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Abstract: Tomato (Lycopersicon esculentum) is one of the most popular and valuable vegetables in
the world. The most common products of its industrial processing in the food industry are juice,
tomato paste, various sauces, canned or sun-dried fruits and powdered products. Tomato fruits
are susceptible to bacterial diseases, and bacterial contamination can be a risk factor for the safety
of processed tomato products. Developments in bioinformatics allow researchers to discuss target
probiotic strains from an existing large number of probiotic strains for any link in the soil–plant–
animal-human chain. Based on the literature and knowledge on the “One Health” concept, this study
relates to the suggestion of a new term for probiotics: “One Health probiotics”, beneficial for the
unity of people, animals, and the environment. Strains of Lactiplantibacillus plantarum, having an
ability to ferment a broad spectrum of plant carbohydrates, probiotic effects in human, and animal
health, as well as being found in dairy products, vegetables, sauerkraut, pickles, some cheeses,
fermented sausages, fish products, and rhizospheric soil, might be suggested as one of the probable
candidates for “One Health” probiotics (also, for “One Health—tomato” probiotics) for the utilization
in agriculture, food processing, and healthcare.

Keywords: tomato; rhizosphere bacteria; tomato processing; Lactiplantibacillus plantarum; “One
Health” probiotic

1. Introduction

Tomato (Lycopersicon esculentum) is one of the leaders in the classification of useful
products. It is also one of the most popular and valuable vegetables in the world [1]. It con-
tains many useful compounds, such as ascorbic acid [2], lycopene, β-carotene, anthocyanin,
and others [3,4]. The content of trace elements and the above-mentioned compounds in
tomatoes also create prerequisites for their use as components in various diets, and they can
be used to reduce the risk factors of many diseases (cancer, osteoporosis, cardiovascular dis-
eases) [1,5]. Wild tomato species and varieties have a rich potential for genetic diversity and
greatly contribute to the selection of new, valuable genotypes with high productivity and
an ability to adapt to stress. Despite researchers’ ongoing interest in transgenic crops [6,7],
genetically modified crops, including tomatoes, can cause unpredictable environmental
problems [8]. Currently, the selection of tomato varieties with valuable properties is a
primary task for the researchers. Analysis in the field of breeding allows us to conclude
that the genomic potential of tomato species is not fully used and there is a possibility of a
wide choice of varieties. During recent years, tomato species have been supplemented with
new, high-yielding varieties and hybrids, which are not only more resistant to diseases and
pests, but also contain more vitamin C, total sugar, dry matter and acidity.
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The most common products from the industrial processing of tomato fruit in the
food industry are juice, tomato paste, various sauces, canned or sun-dried fruits and
powdered products. Methods for obtaining various concentrates containing biologically
active compounds (including carotenoids and lycopene) from tomatoes, as well as from
the byproducts of their processing (pulp, skin and seeds), are well known [9]. Tomatoes
are also a subject of interest for the cosmetic and perfumery industries when developing
organic cosmetics line [10]. If a cosmetic contains individual components of tomatoes
(lycopene, quercetin, salicylic acid, vitamin C, β-carotene), it will have a protective effect
on skin from ultraviolet radiation and will slow down the aging of the skin by reducing the
number of free radicals [11]. Due to the presence of sterols and vitamin E, tomato seed oil
allows us to restore the protective barrier of the skin, thereby increasing its overall level
of moisturization. Salicylic acid is effective in the treatment of inflammatory processes of
the skin (acne). It has an antibacterial, keratolytic effect. In addition, lycopene stimulates
the production of antioxidant enzymes that prevent the development of inflammation [12].
However, tomato fruits are susceptible to bacterial diseases, the intensity of the develop-
ment of which depends both on the characteristics of the processing of the plant and on
their general condition. In addition, bacterial contamination is a risk factor for the safety of
processed tomato products, such as tomato juice and tomato paste.

One Health is the concept of the interconnection of human, animal and environ-
mental wellbeing [13,14]. The concept focuses on interactions between humans and their
environment as a trigger for health and disease mainly through the cycling of environ-
mental microbial communities [15]. Here, we hope to draw the attention of researchers
to tomato-probiotics/“One Health” probiotics to protect both fruits and tomato products
from bacterial infections.

2. Soil—Tomato Rhizosphere Bacteria

Soil has a significant impact on the promotion of plant growth and productivity, mainly
through plant–rhizosphere microbiome interaction [16,17]. Rhizobacteria, having a direct
effect on the modulation of phytohormone levels, ammonia production and phosphate
solubilization, may also have antibiotic, siderophore and hydrogen cyanide production
effects [18]. Overall, the plant growth-promoting bacteria and mycorrhizal fungi participate
in nutrients, mobilizing and stimulating growth and increasing the yield of plants. Accord-
ing to Lee and coauthors, changes in rhizosphere soil microbiota are revealed in association
with the healthy or diseased state of the rhizosphere [19]. In addition, host genetics affect
human [20,21], animal [22] and plant microbiomes [23,24]. The tomato genotype influences
the potential functions of soil bacterial communities. In general, wild tomatoes differ from
modern cultivars and tomato landraces [25]. The subgroups of Rhizobiales, Xanthomonadales,
Burkholderiales, Nitrosomona-dales, Myxococcales, Sphingobacteriales, Cytophagales and Aci-
dobacteria from the Proteobacteria, Bacteroidetes and Acidobacteriaare are the dominant tomato
rhizosphere bacteria [26]. The strains Pseudomonas fluorescens, Bacillus sp., Azotobacter, Serra-
tia, and Micromonospora are involved in tomato disease management and tomato growth
promotion [27]. However, the bacteria from the plant rhizosphere microbiome might also
compete with other soil rhizobia—the ‘’rhizobial competition problem” [28]—and compete
with plants for nutrients, or they might act as soilborne plant pathogens [29,30].

Different methods, including spectral [31] and molecular: classical and nested, multi-
plex, quantitative, bio- and magnetic-capture hybridization polymerase chain reaction, as
well as amplification and sequencing methods/tools [32] are currently used for the early de-
tection of bacterial and fungal plant diseases. The main treatment methods for most tomato
diseases, for example anthracnose (causative agent: Colletotrichum spp.), bacterial canker
(causative agent: Clavibacter michiganensis subsp. michiganensis), bacterial speck (causative
agent: Pseudomonas syringae pv. tomato), bacterial spot (causative agent: Xanthomonas spp.),
fusarium wilt disease (causative agent: Fusarium oxysporum f. sp. lycopersici), bacterial
wilt (causative agent: Ralstonia solanacearum) and others are fungicides, which might face
complications in association with bacterial resistance, which is more related to bacterial spot
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than to bacterial speck because of the absence of any important problem in the Pto gene. In
the case of bacterial canker, two genes for resistance have identified the need for additional
investigations on bacterial resistance (http://www.omafra.gov.on.ca/english/crops/facts/
05-069.htm) (accessed on 11 May 2020). To avoid major bacterial diseases and to neutralize
causative bacteria as reservoirs of diseases, it is also necessary to protect weeds in/around
the field (http://www.omafra.gov.on.ca/english/crops/facts/05-069.htm) (accessed on
11 May 2020). Researchers are looking for low-toxicity, high-selectivity, high-activity fungi-
cides to limit the use of several fungicides because of the toxicity of their residues and/or
the resistance of plant pathogens to these fungicides [33]. Some of the technologies being
examined are: bacteriophages, systemic acquired resistance, bacteriocins and microbial
control agents. In comparison with synthetic or chemical fungicides, the “natural” ones (bio
fungicides from natural sources), mostly with a plant or microbial origin, are preferable and
are widely used as agricultural bioweapons [34]. The investigations of Chanthini and coau-
thors on the antifungal activity of bacterial cultures against Alternaria solani have shown
that the spraying bacterial cultures on diseased tomato plants might reduce the severity of
blight disease in tomato from 86% to 5.33% [35]. Other studies on the selection of bacterial
candidates that are capable of not only preventing the growth of plant pathogens, such
as Botrytis spp., Colletotrichum spp., Phytophthora spp. and Verticillium spp., but that also
are metabolically efficient, revealed effective strains from the genera Arthrobacter, Bacillus,
Pseudomonas and Rhodococcus, which are also resistant to chemical stress [36].

At the same time, it is known that the applications of bacterial cultures are used
for the preservation of tomato products. In vitro screening of 55 strains by antagonistic
activity against crop pathogens (Pseudomonas syringae pv. Actinidiae from the kiwifruit,
Xanthomonas arboricola pv. Pruni from the prunus and Xanthomonas fragariae from the
strawberry) revealed high activity of the strains Lactiplantibacillus plantarum (formerly
Lactobacillus plantarum) CC100, PM411 and TC92, and of Leuconostoc mesenteroides CM160
and CM209 against pathogens [37].

Biotechnological processes related to bacteria make it possible to obtain many valuable
chemical compounds. For example, bacterial metabolites may be a potential source of
bioactive molecules, such as tripyrrolic, red-colored prodiginines, which not only have
antimicrobial activity against plant pathogens but also have antinematodal activities [38].
The combined use of modern molecular genetic methods and toolsets, enzyme engineering,
as well as biocatalysts and bioinformatics, make it possible to obtain many natural plant
antimicrobial compounds [39]. Genome editing (GE) tools such as the clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas-mediated GE have been recently
used to study plant–microbe interactions for agronomic trait improvement [40]. However,
understanding how plants manipulate their microbiome is important both for the design
of next-generation microbial inoculants–probiotics [41] and for GE designs for targeted
disease suppression and enhanced plant growth.

3. Farm to Fork Strategy

The European Commission’s Farm to Fork Strategy (European Commission, Eur-lex,
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381) (accessed
on 20 May 2020), a key element of Green Europe, relates to challenges facing European
agriculture and proposes measures for creating a more resilient and sustainable food sys-
tem [42] based on reducing its impact on the environment while increasing its resilience and
ensuring food security. Agricultural systems are complex, so “social innovation”/“technical
innovation”, or any other solution, will need a tradeoff requiring public choice. For ex-
ample, the goal of reducing the number of pesticides requires farmers to develop new
knowledge to find other ways of controlling pests [43] and pathogenic bacteria.

4. Probiotics

The use of fermented milk is associated with the history of mankind, the earliest
records of which date back to BC 6000 [44,45]. Even different communities in the same re-
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gion, due to their cultural peculiarities (e.g., availability of raw materials of plant and animal
origin), have their own unique fermented products [46]. For example, fermented products
include airag (Mongolia), kefir (Russia), chhurpi (India, Nepal, Bhutan, China), dadih
(Indonesia) [46], miso, shoyu, natto (Japan) [47], choratan and matsuni (Armenia) [48].

Despite the aforementioned facts, a scientific basis for the process of fermentation was
discovered rather late. It was described for the first time by the founder of contemporary
chemistry, A. Lavoisier, in the 1700s. Nevertheless, it was Louis Pasteur who finally
proved that microorganisms are what cause lactic fermentation [49]. In 1899, Henry Tissier
announced that faecal bifidobacteria are prevalent representatives of a healthy person’s gut
microbiota. He offered to feed newborn babies suffering from diarrhea with bifidobacteria
collected from a breastfed infant [50].

According to Krawczyk and Banaszkiewicz, the Polish doctor Józef Brudziński ap-
plied a Bacillus lactis aërogenes suspension in the treatment of infants with acute infec-
tious diarrhea [51]. In 1908, a Russian microbiologist, Nobel Prize award winner Élie
Metchnikoff, and Paul Ehrlich, one of the commonly acknowledged founders of probi-
otics [52–54] showed that harmful bacteria can be replaced with beneficiary ones extracted
from fermented milk to treat intestinal diseases [55]. Metchnikoff linked the longevity of
people’s lives with the high intake of fermented milk products [56]. Studies on pro-
biotics were only revived by Levon Erzinkian in 1940 after Metchnikoff’s death [54].
He was the first scientist in the former USSR who recognized the probiotic era in the
1940s. Starting at the end of 1940s, L. Erzinkian, the founder of technical microbiology
(biotechnology) in Armenia [52], created a new method of acidophilotherapy and pro-
vided norms for feeding acidophilic milk to babies, children and adults [52,57,58]. He
isolated more than 1640 strains of acidophilic bacteria [57]. Out of them, he selected
more than ten of the most active strains and used those for the treatment of bacterial
dysentery at the end of 1940s and at the beginning of 1950s in infection clinics and in a
military hospital in Yerevan, Armenia [58]. These strains, widely studied and used in
Armenia, were unknown to the Western world until the collapse of the Soviet Union. The
study of the Lactobacillus acidophilus n.v. ep 317/402 strain “Narine”, began in Japan in
the late 1980s (https://hwpartners.co.jp/en/about-narine/ (accessed on 15 March 2014);
https://www.jstage.jst.go.jp/article/milk/53/2/53_37/_article/-char/en) (accessed on
15 March 2014). In 2017, Narine expertise originating from Armenia expanded to the USA,
Japan, Korea, Eastern Europe (Russia, Ukraine, Belarus), the Baltics (Latvia, Lithuania)
and Central Asia (Uzbekistan, Kazakhstan) (https://hwpartners.co.jp/en/about-narine/)
(accessed on 15 March 2014). Nowadays, Effective microorganisms (or EM technology) are
well known in more than 140 countries around the world, developed by Professor Teruo
Higa in Japan in 1982 (https://www.emrojapan.com/what/). This technology is based on
more than 80 bacterial strains that are safe for humans and animals. According to the man-
ufacturers, one of the strengths of EM is that the combination of different bacteria provides
a wide range of applications for the product. EMs are used in many systems related to
agriculture and environmental management (https://www.emnz.com/research/tomatos)
(accessed on 15 March 2014). EM “tomato” technology is partly aimed at influencing the
photosynthesis of the host, the fruit yield and the quality of the tomato plant with the help
of a bacteriological vaccine [1].

The term “probiotics” as “active substances that are essential for a healthy devel-
opment of life” was described by Werner Kollath in 1953 and by Ferdinand Vergin in
1954 [59,60]. Probiotics are alive bacterial cells that, when administered in adequate
amounts, benefit the host’s health [61] and can have a substantial impact on the func-
tionality of human and animal [48,62–67] organisms, as well as on plants [68]. Plant
probiotics are used to increase resistance to pathogens [69] and improve yields by reducing
or even eliminating chemical fertilizers [68]. There is a lot of information about the mecha-
nisms of the action of probiotics [70–73]. A set of mechanisms that sometimes overlap relate
to both the direct effects of probiotics/postbiotics and the effects of probiotics’ metabolites
(Table 1).

https://hwpartners.co.jp/en/about-narine/
https://www.jstage.jst.go.jp/article/milk/53/2/53_37/_article/-char/en
https://hwpartners.co.jp/en/about-narine/
https://www.emrojapan.com/what/
https://www.emnz.com/research/tomatos
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Table 1. Main mechanisms that determine the beneficial effects of human/animal probiotics.

Mechanism Effect

Production of antimicrobial substances

Probiotic strains might secrete substances that may participate in the formation of
endosomes [74].The effects of probiotic bacteriocins on the exhibition of selective

as well as target-specific antagonistic activities in host organisms are known
[75].Despite varying degrees of efficacy, the intake of certain probiotics in healthy

voluntaries is associated with a positive impact on the status of certain
micronutrients: vitamin B12, calcium, folate, iron and zinc [48,76]. In addition,

probiotics might also be potential producers of biotin and pyridoxine [48], and the
impact of lactobacilli metabolites through their chemical nature (hydrogen

peroxide [77], lactic acid, folic acid, vitamins) against the growth of competing
species is also known. The effect of probiotics can be mediated by their

metabolites, such as short-chain fatty acid (SCFA), in particular, propionate,
acetate and butyrate, which may exercise anti-inflammatory effects [74], too.

Interactions of probiotics with intestinal
commensal bacteria and with pathogens

Probiotics are used to prevent/alleviate enteric infections [78]. Through the
manganese transporter (MntH1), probiotics might also influence the depletion of
manganese, an essential trace element, inhibiting the growth of spoilage-bacteria

in dairy products [79].

Interactions of probiotics with the
host epitelium

Probiotics can regulate intestinal permeability as well as compete with, for
example, viruses (viral receptors) to bind receptors on epithelial cells [80].

Impact on a pathogen’s toxin
production/utilization

Probiotics may have beneficial outcomes through their effect on the production of
pathogen toxins [81].

Immunomodulation of the innate immune
response to anti-inflammatory direction

The anti-inflammatory effects of probiotics through in vitro and ex vivo studies as
well as in animal experiments is known [82].

Immunomodulation of the innate immune
response to pro-inflammatory direction

Immunomodulation of the innate immune response to pro-inflammatory direction
by the probiotics is known [82,83].

Adaptive immune response Probiotic bacteria are involved in the development of adaptive immune
responses [83].

Antibody formation Probiotic bacteria are involved in antibody formation [81].

According to Table 1, probiotics might be potential producers of water-soluble ri-
boflavin, biotin, folate, pyridoxine and other micronutrients [48]. The results indicate that
the intake of certain probiotics, probably the producers of micronutrients, is associated
with a positive impact on the status of these substances (in particular, vitamin B12, calcium,
folate, iron and zinc) in healthy voluntaries [76]. On the other hand, the impact of probiotics
on other metabolites (hydrogen peroxide [77], lactic acid and certain short-chain fatty acids
(SCFA) [74]) against the growth of competing species is also known [84]. It is also well
known that the effect of probiotics can be mediated by their metabolites, such as SCFA,
in particular, propionate, acetate, and butyrate, which may exercise anti-inflammatory
effects [74].

Thus, the main mechanisms that determine the beneficial effects of human/animal
probiotics relate to the production of antimicrobial substances; to interactions between
the probiotics and the intestinal commensal and pathogenic bacteria, as well as with
the host epithelium; to their impact on a pathogen’s toxin production/utilization; to
immunomodulation of the innate immune response to both anti-inflammatory and pro-
inflammatory directions; and to effects of probiotic bacteria on the development of the
adaptive immune response (Table 1). Vertebrate immune cells provide the host with
potent antigenic activity and memory; probiotic bacteria might be involved in antibody
formation and development of the adaptive immune response [85,86]. Modulation of
mucosal barrier function [87], as well as inhibition of neutrophil migration [88], may also
be important mechanisms where probiotics can affect intestinal diseases. The direct effect
of probiotics/postbiotics on gastric Helicobacter pylori is not excluded either [89].

Haas and Keel first used the term “Plant Probiotic Bacteria” referring to “a group
of microorganisms benefiting plants, which fulfils three essential criteria that combined
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result in better plant protection: (i) effectiveness and competitiveness in niche coloniza-
tion, (ii) the ability to create induced systemic resistance in their hosts and (iii) presence
of direct antagonistic traits on pathogens” [68]. These probiotics might also be effective
in alleviating stresses from salinity/heavy-metal accumulation [68]. Plants do not have
specialized immune cells, although it is believed that plant cells can carry out an effective
immune response based on their plant-innate immune system, including self-monitoring,
system signals and chromosomal changes [90]. Plant probiotic bacteria, being promoters of
vegetable food quality, also realize their beneficial role through different direct and indirect
mechanisms [91]. The main supposed mechanisms of tomato probiotic bacteria are related
to the biocontrol of tomato pathogens [92], phytostimulation [93,94] and nutrient mobiliza-
tion [93]. Investigations on the phytostimulation effects of Trichoderma harzianum, Bacillus
subtilis and arbuscular mycorrhizal fungi, through their ability to induce pathogenesis-
related-proteins (chitinase, β-1,3-glucanase, peroxidase, phenylalanine ammonia-lyase as
well as phenolics), in tomato plants described the effectiveness of these bacteria against
Fusarium oxysporum f. sp. radicis-lycopersici infection [94]. Another study on approxi-
mately 400 tomato root-associated bacterial isolates (the majority belonging to Bacillales,
Enterobacteriales, and Pseudomonadales) revealed that about 33% of these isolates produced
siderophores and were able to solubilize phosphates and also revealed that about 30% of
these bacteria (the majority belonging to Bacillus spp.) had antimicrobial activities against
all the tomato pathogens tested [93]. The strains Pseudomonas sp. 19Fv1T [95], Bacillus
megaterium and Bacillus amyloliquefaciens [96] not only are able to enhance tomato yield,
but also increase the concentration of vitamin C in tomato fruits [97]. However, if Bacillus,
Paraburkholderia, Pseudomonas, Acinetobacter, Alcaligenes, Arthrobacter and Serratia plant pro-
biotic strains are mostly known for promoting plant growth [98], the lactobacilli probiotics
might suppress several diseases in Chinese lettuce, onion, potato, and tomato [99]. At the
same time, several studies have shown that the addition of probiotic lactobacilli, particu-
larly L. rhamnosus strains, to human/animal/apiary food may reduce the negative effects
of organophosphate pesticides used in agriculture [100].

In the modern world, it is advisable to use natural ingredients instead of chemicals and
food additives not only to preserve plant biodiversity, but also to increase food storage ca-
pacity. For example, the use of probiotic strains of lactic acid bacteria (LAB)-producing bac-
teriocins is of great interest, since they are generally recognized as harmless microorganisms
and their antimicrobial products are effective bio-preservatives. A wide variety of secondary
metabolites of probiotics (pigments, vitamins, antibiotics, etc.) have important applications
in human and animal health [101]. The cancer-preventive [101–103], antidiabetic [104,105],
anti-depressive [67,106] and antihypertensive [107] effects of probiotics/their metabolites
as functional ingredients have been reported previously. Moreover, the impact of probiotics
on viral and respiratory tract infections has also been described [108]. It is also possible to
“regulate” probiotic antagonistic activities through the use of different technologies [62].
In food technologies that use tomatoes or their processed products, it is advisable to use
plant-specific probiotic strains that have previously been assessed for efficacy and safety in
model food systems, as well as in adequate biological test systems [109,110]. Unlike the
potential negative effects of antibiotic use [111], the use of probiotics in healthcare [112],
as well as in food production, is effective in combating pathogens and has no negative
consequences [113–115].

“One Health” Probiotics

Soil ecosystems contain and support the largest amount of biodiversity on the planet,
which mostly consists of microorganisms that are beneficial to humans and animals. The
One Health concept allows us to consider some infectious diseases from three sides: harm
to the environment, their impact on human health, and their impact on animal health.
In general, soil and the human gut contain approximately the same number of active
microorganisms [116]. However, the diversity of the human gut microbiome is only 10% of
soil biodiversity [116]. Based on this knowledge and the probiotic formulation [61], “One
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Health” or “universal” functional probiotics were previously suggested by Malkhasyan
and Pepoyan as next-generation probiotics, beneficial to both humans and their environ-
ment [117]. EM technologies mainly refer to microorganisms that are effective in soil and
aquatic environments. EMs do not apply, for example, to plant and animal-origin raw
material technologies or product processing. EM technologies do not oblige us to use
plant probiotics for food processing (both of plant and animal origin) or for veterinary and
health purposes. For example, effective microorganisms used for growing tomatoes are
not ready to immediately ensure the safety of receiving and storing tomato juice, tomato
paste, various sauces, canned or sun-dried fruits or powdered products. It is assumed
that “One Health” probiotic microorganisms belong to 10% of microorganisms common to
the human gut and soil microbiome. It is likely that, first of all, “One Health” probiotics
might be the result of the screening of a new generation soil/plant/animal probiotics from
“human” probiotics.

Table 2 presents the effects of lactobacilli probiotics (Lactiplantibacillus plantarum, L.
acidophilus, Lacticaseibacillus casei and Lacticaseibacillus paracasei, Lactobacillus del-
brueckii, Lacticaseibacillus rhamnosus and Leuconostoc mesenteroides) on human, animal
and plant health.

Table 2. Effects of lactobacilli species.

Probiotic Human Animal Plant (Tomato)
Products Plant Soil

Lactiplantibacillus
plantarum

Food-associated
Lpb. plantarum
shows a good

adaptation and
adhesion ability in
the gastrointestinal

tract and the
potential to affect

host health
through various

beneficial
activities [118].

Lpb. plantarum
supplementation can

modulate overall
health and

immunity [119] as
well as gut microbial
composition and the
interaction network

between gut
microbiota and

the immune
system [120].The
anti-Helicobacter

pylori effects of the
probiotic in the

stomach tissue of
C57BL/6 mice has

also been
described [89].

The use of this
probiotic in the

creation of
fermented tomato

juice products might
be quite effective

[113,114]. Lpb.
plantarum is the main

bacterial species
associated with olive

processing [121].
Probiotic tomato

juice could serve as a
health beverage for

vegetarians/consumers
who are allergic to

dairy products [122].

This probiotic has
been frequently

found in
environments

associated with
plants [123–125].

Significant
stimulation of
germination in

tomatoes with poor
initial germination

capacity was
achieved by soaking
their seeds for 6 h in
suspensions of nine

out of ten Lpb.
plantarum strains

tested [126].

This
probiotic has

highly
antagonistic

activities
against most

soil
pathogens

[37].

Lactobacillus
acidophilus

The beneficial role
of this probiotic in

regulating
imbalances in

human intestinal
microbiota [127],

as well as in
improving overall
human health, is

well- known [128].
The probiotic

participates in the
biodegradation
processes [129].

L. acidophilus
supplementation can

modulate overall
health, immunity,
and gut microbial

composition [130] as
well as the

interaction network
between gut

microbiota and
animal immune

system [120].

Probiotic tomato
juice, containing this
probiotic could serve
as a health beverage

for vegetarians or
consumers who are

allergic to dairy
products [122].

The probiotic might
be used as a plant
growth promoting

agent [131].Probiotic-
loaded edible

films/coatings are
known for

maintaining safety,
quality, nutritional

and functional
characteristics in

fruits and vegetables
for longer storage

periods [132].

Gut
lactobacilli
modulate

bioaccessibil-
ity in soil
lead [133].
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Table 2. Cont.

Probiotic Human Animal Plant (Tomato)
Products Plant Soil

Lacticaseibacillus
casei and

Lacticaseibacillus
paracasei

The effects of these
probiotics on skin

[134] and the
prevention of

age-dependent
cognitive decline
by upregulating

brain-derived
neurotrophic factor
expression in the
hippocampus, as

well as cAMP
response element
binding protein,
were revealed in

[135].

The Lcb. casei IMV
B-7280 strain has a

positive effect on the
gut microbiota

composition of mice
[136].

Probiotic tomato
juice could serve as a
health beverage for

vegetari-
ans/consumers who
are allergic to dairy

products [122].

The effects of
probiotic-loaded

edible
films/coatings on

the maintainance of
safety, quality and

nutritional and
functional

characteristics of
fruits and vegetables

for long storage
periods are known
[132]. Furthermore,

the effect of
gamma-irradiated

probiotics as an
edible coating to

enhance the storage
of tomato under cold
storage conditions is

known [137].

Lactobacillus
delbrueckii

The effects of this
probiotic on

immune responses
in the elderly were
described in [138].

The efficiency of this
probiotic’s

applications on pre-
and post-radiation
nutrition for rats

were described in
[48].

Probiotic tomato
juice could serve as a
health beverage for

vegetarians or
consumers who are

allergic to dairy
products [122].

Plant-originated L.
bulgaricus was
described by

Michaylova and
coauthors [139].

Lacticaseibacillus
rhamnosus

The effects of this
probiotic on the
modulation gut
microbiota were

described in [140].

The efficiency of this
probiotic on pre- and

post-radiation
nutrition for rats

were described in
[48].

Fermented apple
juice was the best
substrate for the

production of folic
acid via Lpb.

plantarum and Lcb.
rhamnosus [141].

The effects of
probiotic-loaded

edible
films/coatings on

the maintainance of
the safety, quality

and nutritional and
functional

characteristics of
fruit and vegetables

for long storage
periods are known

[132].

Leuconostocmesenteroides

The effects of this
probiotic on the

age-related decline
in T cell-related

immune functions
were shown in

[142].

This bacteria has
great potential as a
bee probiotic and
could enhance the

health of bee
colonies [143].

This bacteria, being
one of the

predominant in the
tomato surface

microbiome, helps to
control contaminate

proliferation on
tomato purée during

storage at abusive
temperatures [144].

The presence of this
bacteria in raw fruits

indicates the fact
that the fruit is

highly nutritionally
and bacteriologically

healthy [145].

LABs, the representatives of different ecosystems on Earth, exhibiting dynamic in-
teractions within the animal and plant kingdoms in relation to other microbes, evolved
along with plants, invertebrates and vertebrates, establishing either mutualism, symbiosis,
commensalism or even parasitic behavior with their hosts [146]. LAB strains, also one
of the main probiotic candidates [147], have been used in the production of fermented
food around the world since ancient times [148]. Lactobacillus species, having colonizing
abilities in the phyllosphere, endosphere and rhizosphere, are also able to colonize the
fruits and flowers of different plants, including tomato plants [149]. Moreover, the presence
of Lpb. plantarum in raw fruits indicates the fact that the plant is highly nutritious and
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bacteriologically healthy [145]. According to Table 2, the food-related probiotic strain Lpb.
plantarum [120], showing great adaptability and adhesion in the gastrointestinal tract of
host organisms, may contribute to the improvement of host gut health [120].

Studies on tomato juice containing such bacteria have shown that this product can
serve as a healthy drink for vegetarians or consumers who are allergic to dairy prod-
ucts [122]. The beneficial effects of the L. acidophilus [120,128,129], Lcb. casei and Lcb.
paracasei [134–136], L. delbrueckii [45,138], Lcb. rhamnosus [45,140] and Leuconostoc mesen-
teroides [142,143] strains on human and animal health are known as well (Table 2). As
with Lpb. plantarum, L. mesenteroides determines a fruit’s “health” [145]. Furthermore,
strains of L. acidophilus might be usable as plant growth promoting agents [131]. Regarding
lactobacilli comparative viability and folate production in apple, grape and orange juice,
after 48 h, viable bacterial cells are highest in fermented apple juice, which is not only
the best substrate for the growth of lactobacilli, but also for the production of folic acid
by Lpb. plantarum and Lcb. rhamnosus [141]. Very little is known about the effects of L.
acidophilus, Lcb. casei and Lcb. paracasei, L. delbrueckii and Lcb. rhamnosus strains on soil or
the modulation of bioaccessibility of soil heavy metals (Table 2).

Thus, Lpb. plantarum is a Gram-positive bacterium with a fairly large genome. It
produces two isomers of lactic acid (D and L) during growth at 15 ◦C and 4% NaCl. Strains
of Lpb. plantarum (and/or its bioactive products), having an ability to ferment a broad
spectrum of plant carbohydrates [119], probiotic effects on human [67,150,151] and animal
health [48,120,152], as well as being found in dairy products [152,153], vegetables [154],
sauerkraut, pickles, some cheeses, fermented sausages, fish products [155] and rhizospheric
soil [156], are probably the best candidates for “One Health” probiotics (and for “One
Health—tomato” probiotics). According to Table 2, the strains of L. acidophilus, L. delbrueckii,
Lcb. casei, Lcb. paracasei, Lcb. rhamnosus and Leuconostoc mesenteroides can also be considered
sources of “One Health” probiotics (Table 2). It is likely to find “ready-to-use one health
probiotics” in a range of probiotic strains, such as those found by Drs Erzinkian and Teruo
Higa and other investigators.

Despite the vital and useful features of this bacterium, a high concentration of Lpb.
plantarum in food can be the cause of its spoilage. It can also cause the production of mucus,
sourness and green coloring even in reprocessed goods. The formation of a moderate
amount of mucus is also typical of Lactobacillus sakei [157]. L. lactis is a Gram-positive
bacterium used in the dairy industry, which has homofermentative metabolism and gen-
erally produces L-(+)—lactic acid [158]. Nevertheless, in cases of low pH, D-(-)—lactic
acid can be produced as well. On the other hand, L. lactis subsp. lactis, previous Strepto-
coccus lactis [159], is used in the early stages of the production of various cheese types,
including Brie, Camembert, Cheddar, Colby, Gruyere, Parmesan and Roquefort [160]. A
high concentration of these microorganisms infuses milk and other dairy products with
apricot flavoring [161]. Leuconostoc spp is a Gram-positive, heterofermentative lactic acid
bacterium which is capable of producing dextran out of sucrose. Leuconostoc carnosum
was first isolated from meat kept in a refrigerator. It affects vacuumed and cooked meat
by causing rotting, changes in acidity and the formation of gas and/or mucus [162]. The
influence of lactobacilli on the spoilage of wine is also well known. Furthermore, this
bacterium can be the reason for the decomposition of cookies, the cause of which is the
heterofermentative feature of malonic acid.

5. Conclusions

Despite the presence of sufficient information on the processing of tomato, this data is
fragmented; there is no comprehensive approach to considering the entire chain, starting
from the selection of the variety and the conditions for growing raw materials, the param-
eters of preparing it for processing and technological methods for extracting functional
ingredients. The situation is similar to the production of probiotic preparations based on
cultures of commensal microorganisms for those strains that are capable of producing bac-
teriocins. Conducting complex scientific research in these areas is an extremely important
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and urgent task. On the other hand, the amount of research being conducted concerning the
plant probiotics of the tomato is continuously growing. Moreover, there are investigations
from ancient times that also certify the growth of both lactic acid bacteria and probiotics in
tomato juice and its technological processes. Nevertheless, up until now, there have been
no studies that propose the use of lactic acid bacteria from tomato fruit as stimulators of
technological production.

Discussions about the “necessity” of the use of probiotics, isolated from human gut
microbiota in different levels of the food chain, are also missing. It has been suggested that
these probiotics should be called “One Health” probiotics. The minimal requirement for
these probiotics (its concentration) is to be safe for use in different levels of the food chain
and, meanwhile, to contain useful features for human health. Analysis of the literature
states that lactobacilli, particularly Lpb. plantarum strains, can be used to ensure the
biosafety of “One Health” probiotics, e.g., tomato fruit and the biotechnological processes
of its production. However, upcoming developments in bioinformatics studies, based
on investigations of “probiotic” genes [67–70], will contribute to the detection and use of
“One-Health” probiotics from tomatoes.
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