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Abstract: Coenzyme Q10 (CoQ10) is a compound with a crucial role in mitochondrial bioenergetics
and membrane antioxidant protection. Despite the ubiquitous endogenous biosynthesis, specific
medical conditions are associated with low circulating CoQ10 levels. However, previous studies of
oral CoQ10 supplementation yielded inconsistent outcomes. In this article, we reviewed previous
CoQ10 trials, either single or in combination with other nutrients, and stratified the study participants
according to their metabolic statuses and medical conditions. The CoQ10 supplementation trials in
elders reported many favorable outcomes. However, the single intervention was less promising when
the host metabolic statuses were worsening with the likelihood of multiple nutrient insufficiencies,
as in patients with an established diagnosis of metabolic or immune-related disorders. On the
contrary, the mixed CoQ10 supplementation with other interacting nutrients created more promising
impacts in hosts with compromised nutrient reserves. Furthermore, the results of either single or
combined intervention will be less promising in far-advanced conditions with established damage,
such as neurodegenerative disorders or cancers. With the limited high-level evidence studies on
each host metabolic category, we could only conclude that the considerations of whether to take
supplementation varied by the individuals’ metabolic status and their nutrient reserves. Further
studies are warranted.

Keywords: coenzyme Q10 ; dietary supplements; ubiquinone; mitochondria; bioenergetics;
combined supplements

1. Introduction

In 1957, Crane et al. isolated a new quinone compound, initially referred to as Q-275,
from beef heart mitochondria and described its ability to undergo reversible oxidation
and reduction [1]. With its functional quinone moiety and its ubiquitous presence in
living cells, this compound was later officially named ‘ubiquinone’ by the IUPAC-IUB
Commission on Biochemical Nomenclature [2,3]. However, there were other common
names for ubiquinone, including Coenzyme Q10 (CoQ10), CoQ, ubiquinone-Q10, vitamin
Q10, and ubidecarenone [4].

CoQ10 consists of two functional groups, i.e., the five-carbon isoprene ‘tail’ and the ben-
zoquinone ‘head’. The lipid-soluble tail consists of ten isoprenes, with a total of 50 carbon
atoms, hence the name ‘CoQ10’ [5,6]. Humans can internally synthesize CoQ10. The syn-
thesis of the benzoquinone head requires amino acids, either tyrosine or phenylalanine,
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while the mevalonate pathway provides the acetyl coenzyme A for the polyisoprenoid tail
synthesis [5,7,8]. The CoQ10 head and tail are synthesized in the cytosol but the joining of
both functional groups occurs in the mitochondria [5,9]. The CoQ10 biosynthesis requires
support from various macro- and micronutrients, such as pantothenic acid for the CoA
precursor, pyridoxine for the benzoquinone production, and s-adenosyl methionine for
methylation support and isoprene production [10].

Humans can internally synthesize CoQ10, while the dietary CoQ10 sources additionally
contribute to its total tissue pool. The main dietary sources of CoQ10 include fish and
meat, while vegetables generally contain low CoQ10 quantity. Dietary CoQ10 sparsely
absorbs in the hydrophilic intestinal environment due to its lipophilic and high molecular
weight properties. Following the gut uptake, CoQ10 circulates in the lymphatic system
and ultimately drains into the blood circulation [11]. Consequently, the CoQ10 level in
the liver and plasma lipoproteins appears shortly after absorption, but the elevation of
plasma CoQ10 level varies by the blood cholesterol and lipoprotein concentrations [6,12].
The CoQ10 turnover in the body is relatively fast, with a 49 to 125 h half-life, depending on
the tissue type [13].

The combination of endogenous biosynthesis and dietary intake is largely sufficient to
prevent the CoQ10 deficiency state in a healthy individual [14,15]. However, cumulative
studies reported the association of low CoQ10 levels in specific conditions such as following
strenuous exercise, during aging, after taking some prescribed medications, in patients
with various metabolic disorders, and in individuals with cancers [6,8,16–22]. Despite the
documented low CoQ10 levels, the clinical outcomes of CoQ10 interventions, either single
or in combination with other nutrients, were generally inconsistent. In this review, we
explored the previous CoQ10 clinical trials, both single and combined supplementations, in
specific medical conditions and deduced whether the differences in host metabolic status
influence the CoQ10 interventional outcomes.

2. Materials and Methods
2.1. Search Strategy

From the available public databases up to the date 10 January 2021, we initially ac-
quired 256 publications by using the Medical Subject Heading (MeSH) Ubiquinone, Dietary
Supplements, and randomized controlled trials, together with the truncated keywords
Coenzyme Q* and supplement*. In the PubMed database, we used the following search
query: (((“Ubiquinone”(MeSH)) OR (Coenzyme Q*(tw))) AND ((“Dietary Supplements”
(MeSH)) OR (supplement*(tw)))) AND (“randomized controlled trials as topic”(MeSH)).
We also retrieved additional articles from Cochrane Library, Scopus, Google Scholar, Re-
searchGate, and relevant citation searches.

2.2. Study Screening, Selection, and Inclusion

We initially identified the studies by their titles and abstracts for their compliance with
the following inclusion criteria: (i) controlled clinical trials on the effects of CoQ10 and its
analogs with or without the addition of other nutrients; (ii) controlled clinical trials that
addressed the effects of CoQ10 and its analogs in a range of medical conditions; (iii) studies
for which the full texts were available to enable a comprehensive review.

With all retrieved full texts of articles, we screened and grouped them according to par-
ticipants’ status or medical conditions. We then evaluated their suitability for inclusion in
the present review. We also acquired additional studies from the relevant citation searches.

After excluding the duplicated, irrelevant, and no full-text-available articles, we
included 156 studies in this narrative review. We generated a PRISMA diagram to describe
the flow of information through the processes of identification, screening, and including
records in this literature review, as shown in Figure 1 [23,24].
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3. Physiological Roles of CoQ10 in Humans
3.1. CoQ10 Roles in Mitochondrial Bioenergetics

CoQ10 roles are crucial to the mitochondrial respiratory chain as the electron acceptor.
It modulates the electron transferring from the bioenergetic-derived reducing equivalents,
i.e., nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2),
through the complex I, II, and III in the electron transport chain (ETC). The concurrent
proton flow, from the mitochondrial matrix to the intermembrane space, generates the inter-
membrane proton gradients, which are essential for oxidative phosphorylation and subse-
quent adenosine triphosphate (ATP) synthesis [5]. Accordingly, CoQ10 intervention could
have potential bioenergetic benefits in clinical conditions with mitochondrial dysfunction.

While mitochondria are the bioenergetic hub of the cells, they are also the predominant
source of reactive oxygen species (ROS) production, oxidative stress, and immunologic
and apoptotic regulation. The imbalances of these physiological processes underly di-
verse metabolic conditions [25]. As the critical supporter of mitochondrial functions, the
importance of CoQ10 might extend beyond bioenergetics.

3.2. CoQ10 Role as an Antioxidant

With its reversible redox potential and membrane-associated locations, CoQ10 renders
antioxidant protection to the organelles and cell lipid membranes [13,26–28]. Inside the
cells, the benzoquinone head of CoQ10 exists in three interchangeable oxidation states, i.e.,
the fully reduced ubiquinol (CoQ10H2), the ubisemiquinone intermediate (CoQ10H•), and
the fully oxidized ubiquinone (CoQ10). These redox states are culpable for the scavenging
of ROS as well as the mediation of electrons transferring in the mitochondrial ETC.

Nevertheless, the integrated redox modulation of CoQ10 requires support from other
nutrients, specifically α-tocopherol, vitamin C, and other micronutrients. Figure 2 depicts
this integrated antioxidant network of CoQ10 against lipid peroxidation [29,30]. While
the ROS induces unsaturated lipid peroxidation, it yields the highly reactive lipid peroxyl
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radicals, which are quickly neutralized by α-tocopherol through the donation of its hy-
drogen to the peroxyl radicals, thus holding their propagations within membranes and
circulating lipoproteins. The reduced ubiquinol then helps regenerate the α-tocopherol
antioxidant capacity through their redox interactions. Thereafter, the ubisemiquinone
intermediate can either react with the oxygen molecule and produce the superoxide anion
radicals or oxidize further to the fully oxidized ubiquinone that does not react with oxygen.
Reduced NADP (NADPH), glutathione, and other antioxidants such as vitamin C then
help to regenerate the oxidized ubiquinone and α-tocopherol back and maintain their
reduction states [13,31–33]. In this integrated manner, CoQ10 limits the production of lipid
peroxyl radicals and protects the circulating lipoproteins, the cellular membrane proteins,
the mitochondrial DNA, and the ETC membranes [26,34–36].
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Figure 2. The integrated antioxidant defenses against lipid peroxidation. The nutrient network halts
the propagation of lipid peroxyl radicals while their redox interactions maintain their reduction
states. These nutrients include coenzyme Q10, α tocopherol, vitamin C, α lipoic acid, glutathione,
and the micronutrients that support the activities of antioxidant enzymes such as selenium, man-
ganese, copper, and zinc (not shown in the figure). O2

•—superoxide anion radical, H2O2—hydrogen
peroxide, Fe2+/3+—ferrous or ferric iron, PUFA—polyunsaturated fatty acids, GSH—reduced glu-
tathione, GSSG—glutathione disulfide, GPx—glutathione peroxidase, CAT—catalase, H2O—water,
O2—oxygen, α TOH—reduced α tocopherol, α TO•—oxidized α tocopherol.

For oral CoQ10 supplementation, a 2020 meta-analysis of 17 randomized clinical
trials (RCT) documented its antioxidant potentials, comprising the reduction of membrane
oxidative damage level, the enhancement of total antioxidant capacity, and the activation
of antioxidant defense system enzymes [30]. As a dietary supplement, the antioxidant
capability of CoQ10 might provide benefits to clinical conditions with underlying oxidative
stress pathophysiology.

3.3. Other Physiological Roles of CoQ10

CoQ10 also serves as the structural component of the ETC membrane supercomplexes
that ascertains the efficient ETC functions and prevents the leakage of the electron from
the respiratory chain [28,37–39]. The combined result of its structural contribution, lipid
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peroxidation protection, ROS scavenging, and uncoupling protein activations contribute to
the pivotal role of CoQ10 in mitochondrial membrane integrity [13,40]. Besides this, the
conservation of mitochondrial membrane permeability is also crucial for cellular survival
and functions [13,41,42].

Apart from the mitochondria, the containment of highly acidic enzymes within the
lipid-membrane boundary of lysosomes requires the CoQ10-induced intermembrane proton
gradient [8,43]. Furthermore, CoQ10–redox interaction maintains the balance of cytosolic
redox intermediates such as NADH, NADPH, and FADH2. The CoQ10-mediated reaction
also supplies orotate for the de novo pyrimidine synthesis through the oxidative activity
of dihydroorotate dehydrogenase [44]. These intracellular redox balances influence sev-
eral cellular signalings and gene transcriptions. Such homeostasis modulates apoptosis,
bioenergetics, cell growth, and inflammatory responses [28,45].

Interestingly, the oral CoQ10 supplementation showed different 115 gene expressions
in the muscle tissue samples from aged individuals compared to their placebo controls [46].
These findings supported the diverse physiologic roles of CoQ10 and the potential benefit
of its intervention. Several clinical studies also reported that oral CoQ10 supplementation
showed anti-inflammatory effects, including the reduction of tumor necrosis factor-alpha
(TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) [47–50]. This immunomodu-
latory potential of CoQ10 supplementation also suggests its potential benefit to various
immune-mediated clinical conditions.

4. CoQ10 Supplementation in Specific Medical Conditions

Cumulative evidence supports the association of low plasma CoQ10 levels in several
medical conditions such as diabetes mellitus, cancers, and congestive heart failure [2,51–53].
Several studies have also explored the role of oral CoQ10 supplementation in various con-
ditions. Despite the concerns that oral CoQ10 supplementation may excessively raise the
tissue CoQ10 concentrations in humans [43,54,55], the tissue CoQ10 uptake in a healthy indi-
vidual is relatively low due to its ongoing endogenous biosynthesis [56]. Following the oral
supplementation, the plasma CoQ10 level appeared to reach the plateau at the dosage of
2400 mg/day while the tissue CoQ10 uptakes appeared at a relatively higher plasma concen-
tration than this level [57–59]. The tissue uptakes probably increase under the pathological
CoQ10 deficit [60]. To support this notion, CoQ10 supplementation in elders who underwent
cardiac interventions showed increased CoQ10 uptake in their cardiac tissue samples [61,62].
As for the potential adverse effects of oral CoQ10 supplementation, previous studies re-
ported no major side effects after eight months for the dosage of 3000 mg/day, sixteen
months for 1200 mg/day, and thirty months for 600 mg/day [58,59,63,64]. Nevertheless,
the documented minor gastrointestinal symptoms included nausea, diarrhea, low appetite,
heartburn, and discomfort, notably when the daily dosage exceeded 200 mg/day. The two
or three daily divided doses minimized most of these side effects [65]. The concurrent intake
of high-fat meals also facilitates CoQ10 absorption and reduces gut-related symptoms.

Many clinical studies explored the role of CoQ10 supplementation, either as a sin-
gle intervention or as a combination with other nutrients, in several medical conditions.
In general, the outcomes of single CoQ10 supplementation from these trials were largely
inconsistent. We herein explored previous CoQ10 supplementation studies and deduced
the potential contributing factors to the interventional outcomes.

4.1. Single CoQ10 Supplementation
4.1.1. Single CoQ10 Supplementation in the Primary CoQ10 Deficiencies

The primary CoQ10 deficiencies are genetic conditions with mutations in one of
the nine CoQ10 biosynthetic genes [5]. These mutations lead to the disruption in the
mitochondria respiratory chain functions with the clinical phenotypes of multisystem
involvement [66,67]. Despite the incurability of the primary CoQ10 deficiencies, studies
reported a partial improvement of muscular and neurological symptoms in some pa-
tients with oral CoQ10 supplementation [68]. A systematic review of the intervention
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in patients with primary CoQ10 deficiencies, a total of 89 cases, reported symptom im-
provements in 27% of patients. Five cases even deteriorated after discontinuing CoQ10
supplementation [69]. The intervention on this genetic condition generally required a
high dosage, ranging from 5 to 50 mg/kg/day, of oral CoQ10 supplementation to achieve
favorable responses [70].

4.1.2. Single CoQ10 Supplementation in Healthy Adults and Athletes

A single bout of vigorous exercise in young athletes induces a rapid decrease in plasma
CoQ10 level and one month of supplementation minimized that effect [16]. Two weeks
of CoQ10 supplementation, 200 mg/day, before performing strenuous exercise sessions
showed antioxidant benefits in a group of 100 healthy and trained adults in a 2016 RCT.
These oxidative stress protections included the reduction of oxidative damage markers
and enhanced antioxidant enzyme activities [71]. A systematic review of 13 clinical studies
also supported these findings [72]. A recent 2022 RCT also supported the improved
endothelial reactivity from CoQ10 supplementation in 20 healthy adults [73]. Apart from
the antioxidant protections, a trial on oral supplementation during the periods of high-
intensity exercises also showed benefits in the modulation of inflammatory signaling, the
pro- and anti-inflammatory cytokines released, together with a potential pro-angiogenic
effect on hematologic parameters such as hemoglobin, red blood cell number, vascular
endothelial growth factor (VEGF), and epidermal growth factor (EGF) [74].

On the contrary, a cross-over, double-blind, and placebo-controlled trial did not show
significant changes in the aerobic capacity and lipid peroxidation markers in 19 trained
adults, 11 young and 8 older, after six weeks of ubiquinone supplementation at 120 mg/day [75].
Despite the recovery of exercise-induced depleted plasma CoQ10 level, the athletes’ biomark-
ers of muscular damage and physical performance remained unchanged [16]. Several RCTs
also failed to support the benefits to the anaerobic performance during high-intensity
training from oral supplementation [76–78]. During the intensive Kendo training, CoQ10
supplementation did not ameliorate exercise-induced muscle damage in a study of a four-
day training period but showed a protective effect in another study of a six-day training
period [79,80]. The high-altitude trekkers did not obtain a protective effect for cardiac
alterations after their 17-day trek to Everest Base Camp [81]. An 8-week supplementation
in ten trained cyclists did not show measurable effects on their performance, VO2max, or
lipid peroxidation [82]. Another study on endurance athletes also showed no significant
changes in their cardiorespiratory fitness parameters and blood metabolic markers [83].

Nonetheless, 25 Finnish top-level cross-country skiers achieved significant improve-
ment in all physical performance indices with supplementation [84]. Short-term CoQ10
supplementation in elite swimmers modulated their energy metabolism, enhanced an-
tioxidant capacity, and prevented the elevation of lipid peroxidation and cardiac dam-
age markers [85–88]. Another study on a six-day Kendo training period reported the
downregulation of toll-like receptor 4 (TLR-4) in monocytes in the athletes who took the
supplementation for 20 days [89].

Several RCTs on oral CoQ10 supplementation in healthy adults and athletes yielded
inconsistent outcomes for their exercise performance, muscle damage prevention, antioxi-
dant protection, and immunologic modulations. Up to now, only one systematic review
of supplementation in healthy adults has been published, with no relevant meta-analysis.
The outcome discrepancies might depend on contributing factors such as individual host
metabolic status, type and intensity of exercises, timing and dosing of supplementation, or
other interacting nutrients.

4.1.3. Single CoQ10 Supplementation in Elders

Human CoQ10 biosynthesis decreases with advancing age [17,34]. At the age of 80, the
myocardial CoQ10 production is only half compared to levels in a 20-year-old person [8,17].
The elderly also extensively use many prescribed medications, including statin, bisphospho-
nates, and β-blockers, which interfere with endogenous CoQ10 biosynthesis [20,21,90–93].
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In addition to their eating pattern alteration and presumably compromised metabolic status,
the likelihood of low blood levels of CoQ10 in elders is not uncommon [5].

In addition to the Mediterranean diet, healthy elders with oral CoQ10 supplementation
showed significant benefits in their redox-state parameters, postprandial metabolism of
advanced glycation end products (AGEs), metabolomic profiles, and the modulation of
gene expressions that involved anti-inflammatory, endoplasmic reticulum stress, DNA
repair, and antioxidant functions [94–99].

Even though there was no available meta-analysis, we found no study not supporting
the benefits of oral CoQ10 supplementation in elders as compared to the trials in healthy
adults and athletes. These different outcomes could partly be due to the temporary nature of
depleted CoQ10 levels in healthy adults and athletes after their physical exertions, while the
depleted CoQ10 levels in elders are a result of their ages, illnesses, and metabolic statuses.

4.1.4. Single CoQ10 Supplementation in Metabolic and Immune-Related Disorders

The early two systematic reviews in 2003 and 2009 failed to conclude whether the
oral CoQ10 supplementation had any effect on blood pressure [100,101]. Contrarily, the
following four meta-analysis studies, in 2012, 2016, and two in 2018, of 5, 14, 17, and 21 RCTs,
respectively, reported that CoQ10 supplementation improved endothelial function, reduced
systolic blood pressure, fasting blood glucose, and serum triglycerides, and improved lipid
profiles [102–105]. While the 2015 RCT suggested that daily supplementation could help
decrease the pro-inflammatory cytokines [106], a 2011 RCT in 51 obese subjects did not find
an association between the supplementation and lipid profile, oxidative and inflammatory
markers, arterial stiffness, and fatigue indices [107].

Contrarily, another 2019 meta-analysis of 17 RCTs did not support the benefits of
CoQ10 supplementation on the body weight and BMI of patients [108]. In dyslipidemic
individuals, the 2016 and 2018 RCTs on CoQ10 supplementation showed benefits in the
improvements of lipid and glycemic profiles, antioxidant capacity, endothelial reactivity,
and blood pressure [109,110]. A 2000 RCT in 12 hypercholesterolemic young adults did not
show a significant effect on endothelial dysfunction [111]. Conflictingly, another 2020 RCT
in 51 dyslipidemic subjects had benefits of endothelial dysfunction amelioration from
CoQ10 supplementation [112]. We did not find a meta-analysis on the supplementation
impacts on dyslipidemic subjects.

In diabetes patients, the clinical impacts of CoQ10 supplementation were also incon-
sistent despite the significant association of low CoQ10 levels in these patients [113–115].
A 2015 meta-analysis of 7 RCTs concluded no benefit on glycemic and lipid profiles in
diabetes subjects [19]. Nevertheless, three RCTs, one in 2017 and two in 2018, on overweight
or obese diabetic patients showed reduced glycosylated hemoglobin levels, reduced insulin
levels, and increased antioxidant enzyme activities [116–118]. A 2018 meta-analysis of
13 RCTs suggested the benefits of CoQ10 supplementation on glycemic and lipid profiles in
type 2 diabetic patients [119]. The single CoQ10 supplementation, 400 mg, also improved
the visual acuity, intraocular pressure, and oxidative stress biomarkers in a 2016 RCT of
patients with diabetic retinopathy [120]. A cell line study also demonstrated the CoQ10
protective effects on retinal ganglion cells from intraocular-pressure-induced hypoxia and
subsequent oxidative stress, which are part of glaucoma pathogenesis [121,122].

In patients with coronary artery disease, a 2018 meta-analysis of eight RCTs reported
the effects of supplementation on lowering total cholesterol and increasing high-density
lipoprotein-cholesterol levels, but no changes in low-density lipoprotein-cholesterol and
lipoprotein(a) levels [123]. Another 2019 meta-analysis of 13 RCTs documented the in-
creased antioxidant enzyme activities and decreased oxidative damage markers despite the
nonsignificant changes in pro-inflammatory cytokines and CRP [124].

The benefits of oral CoQ10 supplementation were likely evident in advancing clinical
stages such as congestive heart failure. A 1997 meta-analysis of 14 RCTs concluded the ben-
efits of improved hemodynamic cardiac parameters such as stroke volume, cardiac output,
ejection fraction, cardiac index, and end-diastolic volume index [125]. While a 2014 pooled
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analysis of seven RCTs concluded neither benefits nor harms of the supplementation in
patients with heart failure [126], the 1993 and 2020 RCTs supported the supplementation’s
benefit on improved endothelial function, reduced hospitalization, and reduced serious
complications in patients with heart failure [127,128].

The CoQ10 supplementation in patients with chronic kidney disease could improve
some of their metabolic profiles, such as creatinine, lipid parameters, and oxidative damage
markers, as reported in a 2018 meta-analysis of seven RCTs [129]. In diabetic nephropathy,
CoQ10 supplementation modulated gene expression of peroxisome proliferator-activated
receptor-γ, interleukin-1, and TNF-α, together with the favorable impacts on glucose
metabolism [130,131]. The supplementation in diabetic hemodialysis patients also provided
benefits to insulin metabolism, with increased antioxidant capacity and decreased CRP,
although there were no changes in exercise performance, diastolic heart function, fasting
glucose, glycosylated hemoglobin, lipid profile, and oxidative damage markers [132–135].

For nonalcoholic fatty liver disease patients, CoQ10 supplementation also provided
benefits in several anthropometric and biochemical parameters, including waist circum-
ference, liver aminotransferases, CRP, TNF-α, adiponectin, leptin, vaspin, chemerin, and
pentraxin 3 [136,137].

In chronic inflammatory conditions, the 2019 meta-analysis of nine RCTs supported
the significant impacts of CoQ10 supplementation on the modulation of pro-inflammatory
signals, including TNF-α and IL-6 [50]. Several RCTs on other immune-related condi-
tions, including fibromyalgia, rheumatoid arthritis, and multiple sclerosis, supported
the immunomodulatory effects of supplementation [138–142]. For instance, a 2015 RCT
of 500 mg CoQ10 supplementation documented the amelioration of pro-inflammatory
biomarkers such as TNF-α, IL-6, and MMP-9 in patients with relapsing-remitting multiple
sclerosis [143].

Despite the inconsistent results on single CoQ10 supplementation clinical trials in
various metabolic disorders, the following meta-analysis tended to show more positive
metabolic benefits in patients with advanced clinical stages, such as cardiovascular diseases,
heart failure, or kidney failure, than the ones in early clinical phases, such as hypertension
or dyslipidemia.

4.1.5. Single CoQ10 Supplementation in Those Who Take Prescribed Medications

CoQ10 biosynthesis requires an enzyme in the mevalonate pathway, 3-hydroxy-3-
methylglutaryl (HMG)-CoA reductase, which is the common enzyme for cholesterol
biosynthesis [144,145]. Statin is a commonly prescribed lipid-lowering medication that
inhibits HMG-CoA reductase. Statin is used in combination with other prescribed medi-
cations to treat various conditions that particularly co-exist in aging adults, therefore con-
tributing to the decreased plasma CoQ10 levels [20,21]. Nitrogen-bisphosphonates (N-BPs)
is another prescribed medication in elders, commonly used for the treatment of age-related
osteoporosis [92]. N-BPs inhibit farnesyl pyrophosphate synthase, another enzyme in the
CoQ10 biosynthesis, therefore affecting the circulating CoQ10 level as well [146]. Moreover,
women with osteoporosis who were treated with N-BPs showed a concurrent reduction
of the γ-tocopherol level, a crucial nutrient in integrated antioxidant defenses [92]. These
combined effects of prescribed medications could potentiate the adverse consequences of
depleted CoQ10 levels.

Despite the established correlation of statin-induced myopathy, a 2015 meta-analysis of
six RCTs did not support the post-interventional benefits of CoQ10 supplementation [147].
Contrarily, another 2018 meta-analysis of 12 RCTs supported the amelioration of statin-
associated myopathy [148]. Derosa et al. also reported the significant mitigation of statin-
related side effects with liquid CoQ10 supplementation for three months in the 2019 RCT
of 60 Caucasian patients [149]. On the contrary, a recent 2022 retrospective multicen-
ter study did not find any benefits of the supplementation to statin-associated muscle
symptoms [150].
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Despite the likelihood of low CoQ10 levels in subjects who take medications, the
benefits from the supplementation studies were also inconsistent, even though the available
meta-analysis seemed to support the intervention. Other contributing factors, such as the
concurrent depletion of multiple interacting nutrients within the integrated antioxidant
network, might hinder the outcome of single CoQ10 supplementations in these subjects.
Unfortunately, these potential confounders were not controlled in the participants of
previous clinical trials.

4.1.6. Single CoQ10 Supplementation in Neurological Disorders

Neurogenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease
(AD) share some pathophysiologies, including mitochondrial dysfunction and oxidative
stress [151]. Increased oxidative stress was shown as the significant elevation of the serum
oxidized CoQ10 levels in patients with amyotrophic lateral sclerosis, compared to their
age-matched healthy controls [152]. Nevertheless, many RCTs on these neurodegenerative
subjects showed conflicting results similar to other single CoQ10 supplementation trials.
Despite the assurance of its safety and tolerance in these conditions, a 2017 meta-analysis
failed to suggest the intervention’s benefits [153].

In AD patients, early 1994 and 1998 RCTs demonstrated the clinical benefits of single
CoQ10 supplementations for memory, attention, orientation, and disease progression [154,155].
However, the 2003 RCT did not find significant differences between the study groups [156].
A dose of 360 mg CoQ10 for 4 weeks in patients with PD provided moderate benefits
on scored PD symptoms and visual function [157]. In neuromuscular disorders such as
Huntington’s disease (HD), a 2017 large multicenter RCT on high doses of CoQ10, at
2400 mg a day, did not significantly slow the progressive functional declination in these
patients compared to their controls [158,159].

For neurological conditions, the effectiveness of CoQ10 supplementation was rather
promising in small-scale clinical studies. However, larger-scale RCTs failed to provide
consistent effects. The advanced nature of these neurological conditions, with estab-
lished neuronal losses at the time of diagnosis, could partly contribute to these disparities
in the results of a single CoQ10 intervention. Unlike the previously mentioned trends
in metabolic diseases, a nutrient intervention is less likely to be effective in advanced
neurological conditions.

4.1.7. Single CoQ10 Supplementation in Cancers

Low circulating CoQ10 levels are associated with increased breast cancer risk [160].
In vivo CoQ10 supplementation appeared to enhance the DNA repair enzyme activities
and protect the DNA from oxidative damage [22]. A CoQ10 intervention, at 300 mg/day for
12 weeks, significantly improved the antioxidant capacity and reduced oxidative damage
and inflammatory levels in post-surgical patients with hepatocellular carcinoma [161].
However, a 24-week-supplementation RCT did not show improvements in fatigue and
other quality of life parameters in women with breast cancer [162]. A 2004 systematic
review of six studies, could not conclude whether CoQ10 supplementation could improve
the tolerability of cancer treatments [163]. The benefits of single CoQ10 supplementation in
cancers are either preventive or protective rather than curative.

4.2. Combined CoQ10 Supplementation with Other Nutrients

Human metabolism fundamentally requires support from an integrated nutrient net-
work. Abided by this fact, CoQ10 contributes its essential role by coordinating with other
macro- and micronutrients in the bioenergetic and antioxidant circuits [5]. Genetic pre-
disposing conditions are the only exception to this integrated function, where the prone
individuals are subjected to a specific nutrient inadequacy, which may require high-dose
single nutrient intervention to alleviate the situation, as previously mentioned in primary
CoQ10 deficiencies. Patients with chronic illnesses largely endure concurrent multiple nu-
trient insufficiencies [164]. Hence, it is understandable why single CoQ10 supplementation
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yielded inconsistent outcomes, particularly in hosts with severely compromised nutrient
reserves. For this reason, combining CoQ10 supplementations with other nutrients could
potentially augment the clinical benefits in these situations [6,165–167].

Accordingly, studies in rat models and cell lineages reaffirmed that the combina-
tion of CoQ10, multivitamins, and minerals protected organ damage through the re-
duction of oxidative damage and inflammation [168–171]. Several human trials also
reported oral combined supplementation of CoQ10 and other nutrients with beneficial
responses [166,172–174]. Among the previous trials, the familiar combined supplemen-
tation was CoQ10 and selenium, an important cofactor of glutathione peroxidase—a key
antioxidant enzyme. However, numerous studies use different nutrient combinations,
which generally comprised those that supported mitochondrial bioenergetic and antiox-
idant networks, including vitamin Bs, vitamin C, vitamin E, selenium, zinc, lipoic acid,
L-carnitine, and taurine [175].

4.2.1. The Combined Supplementation of CoQ10 in Healthy Adults and Athletes

In a 2016 RCT of healthy volunteers, the 6-month combined supplementation of
CoQ10, multivitamins, and minerals reduced nitrosative stress and improved mitochondrial
bioenergetics [176]. A total of 83 infertile males taking a combined supplementation of
CoQ10, l-carnitine/acetyl-l-carnitine, l-arginine, glutathione, zinc, vitamin B9, vitamin
B12, and selenium improved their sperm quality and increased the pregnancy rate in a
2020 RCT [177]. Two meta-analyses, in 2018 and 2019, of 15 and 18 RCTs, respectively,
suggested the favorable effects on sperm quality parameters of infertile males from CoQ10
and other nutrients such as selenium, zinc, l-carnitine, and omega-3 fatty acids [178,179].

However, triathletes with the combined supplementation of CoQ10, vitamin C, and
alpha-tocopherol did not gain benefits in their exercise performance [180]. In a 2005 RCT,
the combined supplementation of CoQ10, alpha-lipoic acid, N-acetyl cysteine, vitamin C,
alpha-tocopherol, manganese, and selenium did not protect against exercise-induced DNA
damage [181]. Prior supplementation of combined CoQ10 and alpha-tocopherol also did
not attenuate either lipoprotein oxidation or muscle damage during exhaustive exercise
in marathon runners [182]. Contrarily, a mixture of CoQ10, multivitamins, and minerals
helped lower the oxidative damage markers following a 60-min soccer match after 3-month
supplementation in pre-professional footballers [183]. The cocktail of CoQ10, vitamin C,
and alpha-tocopherol also raised the LDL antioxidant potential in endurance athletes [184].

The combined supplementation likely improved the favorable outcomes in healthy
adults, while the outcomes from clinical trials in athletes were still inconsistent. The
differences in types and intensities of exercise could partly account for these discrepancies.
However, a systematic review or meta-analysis on athletic intervention is not yet available.

4.2.2. The Combined Supplementation of CoQ10 in Elders

The 6-month oral supplementation of combined CoQ10, multivitamins, and selenium
significantly elevated the blood CoQ10 level in healthy elderly women [185]. A 2015 RCT
on active 48-month supplementation of CoQ10 and selenium in Swedish elders showed the
reduction of CRP and P-selectin levels, together with the increased levels of insulin-like
growth factor 1 and insulin-like growth factor binding protein 1 [165,186]. The metabolomic
profiles of these elders suggested changes in the pentose phosphate, the mevalonate, the
beta-oxidation, and the xanthine oxidase pathways, together with the changes in the urea
cycle and the increased neurotransmitter precursors after 18 months of intervention [187].
Elders in the supplementation group also had an increased number of days out of the
hospital and a slowed deterioration of health-related quality of life scores [188]. The 12-year
follow-up of these 443 elders, who continued the combined supplementation for four years,
still had significantly reduced cardiovascular mortality [174]. Apart from the combination
with selenium, the 12-week mixed supplementation of CoQ10, essential amino acids, crea-
tine, and vitamin D also showed positive effects on the muscle mass, strength, power, and
visceral adipose tissue of 38 healthy elders in a 2019 RCT [189]. While CoQ10 decreased by
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40% in elders, the combined supplementation of CoQ10, acetyl-L-carnitine, and omega-3
fatty acids in 106 patients with early age-related macular degeneration improved visual
functions and stabilized fundus alterations in an RCT [190,191].

Although without available meta-analysis, the results from these RCTs on elders
provided consistent trends of benefits from combined supplementation of CoQ10.

4.2.3. The Combined Supplementation of CoQ10 in Metabolic and Immune-Related Disorders

A 2016 meta-analysis of 14 RCTs of the formulated supplementation of CoQ10, red
yeast rice, berberine, policosanol, astaxanthin, and folic acid suggested its benefits on lipid
and glucose profiles [192]. Two RCTs, in 2017 and 2019, in patients with dyslipidemia and
pre-hypertension. respectively, also documented the positive impacts on lipid and glucose
profiles, CRP, and liver transaminase with the combination of CoQ10, red yeast rice, and
other nutrients [193,194]. For patients with metabolic syndrome, the combination of CoQ10
and red yeast rice provided benefits to their blood pressure, lipid, and glycemic biomarkers
in another 2018 RCT [195]. A recent 2021 meta-analysis of 12 RCTs also supported the
beneficial impacts on serum lipids, glucose, and CRP with the combination of CoQ10, red
yeast extract, policosanols, berberine, folic acid, and astaxanthin [196].

In patients with nonproliferative diabetic retinopathy, their plasma CoQ10 levels were
decreased as compared with the healthy controls [18]. The supplementation of CoQ10,
pycnogenol, and vitamin E led to decreased circulating free oxygen radical levels, although
there was no significant change in central macular thickness at six months, compared to the
controls [197]. The local application of visudrop, the combination of CoQ10 and vitamin E,
during cataract surgery significantly reduced postoperative corneal edema and pain, with
enhanced vision outcomes [198]. The application of an ophthalmic solution containing
CoQ10 and vitamin E in patients with open-angle glaucoma showed benefits on the inner
retinal function, with subsequent enhanced visual cortical responses [199].

For patients with cardiovascular disease, a 2006 narrative review suggested CoQ10 as
one of the first-line conditionally essential nutrients, along with l-arginine, l-carnitine, and
propionyl-l-carnitine, while the supplementation of these nutrients could provide favorable
clinical impacts [200]. A pilot study on combined supplementation of CoQ10, magnesium,
potassium, vitamin B12, folic acid, and niacin reported improved left ventricular diastolic
function parameters and fasting insulin levels in patients with cardiac arrhythmia [201].
The elders with chronic heart failure improved their left ventricular functions and quality-
of-life parameters with the combined supplementation of CoQ10, multivitamins, and
minerals [202]. Two RCTs, in 2007 and 2011, in chronic heart failure patients, also supported
the favorable effects on their physical performance parameters and inflammatory signal
modulation, from the combined supplementations of either CoQ10 and creatine or CoQ10
and l-carnitine [203,204].

The supplementation of CoQ10, together with multivitamins and minerals modulated
the biomarkers of immunologic and autonomic dysfunctions in patients with end-stage
renal disease [205]. Two months with the combined CoQ10 and creatine supplementation
also helped to improve functional performance, body composition, and dyspnea symptoms
in patients with the chronic obstructive pulmonary disease [206]. On the contrary, the
combination of CoQ10 and omega-3 fatty acids did not provide a significant change in
plasma myeloperoxidase level, a mediator of chronic inflammation, in patients with chronic
kidney disease, in a 2018 RCT [207].

For immune-related disorders, psoriatic patients showed increased activities of an-
tioxidant defenses in the circulating granulocytes and the affected epidermis with the
combined supplementation of CoQ10, vitamin E, and selenium [208]. Patients with chronic
fatigue syndrome improved their bioenergetic biomarkers and age-predicted maximum
heart rate during a cycle ergometer test with CoQ10 and NADH supplementation [209,210].
A total of 130 adults with migraine also significantly reduced the pain intensity with the
supplementation with CoQ10, riboflavin, and magnesium in an RCT from Gaul et al. [211].
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The benefits of migraine prophylaxis were also supported either with CoQ10 and l-carnitine
or CoQ10 and curcumin interventions in 2019 and 2021 RCTs [212,213].

Even though a recent meta-analysis was still not available, the trends of previous
studies were encouraging for clinical benefits in various metabolic and immune-related
disorders with combined CoQ10 supplementation.

4.2.4. The Combined Supplementation of CoQ10 in Those Who Take Prescribed Medications

The combined CoQ10 and selenium supplementation substantially elevated the rele-
vant serum levels in patients taking statins but did not significantly mitigate their myopathy
symptoms in two 2013 RCTs [214,215]. However, three months on CoQ10 and carnitine
supplementation showed a significant reduction of serum lipoprotein(a) in hemodialysis pa-
tients with statin therapy [216]. With the context of a limited study number, the conclusion
for the impacts of combined supplementation on these patients warrants future trials.

4.2.5. The Combined Supplementation of CoQ10 in Neurological Disorders

There were also few studies on mixed CoQ10 intervention in various neurological
conditions. According to the Alzheimer’s Disease Cooperative Study, the combined CoQ10
and vitamin E, vitamin C, and α-lipoic acid did not influence the levels of amyloid or tau
proteins in cerebrospinal fluid. Interestingly, the intervention group had a more rapid
cognitive declination than their controls, which raised the safety concerns of this mixed
supplementation [217]. Thus far, the impacts of combined CoQ10 supplementation were
still inconclusive in these complex clinical conditions.

4.2.6. The Combined Supplementation of CoQ10 in Cancers

Patients with end-stage cancers significantly increased their life expectancy, from an
average of 12 to 17 months, with a combined supplementation of CoQ10 and antioxidant
mixture [218]. In breast cancer patients under tamoxifen treatment, the daily supplemen-
tation of CoQ10, riboflavin, and niacin decreased their pro-inflammatory cytokine levels,
increased the DNA repair enzyme levels, and suppressed the DNA methylation pattern,
which might lead to tumor burden reduction [219,220]. In a multicenter RCT, 57 women
with breast cancer women, who took combined supplementation of CoQ10 and L-carnitine,
reported relieved cancer-associated fatigue symptoms [162,221]. However, several RCTs
in high-risk people or patients with prostate cancers did not support the benefit of com-
bined supplementation of CoQ10, vitamin E, selenium, and vitamin C, along with several
phytochemicals [222,223].

5. Discussion

The inconsistent results of CoQ10 interventions implied the presence of unaccounted
factors that contributed to clinical outcomes. After reviewing the participants’ status in
previous CoQ10 clinical trials, we herein proposed two potentially confounding aspects,
i.e., differences in host metabolic status and the need for CoQ10 interacting nutrients.

Human metabolism fundamentally relies on host macro- and micronutrient reserves.
Depleted host nutrient reserve leads to metabolic triage of nutrients toward the preser-
vation of short-term metabolic survival, usually at the cost of compromised long-term
health [224,225]. The protein deformations, with altered enzyme binding constants for
various coenzymes, underly these nutrient triage processes [226]. Compromised host
nutrients induce metabolic triage and accelerate the pathophysiologies of degenerative
and metabolic diseases [227]. Therefore, nutrient interventions could hinder mitochondrial
decay and delay age-associated illnesses [225].

Even the so-called healthy subjects were still prone to conditional micronutrient
inadequacies following intense physical activities, despite their good metabolic statuses
and no established clinical diagnosis at baseline. The combined nutrient interventions hold
better chances to address the conditional nutritional insufficiencies than a single nutrient.
To support this notion, previous studies showed the favorable trends of combined CoQ10
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intervention in healthy adults and athletes performing exercise sessions, as compared to
single supplementation.

Elders and patients with diagnosed metabolic and immune-related disorders likely
had compromised metabolic status, along with multiple nutrient insufficiency. The depleted
nutrient reserves increased with the advancement of these chronic situations. Hosts with
specific nutrient depletion, such as primary CoQ10 deficiencies, benefited from single
CoQ10 supplementation, even though the outcomes were mostly palliative, not curative.
The single intervention was also beneficial in hosts with early stages of declined metabolic
status, such as the elderly. The benefits decreased with the advancement of metabolic
conditions, as seen in patients with diabetes, cardiovascular diseases, or kidney failure.
Despite the improvement of some surrogate biomarkers such as proinflammatory cytokines,
antioxidative capacities, and lipid or glycemic profiles, the positive trends in clinical
outcomes were less promising with single supplementation. Contrarily, combined CoQ10
interventions provided more encouraging results in hosts with impaired metabolic status
due to the readily available interacting nutrients in the formulations.

However, both CoQ10 interventions would be less beneficial in far-advanced condi-
tions with established damage such as neurodegenerative conditions or cancers. The results
of both single and combined supplementation, at best, affected some surrogate biomarkers
but not the overall clinical outcomes. Therefore, nutrient interventions are preventive or
protective rather than curative measures.

6. Conclusions and Future Perspectives

CoQ10 is a compound with crucial roles in mitochondrial bioenergetics, membrane an-
tioxidant protection, and many cellular signaling regulations. However, no single nutrient
could magically drive whole physiological processes. Single CoQ10 supplementation will
be beneficial only for hosts that specifically require it, such as hereditary CoQ10 deficiencies.
The single intervention will be less promising when the host metabolic status worsens with
the likelihood of multiple nutrient insufficiencies. On the contrary, the mixed CoQ10 sup-
plementation with other interacting nutrients will create more promising impacts in hosts
with compromised nutrient reserves. However, the results of either single or combined
intervention will be less promising in far-advanced conditions with established damage.

With the limited amount of high-level evidence, such as provided by systematic
reviews and meta-analyses, we could only conclude that the considerations of whether
to take supplementation varied by the individuals’ metabolic status and their nutrient
reserves, which span across the continuum of metabolic triage processes that lead to chronic
health issues. Future studies are warranted, particularly for the RCT with the design to
control the host metabolic and nutrient status of participants and the meta-analysis of
upcoming CoQ10 studies on each subject’s metabolic status.
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