
Citation: Soltabayeva, A.; Dauletova,

N.; Serik, S.; Sandybek, M.; Omondi,

J.O.; Kurmanbayeva, A.; Srivastava, S.

Receptor-like Kinases (LRR-RLKs) in

Response of Plants to Biotic and

Abiotic Stresses. Plants 2022, 11, 2660.

https://doi.org/10.3390/

plants11192660

Academic Editors: Milan S.

Stankovic, Paula Baptista and

Petronia Carillo

Received: 8 August 2022

Accepted: 1 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Receptor-like Kinases (LRR-RLKs) in Response of Plants to
Biotic and Abiotic Stresses
Aigerim Soltabayeva 1,* , Nurbanu Dauletova 1, Symbat Serik 1, Margulan Sandybek 1, John Okoth Omondi 2,
Assylay Kurmanbayeva 3 and Sudhakar Srivastava 4

1 Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
2 International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
3 Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University,

Astana 010000, Kazakhstan
4 NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
* Correspondence: aigerim.soltabayeva@nu.edu.kz

Abstract: Plants live under different biotic and abiotic stress conditions, and, to cope with the ad-
versity and severity, plants have well-developed resistance mechanisms. The mechanism starts
with perception of the stimuli followed by molecular, biochemical, and physiological adaptive mea-
sures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that
perceives biotic and abiotic stimuli and also plays important roles in different biological processes
of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some
extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa,
Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense,
Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different com-
binations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed
as important receptors in immune responses, cell death, and plant development processes. However,
less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we
give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic
and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs
that are homologous in other plants is also reviewed in relation to their role in triggering stress
response processes against biotic and abiotic stimuli and/or in exploring their additional function(s).
Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been
confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database
analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses
whose function and mechanism may be explored.

Keywords: abiotic stress; biotic stress; stress tolerance; LRR-RLK receptors; Arabidopsis

1. Introduction

Biotic and abiotic stresses have detrimental effects on growth and development in
plants that are at risk of biotic and abiotic stresses. To counteract these adversities, plants
have developed diverse stimuli and activation strategies. The receptors in plants are one of
the primary components of plant–environment interaction that transduces the information
and makes the plant aware of its surroundings. In plants, a large number of different types
of receptor-like kinases (RLKs) have evolved, and they are classified based on their kinase
domain and extracellular domain sequences [1–3]. Among the RLKs, the biggest group
are the Leucine-rich-repeats–RLKs (LRR-RLKs), which have an extracellular domain LRR
motif that facilitates the binding of ligands (proteins, signaling peptides, hormones, etc.).
In addition to their regulatory role in plant development, shoot and root apical meristem,
xylem differentiation, and BL (Brassinolide) pathways, they also play a role in the immune
system and activation of cell death [4–9]. A small number of LRR-RLKs have been shown
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to be involved in the abiotic stress response of plants [2,10–12]. It is mainly achieved
through the investigation of LRR-RLK mutant lines by inserting tDNA fragments into their
exon [8,13,14], intron, UTR (untranslated region), or into the promoter region [8,15,16] and
then testing them under different stresses (Tables S1 and S2). There are plenty of genetic
tools that are used for the investigation of LRR-RLK gene function, but these studies were
mostly conducted in model plant Arabidopsis thaliana, and thereafter in tomato (Solanum
lycopersicum) and tobacco (Nicotiana benthamiana). The ubiquitous presence of LRR-RLK
with varying sequences across the plant genera underscores the need for its investigation in
other plants in order to expand the knowledge and thereby to understand their role more
specifically. RLKs were classified into different groups based on their functions, such as
growth and development processes and biotic and abiotic stress responses (reviewed Yuriko
Osakabe, and Beg Hab Kim review articles [2,17]). Some of the well-studied LRR-RLKs,
such as BRASSINOSTEROID INSENSITIVE 1 (BRI1) or SOMATIC EMBRYOGENESIS RE-
CEPTOR KINASE 3 (SERK3); SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1, 2, and
4 (SERK1/2/4); BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1); BAK1-INTERACTING
RECEPTOR-LIKE KINASE1 (BIR1); and SUPPRESSOR OF BIR1-1 (SOBIR1), ELONGATION
FACTOR-Tu (EF-Tu) RECEPTOR (EFR) were discussed as being essential for immune re-
sponses [2,17,18]. Credible evidence has been provided to demonstrate that some of the
RLKs, such as RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) and RECEPTOR-LIKE KI-
NASE 7 (RLK7 or other name LRR XI-23), are involved in water stress [2,16], and PHLOEM
INTERCALATED WITH XYLEM-LIKE 1 (PXL1) in cold stress [19]. Notably, some of the
above-mentioned LRR-RLKs, such as BAK1/SERK3; SERK1,-2, and -4; and BRI1, share
the same signaling pathways in Mitogen-Activated Protein Kinase (MAPK) activation,
Ca2+ influx, and the production of reactive oxygen species (ROS) in order to initiate plant
responses to biotic or abiotic stresses and/or developmental cues (see review [20]). Among
the SERK-mediated signaling pathways, crosstalk occurs at multiple levels, and it is possi-
ble to have crosstalk with other LRR-RLKs. Recent LRR-RLK studies showed additional
crosstalk of LRR-RLKs, and also new achievements for additional functions of known
LRR-RLKs. Despite the exploration of so many LRR-RLKs from A. thaliana over a period of
time, the functional role of several of these has not yet been explored.

The in silico studies have shown that LRR-RLK harbors a transmembrane domain
(TM), intracellular kinase domain (KD), and LRR-containing extracellular domain (ECD) [21].
This extracellular domain of LRR–RLKs was classified according the structure of LRR,
where the LRR II, III, VI, IX, X, XI, XII, and XIII sub-families contained the cysteine residues
in the amino-terminal of the LRR motifs [21]. This extracellular domain could have an
impact on oligomerization [21]. Moreover, it was shown that LRR-RLKs with short extra-
cellular domains are mainly co-receptors [22], which help to hold the ligand and stabilize
and enhance transduction of the intracellular signal together with the ligand-binding
receptor [23–25]. Some of the LRR-RLKs interact with each other, which allows for the
formation of different heterodimers or trimers, thereby allowing them to become multi-
functional [26,27]. In vitro and in vivo studies confirmed the heterodimer complexes of
LRR-RLK and few trimeric complexes [15,16,28–32]. These formations are important for
triggering immune responses, metabolic pathways, stem development, etc. Therefore, the
use of double, triple, or quadruple mutants proved to be a useful tool for achieving their
function and/or interactions [16,29–33]. The interaction of LRR-RLKs and its mechanism
was mainly studied in A. thaliana.

Here, we update the functioning of LRR-RLKs in response to biotic and abiotic
stresses in A. thaliana, and in other plants as well, such as N. benthamiana, S. lycopersicum,
Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Brassica napus,
Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and
Malus robusta. Additionally, we compiled the information on genetic tools used in the
investigation of LRR-RLK’s role in biotic and abiotic stress response. The Microarray
data analysis (GENEINVESTIGATOR, https://genevestigator.com/, accessed on 3 August
2022) of the LRR-RLK genes, which responded to biotic and abiotic stimuli, suggested
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the possibility of additional functions and their cross-link in triggering different signaling
processes. Furthermore, we have presented the information on stress-related LRR-RLKs as
dimer, trimer, and tetramer complexes, which were experimentally achieved in A. thaliana.
Furthermore, an ATTED databases (https://atted.jp/hclust/, accessed on 2 February 2022)
analysis for protein interactions pointed towards additional possible interactions among
the LRR-RLKs, however, these need to be validated experimentally [33].

2. Abundance of LRR-RLKs Genes in the Plant Genome

The abundant availability of genome and RNA sequences allowed us to identify the
potential LRR-RLK in different plants, such as annual and perennial plants, crops, trees,
herbs, etc. (Table 1). In primitive plants such as Sedum alfredii, Selaginella moellendorffii,
Amborella trichopoda, and Physcomitrella patens, there are about 60–134 genes. In higher
plants, the identified LRR-RLK gene numbers vary from 200 to 600 (LRR-RLK genes) (See
Table 1). It was shown that algae do not contain any LRR-RLK genes similar to plants and it
was suggested that the structural combination of LRRs and kinase domains (KD) to form
new genes may have occurred after the divergence of land plants from green algae [34].
An in silico analysis revealed that the expansion in LRR-RLKs is a result of tandem and
segmental duplication events (Table 1). Additionally, the exon/intron compositions and
motif arrangements were considerably conserved among members in the same groups or
subgroups in plants (Table 1).

Table 1. Number of LRR-RLKs present in different plants. Whole genome sequence data of the
enlisted plant species was analyzed for the identification of LRR-RLKs. The identified LRR-RLK genes
(numbers) with their expansion characteristic (presence of tandem duplication, motif conservation,
and duplication) were based on different studies. Genome size for each species was given. Mb
indicates mega base pairs. “-” indicates no data available.

Numbers of
LRR-RLK Plant Species Genome Size Presence of Tandem

Duplication LRR-RLK Organizations References

0 Chlamydomonas reinhardtii 120 Mb - - [34]

60 Sedum alfredii 39.1 Mb - motif conservation [35]

67–81 Selaginella moellendorffii 100 Mb present motif conservation [34]

94 Amborella trichopoda 870 Mb present motif conservation [36]

134 Physcomitrella patens 500 Mb - [34,37]

176 Phoenix dactylifera 658 Mb present - [37,38]

180 Cucumis sativus 367 Mb present segmental duplication [37,39]

201 Fragaria vesca 240 Mb present - [40]

211 Medicago truncatula 465 Mb present exon/intron organization,
motif conservation [37,41]

215 Vitis vinifera 500 Mb present segmental duplication [37,42]

226 Arabidopsis thaliana 133 Mb present - [37,43]

227 Jatropha curcas 320 Mb present - [37,44]

230–236 Vernicia fordii
Vernicia montana 1310 Mb Present (V. fordii) motif conservation (both),

segmental duplications (V. fordii) [45,46]

239 Solanum lycopersicum 900 Mb present - [37,47]

247 Theobroma cacao 430 Mb present motif conservation [37,48]

250 Zea mays 2400 Mb present random chromosomal distribution [37,49]

267 Prunus mume 280 Mb present - [40]

268 Solanum tuberosum 840 Mb present lineage-specific expansion [37,50]

268 Prunus persica 265 Mb present - [37,40]

292 Raphanus sativus 574 Mb present motif conservation [51]

298 Gossypium arboreum 1750 Mb present conserved exon/intron organization [52]

https://atted.jp/hclust/
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Table 1. Cont.

Numbers of
LRR-RLK Plant Species Genome Size Presence of Tandem

Duplication LRR-RLK Organizations References

297–300 Citrus clementina
Citrus sinensis

370 Mb
380 Mb present - [53]

300 Brassica rapa 455 Mb present intron/exon pattern organization,
motif conservation [37,54]

310 Setaria italica 515 Mb present motif conservation,
segmental duplication [37,55]

312 Brassica nigra 522 Mb present intra-chromosomal duplication,
conserved loci duplication [56]

332 Oryza sativa 430 Mb present exon duplication, mutation, and
exon shuffling [37,57]

367 Glycine latifolia 939 Mb present - [58]

384 Gossypium raimondii 761 Mb present motif conservation [37,59]

427 Pyrus bretschneideri 512 Mb present exon/intron organization,
motif conservation [60]

441 Populus trichocarpa 500 Mb present
segmental duplication,

exon/intron organization and
motif conservation

[37,61]

484 Brassica juncea 920 Mb present segmental duplications,
intra-/inter-genomic duplications [62]

485 Malus domestica 750 Mb present - [37,40]

494 Glycine max 1100–1150 Mb present exon/intron organizations,
motif arrangements [37,63]

531 Triticum aestivum 17,000 Mb present segmental duplications,
intra-genomic duplications [64]

548 Arachis hypogaea 2700 Mb present
segmental duplication,

exon/intron organization and
motif conservation

[65]

589 Thinopyrum elongatum 4780 Mb present segmental duplications [66]

The research on LRR-RLKs were mainly conducted in A. thaliana due to the avail-
ability of a large dataset. The increase in DNA and RNA sequencing in different crops
and A. thaliana allowed for the identification of the numbers of stress-related LRR-RLKs
(Table S1) and their sequence in other plants such as O. sativa, G. max, M. truncatula,
Populus, V. vinifera, S. lycopersicum, B. napus, and Z. mays (Table S2). Note that some of the
stress-related LRR-RLKs in A. thaliana have bigger numbers of orthologs in some plants,
such as G. max, M. truncatula, O. sativa, and Z. mays, as compared to A. thaliana (Table S2).
Only a few orthologs of stress-related LRR-RLK genes were investigated under biotic and
abiotic stresses and their functions were elucidated in different plants by using different
mutants of LRR-RLKs (Table S3).

3. Stress-Related LRR-RLKs in Plants

From a pool of 223 LRR-RLKs identified in A. thaliana (Table 1), some were clustered as
regulators of various growth and development processes (stem cell maintenance, anther
development, determination of the fate of a cell and organ development, cell expansion,
stem stomata development) [67–71], while others were shown or suggested to be important
in biotic and abiotic stress responses (Figure 1). One of the extensively studied genes among
LRR-RLKs is BAK1/SERK3, which regulates multiple processes such as Brassinosteroid
(BR) signaling, growth and development, and stomatal patterning, and also activates the
expression of antimicrobial proteins [20,72]. Recently, the role of BAK1 in guard cell ABA
signaling was demonstrated and bak1 mutants showed more loss of water as compared
to wild-type. The ABA increased the formation of a complex between BAK1 and OPEN
STOMATA1 (OST1) near the plasma membrane [73]. In addition, bak1–5 mutants revealed



Plants 2022, 11, 2660 5 of 20

that the post-invasive resistance of A. thaliana to Alternaria brassicicola is independent
of pathogen-triggered indole-3-carboxylic acid and its derivatives (ICAs) and camalexin
biosynthesis [74]. Notably, the function of BAK1/SERK3 in the immune response was
shown in tobacco and tomato plants against the late blight pathogen (Phytophthora infestans)
and bacterial and nematode infection [75,76]. Other SERKs, such as SERK1 and SERK2,
were also important genes for conferring resistance against bacterial leaf blight and fungal
infection, respectively [20,77,78]. In rice, OsSERK2 was shown as a positive regulator of
immunity, interacting with the rice immune receptor kinases (XA21 and XA3) [78]. It
was suggested that SERK2 could be a target for sRNAs of Sclerotinia sclerotiorum and the
resulting action may contribute to the silencing of immune components in plants [79].
Recently, using the serk2 mutant lines, it was observed that SERK2 is a component of BR
signaling and it regulates BR signaling and salt resistance in rice [80]. Previously, SERK4
together with SERK3 were shown to trigger a series of defense responses [20], but in recent
studies using knock-out and overexpressing lines of SERK4, it was observed that SERK4
negatively regulates the leaves senescence process [81].

Another well-studied LRR-RLK gene is BRI1, which interacts with SERK3 by mediating
BR signaling through the BRI1/BAK1 complex [72], and it regulates stem elongation, vas-
cular differentiation, seed size, fertility, flowering time, and senescence [8,17,82]. Moreover,
the mutant of BRI1 shows pleiotropic effects on disease resistance along with plant devel-
opment regulation [83], and it displays ABA-hypersensitive primary root growth [84,85].
In B. napus, S. lycopersicum, and B. distachyon, the role of BRI1 in BR signaling was con-
firmed [86–88]. Furthermore, BRI1 was involved in BR signaling through MAPK and
Ca2+-dependent protein kinases in rice [89]. Additionally, it was suggested that SlBRI1 is
related with systemin-mediated systemic defense response [90], however it was not estab-
lished conclusively [87]. In tobacco, NbBRI1 was involved in BR-mediated systemic defense
signaling by regulating H2O2 and NO production [91]. Recently, BRI1 manipulation in
different cereals resulted in drought tolerance [86], and disease resistance [83]. Additionally,
the overexpression of wheat TaBRI1 in A. thaliana revealed early flowering and enhance-
ment of seed production [92], while overexpression of SlBRI1 promoted fruit ripening and
ethylene production, and increased the levels of carotenoids, ascorbic acid, soluble solids,
and soluble sugars during fruit ripening [93]. In potato (S. tuberosum), BRI1 was involved
in the regulation of tuberization, thus suggesting other possible roles of BRI1 [94]. BIR1
is another LRR-RLK that forms a complex with SERK3/BAK1 or with other SERKs, and
these complexes were shown to repress the effector-triggered immunity (ETI) in the ab-
sence of pathogen effectors [72]. The LRR-RLK SOBIR1 also interacts with SERKs, serving
as a stabilizer of the protein complex and aids receptor complexes in triggering defense
responses [18]. Notably, the homolog of SOBIR1 activated the immune response in tomato
against fungal infection [18], but not in antiviral infection [95]. In tobacco plants, NbSOBIR1
was involved in the immunity of N. benthamiana through monitoring the production of
ROS [96]. Furthermore, the manipulation of GbSOBIR1 in cotton (G. barbadense) plants
resulted in resistance to Verticillium [97]. While EFR regulated the immune response of
plants after perceiving bacterial flagellin and EF-Tu by forming complexes with SERKs [72],
it was observed that A. thaliana efr mutants lacking EF-Tu perception are more susceptible
to transformation by Agrobacterium tumefaciens [98]. This revealed the importance of the
EF-Tu perception system for plant defense. The homologs of EFR in tobacco and in tomato
were also involved in pathogen-associated molecular patterns (PAMP)-triggered immunity,
and suggesting transgenic expression of EFR could be used as an engineering tool against
broad-spectrum bacterial infections [99]. In rice, it was shown that receptors EFR and
XA21 recruit similar immune signaling [100]. The overexpression of AtEFR in different
crops shows resistance to bacterial infection and/or symptoms. In wheat and apple, the
overexpression of AtEFR enhanced resistance against bacterial disease, fire, and blight [101],
respectively. Similarly, in M. truncatula, it reduced the bacterium infection [102] and in
potato it enhanced bacterial wilt resistance [103].
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Figure 1. Scheme of signaling pathways triggered by biotic- and abiotic-tested LRR-RLKs and crosstalk among them. The LRR-RLKs regulate various plant
processes, including growth, development, and responses to biotic and abiotic stresses. After perceiving abiotic and/or biotic stimuli by the LRR-RLKs, activation of
diverse signaling, such as MAPK activation (BAK1, PEPR1/2, SERK4), Ca2+ influx (BAK1), reactive oxygen species (ROS) production (RPK1, BAK1, RLK7, SOBIR1),
BR signaling (BRI1, SERK2, SERK4), ABA signaling (KIN7, PXL2, RPK1, BRI1, SERK2, BAK1), jasmonate (JA), and salicylate (SA) (PEPR1/2, LRR1, PSKR1) occurs.
Some LRR-RLKs may activate several signaling pathways depending on the type of stimuli: RPK1-ABA and ROS pathways; BRI and SERK2—ABA and BR pathway;
PEPR1/2—MAPK and JA/SA pathway, SERK4—BR and MAPK pathway, BAK1-BR signaling, Ca2+ and MAPK pathways. Senescence may be associated with
SARK and BIR1. Defense mechanisms against biotic stress stimuli are mediated by JA, SA, ROS, and MAPK pathways, and also additionally followed by LRR-RLKs:
NIK1, EFR, RLP23, RLK902, NIK3, and FSL2. Yellow color indicates tested abiotic stimuli, blue color is for tested biotic stimuli, and green for both stimuli.
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SERKs also form complexes with PHYTOSULFOKINE (PSK) RECEPTOR 1 (PSKR1),
which is known to regulate root growth and hypocotyl elongation [20]. Moreover, PSKR1
was also identified as an important component of plant defense [104]. PSKR1 suppresses
salicylate-dependent defense responses, where the pskr1 mutants exhibit early senescence,
a salicylate (SA)-associated response, and are impaired in wound healing, a jasmonate
(JA)-associated response [104]. Moreover, OsPSKR1 was involved in the immune response
against bacterial leaf streak in rice through salicylic acid (SA) pathway signaling [105].
PEP1 RECEPTOR 1 (PEPR1) and PEPR2 were involved in immune responses through inter-
action with SERK3 through AtPep1-triggered ROS production and ethylene signaling [20].
Furthermore, PEPR1 recognizes AtPep3 and increases tolerance to salt stress as well as
immune response [106]. Furthermore, it was suggested that AtPeps-PEPR signaling path-
way is involved in stomatal closure through an OST1-independent mechanism under biotic
stress [107]. PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 from S. lycopersicum was
shown to regulate responses to systemin, necrotrophic fungi, and insect herbivory [108].
Previously, RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) was linked to the water stress
response [2], wherein it regulates ABA/stress signaling by controlling ROS homeosta-
sis. Additionally, RPK1 and BAK1 form complexes with OST1 to regulate ABA-induced
stomatal closure [73,109].

The LEUCINE-RICH REPEAT PROTEIN 1 (LRR1) forms a complex with pathogenesis-
related protein10 (PR10), and it leads to cell-death-mediated defense signaling [110]. Addi-
tionally, it was shown in vivo and in vitro that during plant responses to drought stress,
LRR1 and KINASE 7 (KIN7) are degraded by PLANT U-BOX PROTEIN 11 (PUB11), an E3
ubiquitin ligase [111]. This KIN7 phosphorylates and activates tonoplast-located channels
during ABA- and CO2-mediated stomatal closure [112]. Recently, Leucine-rich receptor-like
kinase homologs in cereals such as barley and wheat showed important components of
defense responses against Fusarium by disbalancing salicylic acid signaling [113]. The silenc-
ing of LRR1 in rice in the XA21 genetic background (XA21-LRR1Ri, XA21 is 21 amino acid
tyrosine-sulfated epitope derived from the bacterial protein) compromises resistance to bac-
terial leaf blight, indicating involvement in XA21-mediated immune response [114]. Other
LRR-RLK, RECEPTOR-LIKE KINASE 902 (RLK902) previously showed importance in resis-
tance to Hyaloperonospora arabidopsidis (downy mildew) in A. thaliana [115]. RLK902 asso-
ciates with ENHANCED DISEASE RESISTANCE 4 (EDR4) and with BRASSINOSTEROID-
SIGNALING KINASE1(BSK1), a key component of plant immunity [116]. Not much is
known about LRR-RLK-like NSP-interacting kinases (NIKs), such NIK1, NIK2, and NIK3,
and their interaction with geminivirus nuclear shuttle protein (NSP). The binding of NSP
to NIK inhibits its kinase activity in vitro, and a phenotypic analysis of NIKs mutant lines
suggests that NIKs are involved in the antiviral defense response [117]. It was shown
that At-FEI2 (cell wall receptor-like kinase) plays a positive role in Arabidopsis and in
tomato defense against Botrytis cinerea based on the study using knockout mutants of the
Bc-siR37 [118].

The LRR-RLK genes have been shown to play important roles in response to abi-
otic stresses. In previous studies, ERECTA-LIKE1 (ERL1), a member of the gene family
closely related to LRR-RLKs, was shown to synergistically regulate plant development and
morphogenesis and functions in response to abiotic stresses, especially for heat response
and drought [2,119]. Recently, it was observed that the ERECTA family was involved in
sensing salt and osmotic stresses [120]. Furthemore, other LRR-RLK genes like PXY-Like
2 (PXL2) have been proven to be essential in vascular development through recognizing
small signaling peptides, and they play a role in ABA signaling [121]. While the PHLOEM
INTERCALATED WITH XYLEM-LIKE 1 (PXL1) is essential in cold and heat stress (through
the ROS), the PXL1 regulates HISTIDINE-RICH DEHYDRIN1 (AtHIRD1) and LIGHT-
HARVESTING PROTEIN COMPLEX I (AtLHCA1) by phosphorylation [122]. Another
LRR-RLK gene, such as SCHENGEN 3 (SGN3), is related with developmental processes,
particularly with microdomain organization and enhanced suberization in the endodermis.
Additionally, it was shown that the sgn3 mutant was extremely sensitive to environmental
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conditions, such as different temperatures and nutrient deficiency [123]. Moreover, the role
of BRI1-LIKE3 (BRL3) was reported in sensing glucose and flg22, where BRL3 together with
REGULATOR OF G-PROTEIN SIGNALING 1 (AtRGS1) prevents excess ROS burst and con-
trol growth inhibition [124]. Additionally, the overexpression of BRL3 resulted in drought
stress tolerance in A. thaliana through the accumulation of osmoprotectant metabolites,
such as proline and sugars [125]. In rice, the OsBRL1 and OsBRL3 were shown to be partly
involved in BR perception in the roots [126]. Another LRR-RLK, RLK7/LRR XI-23, was
involved in the regulation of seed germination and oxidative stress [127]. Furthermore, the
LRR-RLKs, RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) also known as TOAD2) together
with CLAVATA3 (CLV3), regulate the development of anthers, embryo, and stem cell home-
ostasis in the shoot apical meristem [2]. Single mutants of RPK2 and CLAVATA1 (CLV1)
and CLAVATA2 (CLV2) showed importance in nematode parasitism [128]. Furthermore,
RPK2 interacts with other LRR-RLK, such as SENESCENCE-ASSOCIATED RECEPTOR-
LIKE KINASE (SARK)—also known as CLAVATA3 INSENSITIVE RECEPTOR KINASE
3 (CIK3)—to maintain stem cell homeostasis [129] and anther development [33]. SARK
was shown to be a positive regulator of senescence through hormone imbalances [130].
Interestingly, PpSARK in moss was shown as a positive regulator of senescence in salt
stress responses and was also suggested to be a negative regulator of senescence [131]. In
common bean’s SARK, it did not coordinate senescence in nodules [132].

Thus, the mentioned LRR-RLK gene(s), which were tested in different biotic or abiotic
stress/senescence processes, shared similar signaling pathways, such as reactive oxygen
species (ROS) production, Ca2+ influx, activation of MAPK, regulation of defense genes,
regulation of stomatal patterning, hormonal regulation, and regulation of senescence-
related gene(s), to trigger the response of plants (See the scheme in Figure 1). Remarkably,
some LRR-RLK genes show crosstalk in triggering different programs (Figure 1) and their
numbers increased compared to the most recent review articles, which mentioned LRR-RLK
genes in biotic and abiotic stresses [17,20]. Therefore, we have additionally collected all
of the known single mutants of LRR-RLK genes and enlisted their phenotypic changes
under experimentally tested biotic and/or abiotic stresses in Table S1, where their crosstalk
can be easily observed. The information was gathered from the available microarray and
RNA sequencing data (online available GENEINVESTIGATOR), which is also useful in
predicting the potential role of genes for a particular stress stimulus [133]. Several LRR-RLK
genes were identified in biotic or abiotic stresses (Table S1). The microarray data analysis
of these LRR-RLK genes showed the alterations in expression under both types of stress
stimuli i.e., biotic and abiotic (Figure S1). For example, FEI2, NIK3, RLK902, RPK2, EFR,
SOBIR1, and NIK1, which were tested only in biotic stresses, showed a change in the
expression under abiotic stress as well (Figure S2). Similarly, the reverse was observed
for genes involved in abiotic stresses, such as RPK1, BRL3, ERL1, PXL1, PXL2, SARK,
RLK7/LRR XI-23, SGN3, KIN7, and PEPR1, as it showed a change in expression for biotic
stress too (Figure S3). The detailed characterization of these LRR-RLK genes under both
stresses is likely to provide additional information on their mechanistic role and may give
insight into the crosstalk among the LRR-RLKs.

4. Interactions among the Stress-Related LRR-LRKs

Several mutant lines, such as single, double, triple, and/or quadruple mutants, were
generated (Table S1) to investigate the function of these genes [8,15,33,134,135]. In these
studies, it was shown that the formation of complexes (dimer, trimer, or tetramer) is im-
portant in relaying the signals to the downstream components [13,14,28–31]. The genetic
evidence for interactions was confirmed by pull-down, gel filtration, bimolecular fluores-
cence complementation (BiFC), co-immunoprecipitation (CoIP), and protein kinase assay,
as presented in Table 2, Figures S4–S7. Most of the known functional interactions among
the LRR-RLK were shown as heterodimers and, in a few cases, as homodimers, e.g., SERK
1 and SERK2 (Table 2). The trimers were also shown and they perform different functions,
e.g., SOBIR-BAK1-RLP23, BON1-BAK1-BIR1, ER-BAK1-TMM, BIK1-BAK1-ERL1/2, FLS2-
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BAK-BIK1, and FLS2-BIK1-RBOHD play a role in the immune system [14,28,29,31,136,137];
and CLV1-CLV2-CRN in stem cell regulation [32,138]. The formation of some of the
LRR-RLK complexes were dependent on ligand stimulation, for example, ligands such
as flg22 [fragment of bacterial flagellin that binds the FLAGELLIN SENSITIVE 2 (FLS2)
receptor] and elf18 (the N-terminal of EF-Tu) stimulate the formation of BAK-FLS2 or BAK-
EFR dimers, respectively [16]. Similarly, SCFE1 (SCLEROTINIA CULTURE FILTRATE
ELICITOR1) or nlp20 (peptide motif) ligands stimulate the formation of the BAK1-SOBIR1-
RLP23 complex [14], while the binding of AtPep1 (endogenous peptide elicitor) induces
PEPR1-BAK1 heterodimerization [139]. The INFLORESCENCE DEFICIENT IN ABSCIS-
SION (IDA) stimulate the formation of heterodimers of SERK1 and SERK2 with HAESA
(HAE) and HAESA-LIKE2 (HSL2), and Cf-4 of the SERK1-SOBIR1 complex [14,30] (see
Figures S4–S7). Steroids may induce the generation of a LRR-RLKs complex, such as SERKs
and TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3), which activate the
BR signaling pathway [16,140,141], and an application of brassinolide (BL) stimulates the
formation of BAK1-BRI1 [16]. However, it was shown that the formation of heterotrimers,
BAK1-ER-TMM, BAK1-ERL1-TMM, and BAK1-ERL2-TMM, are not dependent on stimula-
tion ligands (EPF1 and EPF2) [29].

The formation of heterodimers with other LRR-RLKs, so-called co-receptors that
usually have short extracellular domains, is important for holding the ligand and stabilizing
it for the enhancement of the transduction of the intracellular signal [22]. The role of
heterodimers was mainly as a defense response, development process, BR signaling, or cell
death (Figures S4–S7). For example, BRI1 generated complexes with SERKs (BAK1/SERK3,
SERK1, and SERK4) and TTL3—only for BR pathway activation [16,140,141], BIR1 can
interact with BAK1, SERK1, SERK2, and SERK4 to inhibit plant cell death [14,30], and
EFR with SERK1, BAK1, and SERK4/BKK1 can activate the immune response [16,98]
and EFR with GLYCINE-RICH PROTEIN7 (GRP7) activates the PAMP-triggered immune
(PTI) response against Pseudomonas syringae [142]. SOBIR forms a complex with BAK1 for
immune responses against P.infestans and S. sclerotiorum [14,30], and the heterotrimer with
AtRLP23 is formed in the absence of BIR1 to activate cell death [14]. Additionally, PSKR1
may interact with SERK1/2 and BAK1 [143]. Furthemore, CLV1 forms heterodimers with
BAM1 (BARELY ANY MERISTEM1), SARK, and CRN (CORYNE), RPK2 [32,138,144,145],
which are important for apical and young floral meristem development. Conversely, other
LRR-RLKs that form variant complexes were shown to perform different roles. For example,
BAK1 interacts with FLS2, SOBIR1, NIK1, BKK1, BIR2, PEPR1, PSKR1, EFR, BIK1, RLP23,
ERL2, ERL1, ER, and TMM to activate immune responses [14,16,28–31]; with BIR1 to
inhibit plant cell death; with RPK1, BIR1, BON1 (BONZAI1), SOBIR1, and HSL2 to activate
cell death [30,109,146]; with BRI to activate BR pathway [8,16]; and with ER or ERL1 to
regulate stomatal patterning [147] (Figure S4). Other multifunctional LRR-RLK genes are
SERK1 and SERK2, which interact with EXCESS MICROSPOROCYTES 1 (EMS1) for anther
development [135]; with PXY to regulate procambial cell proliferation [23,148]; with ER or
ERL1 to regulate stomatal patterning; and with FLS2 and EFR, BRI1 and BAK1 for other
functions (Figure S5).

Some multifunctional LRR-RLKs, such as BAK1, SERK 1, SERK2, SERK4, SARK, NIK1,
and NIK3, were classified as co-receptors based on the length of the extracellular domain
(ECD) [22], which are able interact with other LRR-RLKs, and they are grouped as the LRR
(II) family. Some of the examples of members belonging to a particular family are as follows:
LRR (II)—SERK 4, NIK1, NIK3, SARK, and SERK5; LRR(III)—RPK1, RLK902, PRK1,
PRK2A, PRK4, PRK5, PRK6, MRLK; LRR(VII)—HYDROGEN PEROXIDASE-RESISTANT
1 (GHR1); LRR(IX)—BIR1; and LRR(V)—SRF1, SRF2, SRF3, SRF5, SRF6, SRF7, and SRF8
(STRUBBELIG-RECEPTOR FAMILY 1–3, 5–8). Other LRR-RLKs such as SOBIR1, FEI1, EFR,
FLS2, BRI1, CLV1, ERL1, ERL2, ER, HSL2, PXY, BAM1, BAM2, PEPR1, GSO1 (GASSHO1),
PSKR1, EMS1, RPK2, BRL1, BRL2, BRL3, PSY1R (PHYTOSULFOKINE RECEPTOR), and
IOS1 (IMPAIRED OOMYCETE SUSCEPTIBILITY1) (Table 2 and Table S4), which are
classified as ligand-perceiving receptors with long ECD and are grouped as LRR (I), LRR
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(X), LRR (XI), and (LRR XII) [22]. Mainly, these co-receptors potentially bind with ligand-
perceiving receptor groups for the activation and stabilization of complexes that sense
signals [8,13,16,22,28]. They also enhance signaling through sequential reciprocal receptor
transphosphorylation [149]. Different combinations of interactions among co-receptors
with different ligand-binding LRR-RLKs allows for the substitution of each other. This
creates difficulties in using a single mutant line for LRR-RLK gene studies. For example,
SERK1, SERK2, and BAK1 share the same players, like EFR and FLS2, although BAK1
is preferred by FLS2 among other SERKs, whereas EFR does not show preference to
BAK1 [16]. Yet, SERK1 and SERK2 could easily substitute each other for activation of a
similar plant response [16]. This regulation of stability of complexes is less studied, with
only a few reported cases. For example, BAK1 interacts with BIR1 or BIR2 to prevent
heterodimerization of the BAK1-FLS2 complex, and thereby inhibits an immune system
response [14,30]. Furthermore, BRI1 and SERK3 do not ubiquitously interact, they only
show interaction in the endosomes and in restricted areas on the plasma membrane. In
these sites, BAK1 is shown as a redistributor of BRI1 receptors [15]. Thus, most LRR-RLKs
form complexes, and some of the LRR-RLK in the complexes play key roles in the complex,
such as BAK1 [16,28], and some components in the complexes are able to substitute for
each other.

Additionally, the ATTED database showed different interactions among the proteins
based on various experiments and data (Table 2). The analysis of these interactions con-
firmed the known interactions of BAK1, SERK 1, SERK 2, SERK 4, NIK1, NIK3, and
SARK (Figures S4–S7), but also the additional potential heterodimerizations for these co-
receptors (Table 2). The less investigated co-receptors, like NIK1 and SARK, according to
this database, have a potential for binding with BAK1. Importantly, the CIKs, such as NIK1,
NIK3, and SARK, were shown in the stress response and in natural senescence [4,22], but
their co-receptors’ (heterodimers or homodimer) involvement in senescence or the stress
response was not shown (Table 2). It will be exciting in the future to reveal the additional
functions of these CIKs and to show the new interactions of the collected LRR-RLKs men-
tioned in Table S4. The interactions among the LRR-RLKs in other plants are less studied,
and only a few were confirmed in tomato and tobacco [75,150], rice [77], M. truncatula [151],
and wheat [92] (Table S4), and that was mainly done by using the yeast two-hybrid assays,
co-immunoprecipitation, and BiFC methods. Altogether, the study of new interactions
of LRR-RLKs in A. thaliana and other plants and the generation of new double or triple
mutants could help in functional and interactional analyses of LRR-RLKs.
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Table 2. Experimentally proven and potential interactions of stress-related LRR-RLKs with LRR-RLK co-receptors from LRR II. Data taken from different well-studied
research manuscripts and from ATTED database. The formation of heterodimers between the LRR-RLKs were labeled as “heterodimer” inside of box cross between
two LRR-RLKs one from column and second from row. Below the heterodimer formation were shown the method/s of identifications heterodimer formation such
as CoIP—coimmunoprecipitation; BiFC—bimolecular fluorescence complementation, gel filtration, pull-down, in vivo, genetically (by mutants analysis), kinase
assay, co-sedimentation in solution, solid-phase assay. NA indicates not available data reported the formation of heterodimer/s. Grey colored box indicates that
information taken from ATTED database about interaction was confirmed experimentally (published data), and white zone was not confirmed experimentally.

LRR-RLK SERK2 SERK1 SERK4/BKK1 SERK3/BAK1 SARK/Cik3 NIK1 NIK3/Cik1 References
co-receptors (LRR-RLKs from LRR II family accordingly classification of [22])

BIR1 heterodimer (BiFC) heterodimer (BiFC) heterodimer (BiFC) heterodimer (genetically,
in vivo, pull-down)

heterodimer
(solid-phase assay)

heterodimer
(solid-phase assay) NA [14,152]

FLS2 NA heterodimer
(in vivo)

heterodimer
(in vivo)

heterodimer
(in vivo, CoIP, gel

filtration)
NA heterodimer

(in vitro, pull down) NA [16,153,154]

ERL1 heterodimer (CoIP) heterodimer (CoIP) heterodimer (CoIP) heterodimer (in vivo,
CoIP)

heterodimer
(solid-phase assay)

heterodimer
(solid-phase assay) NA [147,152,153]

BRI1 NA heterodimer
(genetically, in vivo)

heterodimer
(in vivo)

heterodimer
(genetically, in vivo,

in vitro)
NA NA NA [146,149,155]

EFR NA heterodimer
(in vivo) heterodimer

heterodimer
(genetically, CoIP,

in vivo)

heterodimer
(solid-phase assay)

heterodimer
(solid-phase assay) NA [16,152,156]

ER heterodimer
(genetically, CoIP)

heterodimer
(genetically, CoIP)

heterodimer
(solid-phase

assay)

heterodimer (genetically,
pull-down, in vivo)

heterodimer (solid
phase assay)

heterodimer
(solid-phase assay) NA [29,147,152,153]

PXY
heterodimer

(genetically, in vivo,
in vitro)

heterodimer
(genetically, in vivo,

in vitro)
NA heterodimer (genetically,

in vivo, in vitro)
heterodimer

(solid-phase assay)
heterodimer

(solid-phase assay)
heterodimer

(solid-phase assay) [23,153]

co-receptors (LRR-RLKs from LRR II family accordingly classification of [22])

HSL2 heterodimer (CoIP) heterodimer
(CoIP) NA heterodimer

(CoIP)
heterodimer

(solid-phase assay)
heterodimer

(solid-phase assay) NA [152,157]

BAK1 heterodimer
(genetically, CoIP)

heterodimer (BiFC,
CoIP)

heterodimer
(genetically) NA heterodimer

(solid-phase assay)

heterodimer
(genetically,

in vivo,
in vitro)

heterodimer
(solid-phase assay) [127,130–132]

SERK1 heterodimer
(genetically, in vivo)

homodimer
(genetically, in vivo)

heterodimer
(solid-phase assay) heterodimer (BiFC, CoIP) heterodimer

(solid-phase assay)
heterodimer

(solid-phase assay) NA [152,153,155,158]

SERK2 homodimer
(genetically, in vivo)

heterodimer
(genetically, in vivo) NA NA NA NA heterodimer

(solid-phase assay) [152,158]

EMS1
heterodimer
(genetically,

kinase assay, BiFC)

heterodimer
(genetically, kinase

assay, BiFC)
NA NA NA NA NA [135]
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Table 2. Cont.

LRR-RLK SERK2 SERK1 SERK4/BKK1 SERK3/BAK1 SARK/Cik3 NIK1 NIK3/Cik1 References

SERK4 heterodimer
(genetically, CoIP)

heterodimer
(solid-phase assay) NA heterodimer

(genetically)
Heterodimer

(solid-phase assay)
Heterodimer

(solid-phase assay) NA [16,152]

NIK1 NA heterodimer
(solid-phase assay)

heterodimer
(solid-phase assay)

Heterodimer
(genetically,

in vivo,
in vitro)

Heterodimer
(solid-phase assay) NA NA [152–154]

PSKR1

heterodimer
(solid-phase assay,

co-sedimentation in
solution)

heterodimer(molecular
sieving) NA

heterodimer
(genetically, CoIP, gel

filtration)

heterodimer
(solid-phase assay) NA NA [143,153]

co-receptors (LRR-RLKs from LRR II family accordingly classification of [22])

SOBIR1 heterodimer
(solid-phase assay) NA NA heterodimer (genetically,

CoIP) NA NA NA [30,153]

RPK1 NA NA NA heterodimer (genetically,
pull-down, kinase assay)

heterodimer
(solid-phase assay)

heterodimer
(solid-phase assay) NA [109,152]

PEPR 1 NA NA NA heterodimer (pull-down,
gel filtration) NA NA heterodimer

(solid-phase assay) [153,159]

ERL2 NA heterodimer
(solid-phase assay)

heterodimer
(solid-phase assay) heterodimer (genetically) heterodimer

(solid-phase assay)
heterodimer

(solid-phase assay) NA [29,152]

RPK2 NA NA NA NA heterodimer (in vivo,
pull-down)

heterodimer
(solid-phase assay)

heterodimer
(genetically) [129,153]

CLV1 NA NA NA NA heterodimer (in vivo,
pull-down) NA heterodimer

(genetically) [129]

BAM1 heterodimer
(solid-phase assay) NA NA NA heterodimer

(pull-down)
heterodimer

(solid-phase assay)

heterodimer
(genetically, BiFC,

CoIP)
[33,153]

BAM2 NA NA NA NA heterodimer
(pull-down)

heterodimer
(solid-phase assay)

heterodimer
(genetically, BiFC,

CoIP)
[33,153]
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5. Conclusions

Plants must evolve to adapt and tolerate harsh environments. The perception of
biotic and abiotic stimuli is crucial for the survival of plants. Among the large numbers
of receptors, the LRR-RLK are not only involved in different development biological
processes but also in stress response processes. The rapid development of genome and
RNA sequence analyses have allowed for the identification of the many LRR-RLKs genes in
different monocot and dicot plants. As compared to A. thaliana, not much is known about
the functions of LRR-RLKs in other plants such as tomato, tobacco, wheat, rice, H.vulgare,
B. distachyon, etc. Additionally, stress-related LRR-RLKs in A. thaliana are mainly shown to
play a role in biotic stresses, and to some extent in abiotic stresses. For the functional study
of LRR-RLKs, a single mutant is of little use to capture all their functions, and, as LRR-RLKs
can be substituted by other members, they do not have non-specific ligand binding and
they have the ability to make different protein complexes (di-, tri-, or tetramer). The double,
triple, and quadruple mutant generation for LRR-RLKs in A. thaliana and/or crop plants is
a powerful tool for identifying the function role of LRR-RLKs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11192660/s1, Figure S1: Microarray analysis of the biotic and abiotic stress related
LRR-RLK genes transcripts in response to biotic and abiotic stresses in WT (Col ecotype). Figure S2.
Microarray analysis of the biotic stress related LRR-RLK genes transcripts in response to biotic and
abiotic stresses in WT (Col ecotype). Figure S3. Microarray analysis of the abiotic stress related
LRR-RLK genes transcripts in response to biotic and abiotic stresses in WT (Col ecotype). Figure S4.
Protein interactions of BAK1/SERK3 with other LRR-RLK with experimental proved functional role.
Figure S5. Protein interactions of SERK1 and SERK4 with other LRR-RLK with experimental proved
functional role. Figure S6. Protein interactions of SERK2 with other LRR-RLK with experimental
proved functional role. Figure S7. Protein interactions of CIK’s (NIK1, NIK3 and SARK) with other
LRR-RLK with experimental proved functional role. Table S1. Phenotypes of single mutants of
LRR-RLK genes in A. thaliana tested under different biotic and abiotic stresses. Table S2. Orthologous
of stress related LRR-RLKs genes in A. thaliana, O. sativa, G. max, M. truncatula, Populus, V. vinifera,
S. lycopersicum, B. napus, Z. mays. Table S3. Genetic tools in different crop plants in investigation of
stress-related LRR-RLKs. Table S4. Potential interactions of stress-related LRR-RLKs (from LRR II
family) with other LRR-RLKs. References [160–181] are cited in the supplementary materials.
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