the unit ball of an operator space introducing the new notion "quasi-identity" [2]. An application of extreme points is also given in [3].

RESULTS.

Definition[2]:Aquasi-identityofaring RR is an element $e \in Re \in R$ such that r = er + re - ere, $\forall r \in R$ r = er + re - ere, $\forall r \in R$

Theorem [2]: Let XX be a nonzero operator space and $z \in \text{Ball}(\mathcal{QM}(X))z \in \text{Ball}(\mathcal{QM}(X))$, and let $(X, m_z)(X, m_z)$ be the corresponding operator algebra. Then the following assertions hold.

- $(1) (X, m_z)(X, m_z) \text{ has a quasi-identity of norm } I \text{ if } z^+ \in \text{ext}(\text{Ball}(X))z^+ \in \text{ext}(\text{Ball}(X)).$
- (2) $(X, m_z)(X, m_z)$ has a left identity of norm 1 if and only if $z^* \in \text{ext}(\text{Ball}(X))z^* \in \text{ext}(\text{Ball}(X))$ and $z^* \cdot z = 1_{11}z^* \cdot z = 1_{11}$.
- (3) $(X, m_z)(X, m_z)$ has a right identity of norm I if and only if $z^* \in \text{ext}(\text{Ball}(X))z^* \in \text{ext}(\text{Ball}(X))$ and $z \cdot z^* = 1_{22}z \cdot z^* = 1_{22}$.
- $(4)(X,m_z)(X,m_z)$ has a two-sided identity of norm I if and only if $z^* \in \text{ext}(\text{Ball}(X))z^* \in \text{ext}(\text{Ball}(X))$ s and $s^* \cdot z = 1_{11}z^* \cdot z = 1_{11}$ and $s \cdot z^* = 1_{22}z \cdot z^* = 1_{22}$.

Corollary [2]: Let XX be a nonzero operator space. Then the following assertions hold.

- (1) Some algebrization of XX has a quasi-identity of norm 1 iff $ext(Ball(X)) \cap QM(X)^- \neq \emptyset$ $ext(Ball(X)) \cap QM(X)^- \neq \emptyset$.
- (2) Some algebrization of XX has a left identity of norm I if and only if $\text{ext}(\text{Ball}(X)) \cap (z^* \in \mathcal{QM}(X)^* \mid z^* \cdot z = \mathbf{1}_{11}) \neq \emptyset \text{ext}(\text{Ball}(X)) \cap (z^* \in \mathcal{QM}(X)^* \mid z^* \cdot z = \mathbf{1}_{11}) \neq \emptyset$
- (3) Some algebrization of \overline{XX} has a right identity of norm 1 if and only if $\exp(\operatorname{Ball}(X)) \cap (z^* \in QM(X)^* \mid z \cdot z^* = 1_{22}) \neq \emptyset \exp(\operatorname{Ball}(X)) \cap (z^* \in QM(X)^* \mid z \cdot z^* = 1_{22}) \neq \emptyset$
- (4) Some algebrization of XX has a two-sided identity of norm I if and only if $\exp\left(\operatorname{Ball}(X)\right)\cap\left\{z^*\in\mathcal{QM}(X)^*\mid z^*\cdot z=1_{11},z\cdot z^*=1_{22}\right\}\neq\emptyset$ $\exp\left(\operatorname{Ball}(X)\right)\cap\left\{z^*\in\mathcal{QM}(X)^*\mid z^*\cdot z=1_{11},z\cdot z^*=1_{22}\right\}\neq\emptyset$

Theorem ([3]): Let XX be a TRO which is also a dual Banach space. Then XX can be decomposed into the direct sum of TRO's X_TX_T , X_LX_L , and X_RX_R :

$$X = X_T \bigoplus_{\infty} X_L \bigoplus_{\infty} X_R$$

such that there is a complete isometry u from XX into a von Neumann algebra in which $u(X_T)u(X_T)$, $u(X_L)u(X_L)$, and $u(X_R)u(X_R)$ are weak*-closed two-sided, left, and right ideals, respectively, and

$$\iota(X) = \iota(X_T) \bigoplus_m \iota(X_L) \bigoplus_m \iota(X_R).$$