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Abstract

The analysis of medical imaging is crucial to improve and facilitate diagnosis of human
diseases. Recently, Vision Transformers were successfully used for this task. However,
lots of data is needed to train such a model to achieve satisfying results. It may be
a problem in medical imaging as some diseases are rare and scarcely represented in
datasets, while manual labeling is expensive as it requires professional expertise. For
that, methods of few-shot learning can be used as they deal with learning from only
few examples. Therefore, this research investigates the use of different Vision Trans-
former architectures for medical image classification in a few-shot learning scenario
using two few-shot learning algorithms, ProtoNet and Reptile. This work also pro-
poses a new ViT architecture which combines ConViT with Squeeze and Excitation
block. In addition to the main experiments, we tested Cutout, Mixup, and Cutmix
data augmentation techniques to evaluate their impact on performance. Our find-
ings indicate that Vision Transformers used with ProtoNets consistently outperform
similarly-sized CNNs in the tested scenarios. Additionally, ViT small outperformed
PFEMed, a specialized model for few-shot learning, on ISIC 2018 dataset in all tasks
and on BreakHis x100 dataset in 2-shot-10-way and all 3-way tasks, despite being
significantly smaller. Our proposed model did not perform better than a standard
ConVit. However, this is a preliminary result from pre-training on a small dataset.
The advanced input augmentation techniques did not yield significant performance
improvements over the standard approach. In fact, most of these techniques led to
worse results, with the exception of Mixup, which demonstrated some positive effects
on the performance of models.

Thesis Supervisor: Nguyen Anh Tu
Title: Assistant Professor, School of Engineering and Digital Sciences

Thesis Co-Supervisor: Min-Ho Lee
Title: Assistant Professor, School of Engineering and Digital Sciences
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Chapter 1

Introduction

The importance of medical image analysis (MIA) cannot be underestimated, as it

enables the diagnosis of various diseases and conditions from medical imaging. With

the increasing amount of such data being produced, the development of accurate and

efficient automated methods for MIA has become a critical area of research. Lately,

machine learning has proven to be a promising technique for this area, with recent

advances in deep learning yielding state-of-the-art performance on various tasks of

MIA, including the main focus of this research - medical image classification (MIC).

Recently, Convolutional Neural Networks (CNNs) have been the state-of-the-art

models in various fields of computer vision, including medical imaging. The basis

of CNNs is a convolution operation that works locally and provides translational

equivariance. The innate bias of locality allows them to grasp local spatial features

and combine them into higher-order features, which in turn lead to great results.

On the other hand, CNN-based models are limited when it comes to learning long-

range pixel relationships. This shortcoming of CNNs is addressed in the Transformer

architecture, which was first introduced in 2017 by Vaswani et al. [36] for the task of

natural language processing and quickly became the state-of-the-art in that field. It

was later adapted to computer vision under the name "Vision Transformer" (ViT) by

Dosovitskiy et al. [10] showing impressive performance on various computer vision

tasks.

Unlike traditional CNNs, which use convolutional layers to extract features from
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the input images, ViTs rely on a self-attention mechanism to learn global represen-

tations of the input image. ViTs can learn both short-range and long-range input

relationships. This makes them highly effective at processing and classifying large

images, such as medical images, which often contain fine-grained details and complex

structures. It has been demonstrated that transformers can outperform CNNs when

using larger datasets or self-supervised learning in medical imaging tasks [23]. Some

versions of ViTs, like DeiT [35], which utilize self-supervision, have managed to out-

perform CNNs even without huge datasets. Additionally, Transformers have built-in

saliency maps that allow to understand model’s decisions such that the field experts

verify the results of the model.

Classical supervised deep-learning shows excellent results when using huge anno-

tated datasets. However, applying deep learning may not be successful or practical

if data is scarce or if human annotation is expensive. This is the exact case in some

subfields of medical imaging. In recent years, few-shot learning (FSL) has emerged

as a promising technique for addressing the problem of limited labeled data in MIC.

FSL involves training a model to learn how to recognize and classify new objects or

concepts with only a few examples. At its core, FSL tries to imitate the human’s way

of learning new concepts from few examples. In the work of Hu et al. [16], it was

shown that a few-shot learning pipeline based on a ViT can achieve great results on

standard FSL benchmarks. To our knowledge, this idea has not been used for MIC.

Considering the above, the aim of this thesis is to investigate the use of ViTs in a

few-shot learning scenario for MIC. However, there are no standard FSL benchmarks

or datasets for medical imaging. Therefore, in this paper, we follow the work by

Singh et al., MetaMed [30], in which several standard medical datasets were adapted

for FSL scenarios, specifically three common medical image datasets: ISIC 2018 [43],

BreakHis [33], and Pap Smear [18].

Another way of tackling the problem of a limited number of labeled data is data

augmentation - a technique of creating additional artificial training data by modifying

existing data. There are numerous algorithms for data augmentation, but in this

work, in line with MetaMed, Cutout [9], Mixup [42], and Cutmix [41] augmentation
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techniques were tested.

The main goal of this thesis is to explore the performance of ViTs in a few-shot

learning scenario for MIC and compare it with traditional CNNs. Therefore, in this

thesis, we will use some prominent ViT models for few-shot classification of medical

imaging using FSL algorithms such as Prototypical Networks [31] and Reptile [25] and

compare them with similarly-sized CNN models. Additionally, this work investigates

the effects of advanced augmentation techniques, such as Cutout, Mixup, and Cutmix,

on the performance of ViT for FSL.

This thesis work will answer the following research questions:

1. How effective are Vision Transformers for medical image classification under

few-shot learning restrictions?

2. How will the performance of Vision Transformers used with different few-shot

learning algorithms compare?

3. Will the effects of advanced data augmentation techniques be as noticeable for

Vision Transformers as for smaller models used in few-shot learning?

The remainder of this thesis is organized as follows. In Chapter 2, we provide

an overview of related works in few-shot learning with ViT, medical image classi-

fication using ViTs, and FSL. In Chapter 3, we present the overview of prominent

Vision Transformer architectures, describe the original ViT architecture and its key

components, and explain the concept of meta-learning and different approaches to

it. In Chapter 4, we describe the methodology, including FSL algorithms, augmen-

tation techniques, and the overall pipeline. In Chapter 5, we present descriptions of

datasets, experimental setup, implementation details, and the results of our experi-

ments, comparing the performance of ViTs with traditional CNNs and analyzing the

impact of various factors. Finally, in Chapter 6, we draw conclusions and discuss

future directions for research on medical image classification using ViTs in a few-shot

learning scenario.

13
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Chapter 2

Related works

This chapter provides an overview of the literature on few-shot learning with Vi-

sion Transformers (ViTs), medical image classification using Transformers, and the

application of few-shot learning in medical image classification.

2.1 Few-shot Learning with ViT

This section reviews selected research papers on few-shot learning that use the ViT ar-

chitecture. The general information about the state-of-the-art in FSL can be acquired

from the following survey papers [32, 15, 39].

There is a limited number of papers that have used ViTs in a few-shot learning

scenario. One example is a paper by Hu et al. [16], in which the authors investigated

how a simple FSL pipeline compares with complex state-of-the-art FSL algorithms.

This work considers two backbone models: ViT small and ResNet50. The pipeline

consists of three stages: 1) self-supervised backbone pre-training using DINO [4], 2)

meta-training on labeled few-shot tasks using ProtoNet [31], and 3) fine-tuning on

the augmented support set of each task. The results show that this pipeline with the

transformer backbone outperforms the state-of-the-art and also the pipeline with the

CNN backbone.

A paper by Chen et al. [6] takes another direction and proposes an architecture

that utilizes masking of irrelevant parts of images to perform few-shot learning. They
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reused a vanilla ViT and added a masking operation before the first transformer layer.

The results showed that the proposed method outperformed a vanilla ViT across all

tests.

These papers demonstrate the effectiveness of Vision Transformers in a few-shot

learning scenario. This research follows the approach of the former work in the desire

to utilize a simple pipeline based on ViT and applies it to a few-shot medical image

classification task.

2.2 Medical Image Classification

Accurate classification of medical images can greatly aid in the accurate diagnosis of

human diseases. The first part of this section covers works that have used ViT for

the task of medical image classification, while the second part covers works on Few-

Shot Learning (FSL) for medical image classification. However, upon conducting

a literature search, no works were found that have used ViTs for medical image

classification in a FSL scenario.

2.2.1 Medical Image classification and Vision Transformers

Krishnan and Krishnan used several off-the-shelf pre-trained models, both CNN and

ViT, and fine-tuned them on chosen datasets for a new task [20]. Experimental results

showed that ViT achieved the highest accuracy among the tested models.

Perera, Adhikari, and Yilmaz proposed a lightweight transformer architecture

called POCFormer for detecting COVID-19 on portable devices [28]. In order to

decrease the complexity of their architecture, they used a linear transformer model

Linformer [38] which has linear complexity in contrast to ViT’s quadratic complexity.

Experiments on the POCUS dataset showed an overall accuracy of 93.9%, which was

similar to or better than other networks with more parameters.

Liu and Yin presented a novel transformer architecture called VOLO with a new

attention mechanism called outlooker attention for COVID-19 classification [21]. The

authors used transfer learning with a pre-trained VOLO model on ImageNet-1K and
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fine-tuned it for the COVID-19 classification task, achieving 99.7% accuracy on their

target dataset and outperforming the CNN state-of-the-art.

Duong et al. tried to combine CNN and ViT for the task of detection Tuberculosis

in Chest X-ray images [11]. One of the aims of this paper was show good performance

on a larger and diverse dataset in contrast to other paper of that time that mainly

used smaller and not diverse datasets. In the proposed approach, EfficientNet learns

feature maps from the input and its outputs are flattened and combined with posi-

tional encoding to be fed into a transformer encoder-decoder with additional layers

for classification. Authors reported the maximum accuracy of 97.72% for one of their

models.

Similarly, a proposed architecture by Park et al. uses a backbone model to extract

low-level features that are later fed into a Vision Transformer [26]. By doing this,

authors wanted to imitate how a human clinical expert looks at Chest X-rays and

makes decision on a diagnose. The proposed model showed better performance when

compared to the similar models for COVID-19, and other CNN and Transformer-

based models.

Around the same time, Jiang and Lin presented their version of a solution by using

ensemble learning which combines Swin-transformer and Transformer in Transformer

(TNT) [19]. This approach uses both aforementioned models to retrieve their out-

puts, then performs weighted averaging which in turn gets fed into a linear classifier.

Authors claim the accuracy result of 94.75% on the target dataset.

More recently, Behrendt et al. conducted a systematic comparison of ViTs and

CNNs for multi-label medical image classification, and evaluated the performance of

DeiT [2]. Their experiments showed that all models benefited from larger dataset

sizes, and DeiT, which used DenseNet-201 as a teacher model for knowledge distilla-

tion, outperformed other models across all dataset sizes.

These papers demonstrate that ViTs can be successfully applied to the task of

medical image classification, often outperforming CNNs.
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2.2.2 Medical Image classification and FSL

Singh et al. [30] presented their solution to the problem of FSL and medical image

classification called "MetaMed." In this study, the authors address the challenges

posed by long-tailed distributions and the scarcity of high-quality annotated images

in medical datasets by formulating a few-shot learning problem and presenting a

meta-learning-based approach. The work utilizes the Reptile meta-learning algorithm

and a simple CNN. The model was validated on three publicly available medical

datasets: Pap smear, BreakHis, and ISIC 2018. To combat overfitting, advanced

image augmentation techniques, such as Cutout, Mixup, and Cutmix, are employed.

The proposed approach demonstrates promising results, achieving over 70% accuracy

on all three datasets. The inclusion of advanced augmentation techniques improves

the model’s generalization capability by 2-5%. Furthermore, a comparative analysis

showed that MetaMed consistently outperforms transfer learning for 3, 5, and 10-shot

tasks in both 2-way and 3-way classification scenarios.

In another paper, Dai et al. proposed PFEMed, a novel few-shot classification

method for medical images [8]. PFEMed employs a dual-encoder structure using one

encoder with fixed weights pre-trained on public image classification datasets and

another encoder trained on the target medical dataset. A prior-guided Variational

Autoencoder module is introduced to enhance the target feature, which is the concate-

nation of general and specific features. The method matches target features extracted

from support and query medical image samples to predict category attribution. Ex-

periments on several publicly available medical image datasets show that PFEMed

outperforms current state-of-the-art few-shot methods, surpassing MetaMed on the

Pap smear dataset by over 2.63%. The authors demonstrate the effectiveness of using

knowledge from publicly available datasets to solve few-shot classification problems

in the medical field.

An article by Cherti and Jitsev [7] investigates the effect of pre-training scale in

both in-domain and out-of-domain transfer settings using both natural image and

medical X-Ray chest imaging datasets. Results showed that both intra- and inter-
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domain transfer benefited from larger pre-training scales, though the effects differed

between scenarios and for full shot and few-shot regimes. It was discovered that large

networks pre-trained on the very large generic natural ImageNet-21k performed as

well or better than networks pre-trained on the largest available medical domain-

specific X-Ray super-set data when transferring to large X-Ray targets. However,

this effect was noticed in a full-shot scenario. For few-shot scenarios, pre-training on

a medical image dataset showed better results when transferring to another medical

dataset.
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Chapter 3

Preliminaries

This chapter serves as an introduction to some of the key concepts and algorithms

that are essential for understanding the thesis. It begins by providing an overview

of Transformers and how the Vision Transformer architecture works, followed by an

explanation of the concept of Meta Learning. Finally, the chapter delves into the

details of two types of Meta learning algorithms, namely Initialization-based and

Distance-based methods.

Figure 3-1: Transformer architecture presented by Vaswani et al. The image
was acquired from the original paper [36].
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3.1 Transformers

Transformer neural networks were first introduced in 2017 by Vaswani et al. [36]

and relied solely on the attention mechanism. Initially, they were meant to be used

in natural language processing (NLP). This model outdated other other models like

RNN and CNN, and now it dominates the field of NLP. In 2020, Dosovitskiy et

al. presented the former model’s adaptation to a computer vision task, which they

called "Vision Transformer" (ViT) [10] by representing input images as a sequence

of patches. Despite the fact that this new architecture reuses the encoder block from

the original transformer paper, this model showed excellent results comparable with

or outperforming the state-of-the-art CNN models of that time. They used a pro-

prietary dataset consisting of 300 million labeled images and stated that the ViT

doesn’t generalize well on smaller datasets. However, this is not practical for images,

as all other available and known to me datasets are significantly smaller in size. To

address this issue, Touvron et al. introduced their model named DeiT (Data efficient

image Transformer) [35]. Their approach uses Teacher-Student knowledge distillation

in which a student, transformer model, learns from a teacher, CNN model for exam-

ple. This allows to train a transformer model with fewer samples. Around the same

time, another interesting model, Swin-transformer by Liu et al. appeared, aiming to

solve another ViT issue, scale and complexity [22]. In the original paper, ViT uses

16x16 patches, however this may be too large for some tasks. Swin-transformer’s first

layer has a patch size of 4x4 which is can be beneficial for some tasks of medical

imaging where small pixel-level details are of big importance. Also, original approach

has quadratic complexity with respect to input size, while Swin-transformer has only

linear complexity due to leveraging shifted window approach in which self-attention

is computed only inside a window. This can be important in medical imaging where

images may have high resolution and down-scaling may remove crucial information.

This paper experiments with the above-mentioned models to solve the few-shot learn-

ing problem of medical image classification.
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3.2 Vision Transformer

Figure 3-2: Architecture of a Vision Transformer. The image was acquired from
the original paper [10].

As it was mentioned above, The Vision Transformer is a neural network architec-

ture for computer vision tasks, introduced by Dosovitskiy et al. in their 2020 paper.

The ViT architecture adapts the Transformer model (Figure 3-1), initially proposed

by Vaswani et al. By doing so, ViT demonstrates competitive performance with

state-of-the-art CNNs while offering a more scalable and flexible architecture. The

overview of the model is presented in Figure 3-2.

The Vision Transformer architecture processes an input image by dividing it into

non-overlapping patches and linearly embedding them into a sequence of flat vectors,

which serve as input tokens for the Transformer model. The key components of the

ViT architecture are:

1. Image Patching: The input image is divided into a fixed number of non-

overlapping patches of equal size. For example, if an input image is of size

224× 224 and the patch size is 16× 16, the image is divided into 196 patches.

2. Patch Embedding: Each image patch is then reshaped into a 1D vector and

linearly embedded using a fully connected (FC) layer, resulting in a sequence

of patch embeddings. The dimensionality of these embeddings is referred to as

the hidden size 𝑑.
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3. Position Embeddings: To incorporate positional information, position em-

beddings are added to the patch embeddings. These position embeddings are

learnable parameters initialized randomly and optimized during training.

4. Transformer Layers: The sequence of patch embeddings, along with the

added positional information, serves as the input for a stack of Transformer

layers which is just the encoder block of the model from the original paper.

These layers consist of multi-head self-attention (MSA) and multi-layer percep-

tron (MLP) blocks, connected through residual connections and layer normal-

ization. The self-attention mechanism allows the model to capture long-range

dependencies and global context within the image.

Multi-Head Self-Attention

The multi-head self-attention mechanism is a key component of the Transformer ar-

chitecture. It operates by computing attention scores for all pairs of input tokens

and combines them using a weighted average, allowing the model to capture depen-

dencies between tokens regardless of their positions in the sequence. It uses Scaled

Dot-Product Attention which operates by calculating attention scores between pairs

of input tokens, which are then used to compute a weighted average of the input

embeddings. For each input token, query (Q), key (K), and value (V) matrices are

computed by multiplying the input embeddings with learnable weight matrices. It is

calculated as the following:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (3.1)

where 𝑑𝑘 is the dimensionality of K. By employing multiple attention heads, the model

can concurrently attend to different features or semantic aspects of the input tokens.

Each attention head computes its own set of Q, K, and V matrices, and performs the

scaled dot-product attention mechanism independently. The attended embeddings

from all heads are then concatenated and projected back to the original hidden size

using a linear layer.
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Classification

For image classification tasks, the Vision Transformer uses a dedicated token for ag-

gregating the global context information and producing the final output prediction.

The classification token is prepended to the sequence of patch embeddings that rep-

resent the input image, allowing the model to process it alongside the other image

patches and incorporate global context information.

3.3 Meta Learning

Meta learning, also known as "learning to learn," is a machine learning approach

that aims to improve a model’s ability to learn new tasks quickly and efficiently with

minimal data. In contrast to traditional machine learning, where models are trained

to perform a specific task with a large amount of data, meta learning focuses on

enabling models to adapt to new tasks or variations of tasks using prior knowledge and

experience. The idea of meta learning is to generalize learning strategies across a wide

range of tasks. This is achieved by extracting common patterns and structures from

a distribution of tasks, which can then be used to facilitate adaptation to previously

unseen tasks. Meta learning aims to build models that are adapted to problems data

scarcity and task diversity in real-world scenarios. Therefore, meta learning has been

successfully applied to few-shot learning.

There are various approaches and algorithms for implementing meta learning,

broadly categorized into initialization-based, metric-based, and memory-based ap-

proaches. These methods aim to solve different aspects of the meta learning problem,

such as learning shared representations, discovering useful model initializations, or

learning effective memory management techniques. In this paper, Reptile and Proto-

typical Networks (ProtoNet), one initialization-based and one metric-based algorithm,

respectively, are used. Therefore, information on these two types of meta learning

is provided below. The algorithms themselves will be discussed in the methodology

chapter.
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3.3.1 Initialization-based methods

Figure 3-3: The diagram of MAML from the original paper.

Initialization-based methods are a category of meta-learning techniques that focus

on finding an optimal initial set of model parameters. These parameters can be

rapidly fine-tuned for a variety of new tasks with minimal data and training iterations.

During the meta-training phase, the model is exposed to a wide range of tasks from

a task distribution. The model learns to generalize across these tasks by optimizing

the initial parameters, ensuring that they can be easily fine-tuned for new tasks

encountered during the meta-testing phase. The following paragraphs describe the

Model-Agnostic Meta-Learning (MAML) algorithm, as it is related to the Reptile

algorithm.

Model-Agnostic Meta-Learning is a meta-learning algorithm proposed by Finn et

al. [13] 2017. The MAML algorithm is designed to learn an optimal initialization of

model parameters that facilitates rapid adaptation to new tasks using minimal data

and training iterations. MAML is model-agnostic, as it can be applied to any model

trained with gradient-based learning, encompassing a wide range of neural network

architectures. Therefore, it can be used with both CNNs and ViTs.

The MAML algorithm comprises two nested loops: the outer loop for meta-

training and the inner loop for task-specific training. During the meta-training phase,

the model is exposed to a diverse set of tasks sampled from a task distribution. The

primary goal is to learn a suitable initialization of model parameters (𝜃) that can
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be quickly fine-tuned for new tasks. The diagram how MAML works is depicted on

Figure 3-3. The pseudo-code of MAML is presented below in Algorithm 1.

Algorithm 1 Model-Agnostic Meta-Learning (MAML)
Require: 𝑝(𝒯 ), distribution over tasks
Require: 𝛼, 𝛽, step size hyperparameters
1: Randomly initialize 𝜃, model parameters
2: while not done do
3: Sample a batch of tasks 𝒯𝑖 ∼ 𝑝(𝒯 )
4: for all 𝒯 𝑖 do
5: Evaluate ∇𝜃ℒ𝒯𝑖(𝑓 𝜃) respect to K examples
6: Compute adapted parameters 𝜃

′
𝑖 = 𝜃 − 𝛼∇𝜃ℒ𝒯𝑖(𝑓 𝜃)

7: Update 𝜃 ← 𝜃 − 𝛽∇𝜃

∑︀
𝒯𝑖∼𝑝(𝒯 ) ℒ𝒯𝑖(𝑓𝜃′𝑖)

Basically, this algorithm works as follow:

1. Outer loop (meta-training) (line 2): The outer loop of MAML focuses

on learning the optimal initialization of model parameters (𝜃) by minimizing

the expected loss across tasks after the inner loop updates. This is achieved

by performing gradient-based updates on the initial model parameters (𝜃) with

respect to the task-specific parameters (𝜃′𝑖) obtained after inner loop updates.

2. Sample tasks (line 3): During the meta-training phase, the model is exposed

to a diverse set of tasks sampled from a task distribution 𝑝(𝒯 ).

3. Inner loop (task-specific training) (line 4): For each task 𝑇𝑖 in the meta-

training set, the model undergoes task-specific training in the inner loop. This

involves fine-tuning the model parameters (𝜃) on a small dataset (support set)

specific to task 𝑇𝑖. The fine-tuning process generally involves the following

steps:

(a) Compute gradients (line 5): For each example in the support set,

compute the gradients of the task-specific loss function with respect to the

task-specific parameters (𝜃′𝑖) by calculating the loss for the given example

and backpropagating the error through the model.
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(b) Update task-specific parameters (line 6): Perform a few gradient

update steps (usually 1-5 steps) on the task-specific parameters (𝜃′𝑖) using

the computed gradients and a task-specific learning rate 𝛼.

4. Meta-objective and parameter updates (line 7): MAML aims to minimize

the expected loss across tasks after the inner loop updates. This is achieved by

updating the initial model parameters (𝜃) using the sum of the gradients of the

task-specific losses concerning the task-specific parameters (𝜃′𝑖):

(a) Compute task-specific loss: Evaluate the updated task-specific param-

eters (𝜃′𝑖) on a separate dataset (query set) to compute the task-specific

loss.

(b) Accumulate gradients: Compute the gradients of the task-specific loss

with respect to the task-specific parameters (𝜃′𝑖) and accumulate them.

(c) Update initial model parameters: After processing all tasks in the

batch, update the initial model parameters (𝜃) using the accumulated gra-

dients and a meta-learning rate 𝛽.

By iteratively performing these steps during the meta-training phase, MAML

learns an optimal initialization of model parameters (𝜃) that allows for rapid adapta-

tion to new tasks with minimal data and training iterations. Once the meta-training

phase is complete, the learned initial parameters can be quickly adapted to new tasks

during the meta-testing phase with only a few gradient updates and a small amount

of data.

3.3.2 Metric-based methods

Metric-based methods are a category of meta-learning techniques that focus on learn-

ing a similarity metric or acquiring a good feature space, aiming to improve a model’s

ability to quickly and efficiently adapt to new tasks using minimal data. In contrast

to other meta-learning approaches, such as initialization-based methods, metric-based

methods do not rely on fine-tuning model parameters for new tasks. Instead, they
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learn a representation that enables effective comparisons between samples, facilitating

few-shot learning by identifying similarities between instances in the context of the

target task. More in-depth overview of this subject can be found in survey papers

[15, 17] Description of some prominent metric-based methods is presented below:

• Siamese Networks: Siamese networks consist of two parallel neural networks

that share weights and learn to differentiate between pairs of input data points,

primarily used for tasks like one-shot learning and few-shot learning.

• Matching Networks: Matching Networks, introduced by Vinyals et al. [37],

are designed to address few-shot learning problems by learning an attention

mechanism over a support set. The support set consists of a small number of

labeled examples from each class in the new task. Given a query data point,

the model computes the similarity between the query and each example in the

support set. The model then generates a weighted sum of the support set labels,

with the weights determined by the attention mechanism. This process allows

the model to make predictions for the query data point based on the most

relevant examples in the support set.

• Prototypical Networks: Prototypical Networks, proposed by Snell et al. [31],

learn class prototypes by computing the mean embedding of the data points be-

longing to each class within a support set. The embedding function is typically

implemented as a neural network, and the mean embeddings represent the class

prototypes in the embedding space. Given a query data point, the model as-

signs the data point to the class with the nearest prototype, as determined by

a distance metric such as Euclidean distance.

• Relation Networks: Relation Networks, introduced by Sung et al. [34], com-

bine the ideas of embedding learning and metric learning to address few-shot

learning problems. The model consists of two sub-networks: a feature extractor

and a relation module. The feature extractor generates embeddings for both the

support set and query data points, while the relation module computes the pair-

wise relations between the query data point and the support set examples. The
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model then classifies the query data point based on the highest relation score.

Relation Networks learn to compare data points effectively, allowing them to

perform well in few-shot learning tasks.

In this paper, Prototypical Networks and Reptile were used in conjunction with CNNs

and ViTs as few-shot learners. A more detailed explanation of these algorithms is

presented in the Methodology chapter.
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Chapter 4

Methodology

This chapter formulates the problem definition of few-shot medical image classifica-

tion, presents the overall pipeline of the system, and describes the methodology.

Figure 4-1: Overall System Pipeline.
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4.1 Problem Definition

The problem definition is inline with the one presented in MetaMed [30]. Let 𝐷 =

{𝐷1, 𝐷2, ..., 𝐷𝑛} be a collection of n medical datasets, with each dataset 𝐷𝑘 consisting

of pairs (𝑥, 𝑦)𝑗, where (𝑥, 𝑦)𝑗 represents an image and its corresponding label (ground-

truth). Each dataset is divided into a meta-test set (𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡), which includes

images of classes with fewer representative images (rare diseases), and a meta-train

set (𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛), which contains the remaining classes. The main idea is to utilize

the abundant data available in 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 (base class data) to learn better initial

weights when Reptile is used and then fine-tune the model on problems with limited

data (novel class data). In the case of ProtoNet, the goal is to develop a model

that can produce an effective embedding space, where the feature representation of a

sample is close to its corresponding prototype and distant from prototypes of other

classes. This facilitates the identification of similar items with ease. The overall

pipeline of the system is presented in Figure 4-1, and in its context, both ProtoNet

and Reptile are support set conditioned models. The bottom part of the figure shows

the architectures of these models.

4.2 Few-shot Learning

The problem of few-shot learning is concerned with developing machine learning mod-

els that can generalize effectively to new tasks, given only a limited number of labeled

examples from each class in the target domain. Generally, the difficulty of tasks in

few-shot learning can be described as N-way-K-shot, where N represents the number

of classes and K represents the number of samples from each class used for training.

There are various approaches to few-shot learning, one of which is the meta-learning

perspective. In this approach, the model learns to solve new few-shot tasks by drawing

on the experience of solving other few-shot tasks, which is divided into meta-training

and meta-testing phases. In each phase, data is presented episodically, with the sup-

port set serving as the training set and the query set as the test set. Transfer learning
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can also be considered as a few-shot learning approach, where the model is pre-trained

on a large dataset and then fine-tuned on the limited support set. However, this ap-

proach is less effective when there is a large domain gap between the source and target

datasets. Data augmentation is another technique for tackling few-shot learning, in

which new samples are generated by augmenting the samples from a limited support

set. This chapter describes two algorithms used in this thesis, namely Reptile and

ProtoNet, in detail.

4.2.1 Reptile

Reptile [25] is a meta-learning algorithm designed for few-shot learning. It works

by iteratively updating the model’s weights through a two-level process: inner loop

updates and outer loop updates. The inner loop focuses on learning from individual

tasks, while the outer loop learns across tasks. Figure 3-3 can also be referenced in

the context of Reptile. Pseudo-code is presented in Algorithm 2. Reptile’s simplicity

allows for faster training and easier implementation compared to MAML as it does

not require the computation of second-order gradients. Cross entropy loss was used to

update the weights of the model in both meta-training and meta-testing phases.For

a task 𝑇𝑖, it is given by

ℒ𝑇𝑖
(𝑓𝜑) = −

∑︁
𝑥𝑖,𝑦𝑖∼𝑇𝑖

𝑦𝑖𝑙𝑜𝑔(𝑓𝜑(𝑥𝑖) + (1− 𝑦𝑖)𝑙𝑜𝑔(1− 𝑓𝜑(𝑥𝑖)) (4.1)

where (𝑥𝑖, 𝑦𝑖) is a image and label pair.

Algorithm 2 Reptile
1: Initialize model weights 𝜃
2: for iteration = 1, 2, . . . , 𝑁 do
3: Sample task 𝑇𝑖 from task distribution 𝑝(𝑇 )
4: Perform 𝐾 steps of SGD on 𝑇𝑖 to obtain updated weights 𝜃′

5: Update 𝜃 using 𝜃 ← 𝜃 + 𝜖(𝜃′ − 𝜃)
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Figure 4-2: Few-shot classification using class prototypes in ProtoNet algo-
rithm. Here, a sample 𝑥 has been classified as class 𝑐2, as its feature representation
is closer to the class prototype of 𝑐2.

4.2.2 Prototypical Networks

Prototypical Networks [31] aim to learn a prototype for each class in the embedding

space. Given a set of support samples and their corresponding labels, the model learns

an embedding function, 𝜑 : 𝒳 → R𝑑, which maps input images to a 𝑑-dimensional

space.

The prototype 𝑐𝑘 for class 𝑘 is computed as the mean of the embedded support

samples belonging to that class:

𝑐𝑘 =
1

𝑁𝑘

∑︁
(𝑥𝑖,𝑦𝑖)∈𝑆,𝑦𝑖=𝑘

𝜑(𝑥𝑖) (4.2)

Here, 𝑆 represents the support set, and 𝑁𝑘 is the number of support samples in

class 𝑘.

For a given query sample 𝑥, the model computes its embedding 𝜑(𝑥) and deter-

mines the class by finding the prototype with the smallest Euclidean distance:

𝑦 = argmin
𝑘
‖𝜑(𝑥)− 𝑐𝑘‖2 (4.3)

The classification procedure is demonstrated in Figure 4-2.
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Figure 4-3: The architecture of our custom ViT. Image was adapted from [12]
and [1].

4.3 Custom ViT

Aouayeb et al. [1] adapted Squeeze and Excitation (SE) block from CNNs to ViTs and

achieved improved results on the Facial Expression Recognition task when compared

to vanilla ViTs. When used with ViTs, there is no need in squeeze operation, therefore

SE block serves as an additional attention mechanism on top of a ViT encoder for

learning more global features from a class token. In this thesis, we propose to use the

SE block with ConViT architecture [12]. Proposed by d’Ascoli et al., this architecture

differs from the original ViT by introducing a new attention mechanism called gated

positional self-attention (GPSA) as an attempt to introduce convolution-like locality

bias. This bias should allow the model to train using less data in comparison with the

original ViT. The architecture of ViTs, SE block, and GPSA are depicted in Figure

4-3.
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4.4 Advanced Augmentation techniques

Generally, ViTs rely on various regularization techniques including data augmenta-

tion in order to achieve high performance on small datasets. This may be even more

important in FSL, as the amount of data is smaller. Augmentation techniques en-

courage models to learn more generalized representations, as it has to predict the

correct label proportions based on the augmented inputs, ultimately reducing over-

fitting. Such techniques were used in MetaMed paper, where it improved accuracy

of FSL significantly. However, as we are using much bigger models, it is important

to see if the results would be as promising. It should be stated that only the Cutout

technique is compatible with ProtoNet algorithm, as the other 2 methods modify

labels of the support set.

4.4.1 Cutout

Cutout is a data augmentation technique that randomly removes rectangular regions

from input images during training. Given an input image 𝑥 with dimensions 𝐻 ×𝑊 ,

Cutout selects a rectangular region with dimensions ℎ×𝑤, where ℎ ≤ 𝐻 and 𝑤 ≤ 𝑊 .

The center (𝑐𝑥, 𝑐𝑦) of the selected region is chosen uniformly at random, ensuring

that the rectangle lies within the image boundaries. The pixel values within this

rectangular region are then set to a predefined constant value (e.g., zero).

4.4.2 Mixup

Mixup is a method that involves generating new training examples by taking a linear

combination of two randomly chosen input images and their corresponding labels.

Specifically, given two images 𝑥1 and 𝑥2 with their respective labels 𝑦1 and 𝑦2, and a

mixing coefficient 𝜆 sampled from a Beta distribution, the new mixed image 𝑥mixup

and its label 𝑦mixup are obtained by computing 𝑥mixup = 𝜆𝑥1 +(1−𝜆)𝑥2 and 𝑦mixup =

𝜆𝑦1 + (1− 𝜆)𝑦2.
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4.4.3 Cutmix

Cutmix is a method that combines the strengths of both Cutout and Mixup. The idea

behind Cutmix is to replace a portion of an input image 𝑥1 with another image 𝑥2,

while also adjusting the corresponding labels accordingly. To achieve this, a random

bounding box is selected within the original image 𝑥1, and its content is replaced with

the corresponding region from the second image 𝑥2. The new mixed image 𝑥cutmix is

then formed, and its label 𝑦cutmix is computed as 𝑦cutmix = 𝜆𝑦1 + (1 − 𝜆)𝑦2, where 𝜆

is the proportion of the area of the replaced region in relation to the entire image.
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Chapter 5

Results

5.1 Dataset Description

Three publicly available medical imaging datasets were selected for this research.

Each datasets contains at least six classes such that both 2- and 3-way n-shot learning

can be performed. In contrast with other works, images were downsampled to 224x224

(standard is 84x84) in order to utilize pre-trained models.

5.1.1 BreakHis

Figure 5-1: BreakHis Dataset.

The BreakHis dataset consists of 9109 microscopic images of breast tumor tissues,

collected from 82 patients and captured at magnification levels of 40, 100, 200, and

400. Each image has a height of 700 and a width of 460. This dataset is divided

into eight classes. Five classes with the most samples were selected as meta-train
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Figure 5-2: ISIC 2018 Dataset.

Figure 5-3: Pap smear Dataset.

classes, while the rest as meta-test classes. Fig. 5-1 shows examples of images from

the dataset representing all classes.

5.1.2 ISIC 2018

The ISIC 2018 Skin Lesion dataset comprises a total of 10,015 dermoscopic images

spanning seven classes. The dataset’s distribution of diseases reflects real-world preva-

lence, with a higher number of images for benign lesions compared to malignant ones.

The images have dimensions of 600 pixels in height and 450 pixels in width. Similarly,

four classes with the most samples were selected as meta-train classes. The remaining

three classes are designated for meta-testing. Fig. 5-2 shows examples of images from

the dataset representing all classes.
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5.1.3 Pap Smear

The benchmark dataset for Pap-smear consists of microscopic images of cervical

smears taken at Herlev University Hospital. The dataset contains a total of 917

images, unevenly distributed across seven distinct classes, which were annotated by

experienced cyto-technicians and doctors. Fig. 5(a) and (b) display the representa-

tive images and class distribution, respectively. Four classes with the most samples

were selected as meta-train classes, while the remaining three classes are selected for

meta-testing. Fig. 5-3 shows examples of images from the dataset representing all

classes.

Table 5.1: Models used in this thesis.
Model Dim Parameters

ViT_tiny [10] 192 5.5m

MViT_v2_0.5 [24] 384 1.4m

ViT_small [10] 384 22m

ViT_base [10] 768 85m

DeIT_base [35] 768 85m

Swin_base [22] 1024 86m

ResNet50 [14] 2048 23.5m

VGG16 [29] 4096 134m

5.2 Models

This section discusses various models used for testing in the thesis. Table 5.1 summa-

rizes the feature dimensionality and the number of parameters for each model. The

models tested can be grouped into three categories:

• ViT family: Three models from the Vision Transformer (ViT) family [10] were
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used, including ViT_tiny, ViT_small, and ViT_base. These models differ in

the number of parameters and feature dimensionality, with ViT_tiny having

the least parameters (5.5 million) and ViT_base having the most (85 million).

• Other Vis architectures: Mobile_ViT (MViT_v2_0.5) [24], DeiT_base [35],

and Swin_base [22] models were selected to investigate the performance of

alternative ViT architectures. MViT_v2_0.5 has fewer parameters (1.4 mil-

lion) but a higher feature dimensionality (384) than ViT_tiny. DeiT_base and

Swin_base have similar feature dimensionality (768) and number of parameters

(85 million and 86 million, respectively) as ViT_base.

• CNN models: ResNet50 [14] and VGG16 [29] are two well-known Convolu-

tional Neural Network (CNN) models used for comparison with the ViT mod-

els. ResNet50 has 23.5 million parameters and a feature dimensionality of 2048,

while VGG16 has 134 million parameters and a feature dimensionality of 4096.

All models were pre-trained on the ImageNet1k dataset, which is a widely used

dataset for training computer vision models.

5.3 Implementation Details

The overall implementation was done in Python using the PyTorch framework [27].

Pre-trained models were obtained from the timm (PyTorch Image Models) library

[40]. The ProtoNet experiments were conducted using the easyfsl library [3]

5.4 Experimental Settings

5.4.1 Setup

The hardware specifications for the PC and Google Colab Pro Platform used for the

experiments were as follows:
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PC:

• NVIDIA RTX 3060 Ti with 8GB of VRAM

• Intel i5-10400 CPU

• 16GB of RAM

Google Colab Pro Platform:

• NVIDIA Tesla T4 with 16GB of VRAM or A100 with 40GB of VRAM

The models were trained and tested on the PC, while some experiments were also

performed on the Google Colab Pro Platform for additional computational resources.

5.4.2 Training

We utilized pre-trained model checkpoints during the training phase and employed

data augmentation techniques. We believe that the effect of class imbalance is mit-

igated by the nature of episodic task sampling in FSL, as few-shot learners see an

equal amount samples from each class.

For ProtoNet, we trained the model for 20 epochs and found that further training

epochs caused the model to overfit. Each epoch included 500 episodes or tasks.

Stochastic gradient descent (SGD) optimizer was used with a learning rate of 10−5

or 10−6 on the model, with a momentum of 0.9, depending on the dataset. We also

utilized a cosine annealing learning rate schedule.

For Reptile, we used the SGD optimizer with a learning rate of 10−3 for the inner

optimization problem and SGD with a learning rate (step size) of 10−1 for the outer

meta-update step. During meta-training, a backbone was trained for 1000 meta-

iterations with a batch size of 10 tasks. In both training and testing, batch size was

10 tasks per meta-iteration. For the inner problem, we experimented with 5 and 50

adaptation steps for each task.
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5.4.3 Evaluation

In line with MetaMed [30], we utilized accuracy (%) as the evaluation metric in

our experiments, a common performance indicator for few-shot classification tasks.

Similar to the previous section, class imbalance does not impact accuracy scores in

this context because task sampling ensures an equal number of query samples from

each class are selected from the meta-test dataset. To assess performance on the

BreakHis, ISIC 2018, and Pap smear datasets, we randomly select 400 episodes from

the novel categories in the test set each time and compute the average accuracy rate

for image classification. We tested 2- and 3-way 2-, 5-, and 10-shot few shot learning

scenarios.

5.5 Analysis

5.5.1 Pretrained ViT without Meta-training

Table 5.2: Few-shot classification results without meta-training for the ISIC 2018
dataset.

Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ViT_tiny 70.25 74.60 76.15 54.83 59.51 65.41
MViT_v2_0.5 59.30 63.10 67.80 46.13 48.27 49.90
ViT_small 77.40 81.89 85.95 63.67 69.84 75.28
ViT_base 74.75 77.70 82.45 60.73 65.73 69.97
DeIT_base 71.75 79.40 81.75 58.33 61.87 69.47
Swin_base 75.10 80.15 82.00 62.27 67.67 71.50
ResNet50 72.66 76.17 79.15 56.69 62.31 65.81
VGG16 72.45 78.60 81.30 60.00 65.87 68.20

Table 5.3: Few-shot classification results without meta-training for the BreakHis
dataset.

Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ViT_tiny 71.25 77.35 78.50 57.27 61.53 67.87
ViT_small 74.71 79.42 83.24 63.22 69.25 73.91
ViT_base 74.50 80.70 84.90 63.90 69.17 75.50
Swin_base 77.95 83.20 85.37 72.77 80.30 82.3
ResNet50 79.62 83.31 85.72 68.75 73.09 77.61
VGG16 70.40 79.15 81.75 60.70 65.40 71.67
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This section examines the results of models pre-trained on ImageNet1k for few-

shot classification tasks without meta-training on ISIC 2018 and BreakHis x100

datasets. Model checkpoints pretrained on ImageNet1k are used directly as ProtoNet

backbones without fine-tuning or performing meta-training. Tables 5.2-5.3 present

the findings. These findings reflect the differentiability of feature representations of

samples from various classes generated by models pre-trained solely on a natural

dataset.

In the following chapter, these results are compared with those after meta-training

to demonstrate the improvement or deterioration of feature spaces generated by the

models. Generally, from the tables, we see that models with more parameters tend to

show higher results. On the contrary, Mobile ViT (MViT_v2_0.5) with 1.4 million

parameters has the lowest score, and ViT_tiny has the second lowest. In terms of

comparison between ViT and CNN, both show comparable results in general. How-

ever, these results only serve as an initial baseline for ProtoNet and should not be

used for judging the overall performance of models in few-shot learning.

5.5.2 Meta-Training Results

Table 5.4: Performance of models using different meta-learning algorithms for ISIC
2018 dataset.

Algorithm Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

MViT_v2_0.5 74.64 76.94 81.50 60.60 64.23 69.23
ViT_tiny 81.03 83.61 86.52 67.84 71.82 77.68

ViT_small 84.35 86.70 89.72 72.10 76.18 81.45
ViT_base 83.94 86.02 90.26 72.75 77.69 81.99

Swin_base 82.49 84.17 89.12 70.75 74.67 79.92
ResNet50 66.62 68.65 72.81 51.43 53.83 58.34

VGG16 72.32 76.04 80.69 57.81 61.86 66.92
Protonet w/o Pre-traning ViT_small 56.19 57.55 60.17 39.87 41.08 41.88

Reptile 5 steps ViT_small 71.23 76.65 81.38 66.20 72.23 78.10
ResNet50 59.50 62.80 65.78 42.62 43.22 44.13

Reptile 50 steps ViT_small 76.05 80.3 85.55 67.5 73.15 76.27
ResNet50 66.68 72.13 77.03 53.63 57.03 60.18

This section analyzes the test results of few-shot classification models using Pro-

toNet and Reptile meta-learning algorithms. The results are presented in Tables 5.4 -

5.6. By comparing these tables with those from the previous section, we can observe
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Table 5.5: Performance of models using different meta-learning algorithms for
BreakHis with X100 magnification dataset.

Algorithm Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

MViT_v2_0.5 76.89 79.60 84.65 64.51 71.43 77.05
ViT_tiny 75.34 79.44 83.53 62.64 69.88 75.18

ViT_small 80.64 83.80 87.62 69.39 75.91 81.47
ViT_base 79.33 81.65 84.62 68.52 73.27 76.38

Swin_base 79.46 82.86 86.26 68.34 74.28 80.51
ResNet50 68.62 72.12 73.31 55.80 60.28 61.88

VGG16 67.06 69.70 74.74 52.89 57.94 61.15

Reptile 5 steps ViT_small 66.90 74.20 81.80 47.37 57.17 68.47
ResNet50 64.90 67.60 73.25 34.70 36.33 38.23

Reptile 50 steps ViT_small 73.45 77.9 86.18 55.05 63.38 75.92
ResNet50 72.15 76.63 80.33 60.33 63.45 68.47

Table 5.6: Performance of models using different meta-learning algorithms for Pap
Smear dataset.

Algorithm Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

MViT_v2_0.5 80.84 84.36 86.88 68.04 73.24 78.37
ViT_tiny 84.65 86.96 88.86 74.33 77.92 81.17

ViT_small 92.40 94.05 94.90 86.38 89.09 90.62
ViT_base 92.05 93.26 93.94 85.21 88.48 89.47

Swin_base 85.42 87.56 89.78 75.73 79.88 82.46
ResNet50 70.49 71.75 69.61 57.74 58.48 59.60

VGG16 87.95 90.11 91.45 78.21 81.81 84.32

Reptile 5 steps ViT_small 83.35 87.05 91.96 72.52 81.13 87.94
ResNet50 71.44 74.59 78.39 48.00 49.86 50.44

Reptile 50 steps ViT_small 85.85 88.33 92.55 76.75 82.58 86.92
ResNet50 86.60 90.38 90.85 65.73 67.75 73.83

that ViTs paired with ProtoNet demonstrated noticeable performance gains across

all datasets and FSL tasks. Mobile ViT and ViT, being the smallest and second

smallest models, showed correspondingly lower results when compared with larger

ViTs. However, ViT_small demonstrated the highest results in most cases, often

outperforming bigger models. When it comes to ProtoNet and CNN, it can be stated

that both ResNet50 and VGG16 performed worse after meta-training; therefore, in

comparisons, we would consider their pre-meta-train ProtoNet and Reptile scores.

Similar behaviour of ResNet50 was demonstrated in a paper by Chen et al. [5], where

ResNet50 scores were significantly lower after meta-training with ProtoNet.

Additionally, the importance of pretraining can be highlighted by comparing Pro-

toNet with and without pretraining ("ProtoNet w/o Pre-training" in Table 5.4). Pro-

toNet with a ViT_small backbone pretrained on ImageNet1k has accuracy scores up
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to 30% higher when meta-trained. This indicates that the model is learning a more

discriminative feature representation space. This result coincides with the observa-

tions of [16] and highlights the importance of pre-training.

As for the Reptile algorithm, its performance is highly dependent on proper hy-

perparameter selection. All tables contain results with 5 and 50 inner adaptation

steps. Both models see a noticeable performance increase when task-adapted for

more steps. However, this increase depends on the dataset and model used. For

example, for ViT_small, the average increase from 5 to 50 steps is 2.35% for ISIC

2018, 5.99% for BreakHis, and only 1.51% for the Pap smear dataset. For ResNet50,

these increases are 11.44%, 17.73%, and 17.07% respectively. This may imply that

ViTs can adapt to novel classes faster than CNNs (at least for ResNet50). In gen-

eral, ViT_small outperforms ResNet50 in an overwhelming majority of tasks across

datasets. Despite the increase, the performance of ViTs with Reptile is still lower

when compared with ProtoNets. On the contrary, ResNet50 showed much better

results with Reptile.

Considering the ease of use and training, generally better performance across

datasets and FSL tasks, and lower complexity of the algorithm, ProtoNet with a ViT

backbone seems to be a better option than a CNN or a ViT paired with Reptile.

5.5.3 Effect of Augmentations

Table 5.7: Effect of different Augmentation techniques on Few-shot classification for
ISIC 2018 Dataset

Algo. Model FSL 2-way 3-way

Standart CutOut MixUp CutMix Standart CutOut MixUp CutMix

PN

ViT_s
3 shot 84.35 81.73 - - 72.10 70.55 - -
5 shot 86.70 85.89 - - 76.18 76.23 - -

10 shot 89.72 89.22 - - 81.45 81.13 - -

RN50
3 shot 66.62 65.52 - - 51.43 49.32 - -
5 shot 68.65 68.75 - - 53.83 53.81 - -

10 shot 72.81 72.18 - - 58.34 57.74 - -

Rept.

ViT_s
3 shot 76.05 75.30 77.50 74.85 67.50 64.87 66.20 67.40
5 shot 80.30 80.35 79.40 77.75 73.15 69.97 71.33 72.57

10 shot 85.55 83.95 85.75 85.65 77.37 76.53 77.87 79.63

RN50
3 shot 70.28 68.73 70.75 70.10 54.47 55.70 55.00 53.70
5 shot 75.78 73.60 74.15 74.60 58.22 59.90 60.65 58.92

10 shot 78.83 76.58 78.03 77.95 61.58 64.67 64.95 63.62
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Table 5.8: Comparison with MetaMed and PFEMed: ISIC 2018 dataset

Algorithm Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ProtoNet ViT_small 84.35 86.70 89.72 72.10 76.18 81.45
ResNet50 66.62 68.65 72.81 51.43 53.83 58.34

Reptile
ViT_small 76.05 80.30 85.55 67.50 73.15 77.37
ResNet50 70.28 75.78 78.83 54.47 58.22 61.58
MetaMed 72.75 75.62 81.37 54.83 59.33 69.75

- PFEMed 81.69 83.87 85.14 66.94 69.78 73.81

Table 5.9: Comparison with MetaMed and PFEMed: BreakHis x100 dataset

Algorithm Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ProtoNet ViT_small 80.64 83.80 87.62 69.39 75.91 81.47
ResNet50 68.62 72.12 73.31 55.80 60.28 61.88

Reptile
ViT_small 73.45 77.90 86.18 55.05 63.38 75.92
ResNet50 72.15 76.63 80.33 60.33 63.45 68.47
MetaMed 78.75 81.38 83.88 63.08 66.42 74.08

- PFEMed 82.16 85.28 86.90 69.21 75.04 78.93

Cutout, Mixup, and Cutmix augmentation techniques were tested on the ISIC

2018 dataset in this paper. Results are summarized in Table 5.7. For ProtoNet,

the only applicable method, Cutout, resulted in lower scores for most tasks for both

ViT_small and ResNet50. For Reptile, the situation is better. The use of Cutout

led to lower performance in most cases, except for 3-way k-shot tasks of ResNet50. A

similar situation is observed with CutMix, where results are generally lower for the

majority of tasks. On the contrary, when input data was augmented using Mixup,

there was an uplift in accuracy scores in 4 and 3 tasks out of 6 for ResNet50 and

ViT_small, respectively. In general, Mixup performs better than the other techniques

and can be recommended as a good data augmentation technique.

5.5.4 Comparison with other works

In this section, we compare the results of our models with those presented in the

MetaMed [30] and PFEMed papers [8]. We focused on ViT_small and ResNet50

models, which were used in both ProtoNet and Reptile. The results are presented

in Tables 5.8 - 5.10. It should be noted that all models were meta-trained without

the use of advanced augmentation techniques. However, it should also be noted
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Table 5.10: Comparison with MetaMed and PFEMed: Pap smear

Algorithm Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

ProtoNet ViT_small 92.40 94.05 94.90 86.38 89.09 90.62
ResNet50 70.49 71.75 69.61 57.74 58.48 59.60

Reptile
ViT_small 83.35 87.05 91.96 72.52 81.13 87.94
ResNet50 71.44 74.59 78.39 48.00 49.86 50.44
MetaMed 85.37 86.50 89.37 70.58 72.42 83.00

- PFEMed 95.53 95.87 96.00 92.42 92.48 92.68

Table 5.11: Custom ViT architecture results on ISIC 2018 dataset.
Algorithm Model 2-way 3-way

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Protonet

ViT_small 84.35 86.70 89.72 72.10 76.18 81.45
ViT_small_SE 77.84 80.66 84.36 64.30 68.24 74.66

ConViT 76.33 78.89 82.94 63.17 67.07 71.96
ConViT_SE 75.21 77.18 81.71 60.94 65.11 69.60

that MetaMed used a simple CNN model (with only 3840 parameters), which is a

standard in FSL, while PFEMed utilizes a model with 72.95m parameters which is

significantly higher than 22m and 23.5m parameters of ViT_small and ResNet50

respectively. Therefore, it may not be a fair comparison.

Upon analyzing the results across all datasets, we observed that ViT_small out-

performed other models in all tasks when used with ProtoNet on ISIC 2018 dataset.

On BreakHis x100, it showed the highest accuracy in 2-way-10-shot and all 3-way

tasks. However, on Pap smear dataset, PFEMed showed higher results across all

tasks. Generally, It can be observed that the ViT results scales better with the in-

creasing number of shots in comparison with PFEMed. At the same time, ResNet50

failed to catch up with the performance of other models, including those presented in

the MetaMed paper.

5.5.5 Custom ViT Results

For custom ViTs, we used ImageNet1k pretrained checkpoints and attached SE block

on top of an encoder block. Then these modified models were trained on CIFAR

100 dataset in a supervised manner to train the SE block. After that the models

were meta-trained using ProtoNet algorithm on ISIC 2018 dataset. The Table 5.11
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demonstrates our findings. Generally, it is clear that unmodified models performed

better than those with SE block attached. However, these are only preliminary results

as the training was performed on CIFAR 100 dataset which is too small for proper

training.

5.6 Discussion

From the results presented above, we can conclude that ViTs can be effectively used

for few-shot medical image classification, especially when combined with ProtoNet, as

they outperformed comparable CNNs in the majority of tasks. When compared with a

bigger model which specializes on FSL, PFEMed, ViT_small managed to outperform

it on ISIC 2018 in all tasks and on BreakHis x100 in 2-way-10-shot and all 3-way

tasks. For Pap smear dataset, PFEMed showerd better results across all tasks. When

comparing our results to those reported in the MetaMed paper [30], a ProtoNet with

a ViT_small backbone demonstrated superior performance in all cases. Nonetheless,

it is essential to take into account the differences in model size when interpreting these

findings. The ViT_small model has considerably more parameters compared to the

simpler CNN model used in MetaMed, which may contribute to the performance

disparity observed. Additionally, it should be noted that the performance highly

depends on the FSL algorithm used. It was observed that ViTs paired with ProtoNet

showed much stronger results compared to the Reptile algorithm. Nevertheless, better

hyperparameter selection may improve Reptile’s performance, as demonstrated by

changing the inner adaptation steps from 5 to 50. This may be a direction for further

study.

Finally, the effect of advanced augmentation techniques is mostly negative, except

for Mixup. When used with our best FSL algorithm - ProtoNet, ViT_small showed

lower results with Cutout augmentation, suggesting that it should not be used during

the meta-training phase. As for Reptile, Mixup improved the accuracy scores of the

model in most cases, while other techniques showed positive results in less than 50%

of tasks.
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As for future study directions, there are several options, including designing a new

ViT architecture, investigating the use of synthetic data augmentation techniques

such as Variational Autoencoders or Generative Adversarial Networks. Additionally,

we are still experimenting with our custom ViT architectures and plan to assess their

performance after performing training with bigger datasets.
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Chapter 6

Conclusion

In this study, we explored the application of vision transformer (ViT) architecture

in medical image classification within a few-shot learning scenario. We evaluated

several well-known ViT and CNN architectures, employing two few-shot learning al-

gorithms, ProtoNet and Reptile, on three publicly available medical datasets: ISIC

2018, BreakHis, and Pap smear. Our results revealed that a ViT serving as a back-

bone for ProtoNet outperforms other configurations, including those with ResNet50.

Additionally, we compared it with other notable works from the field. ViT_small

paired with ProtoNet outperformed results presented in the MetaMed paper in all

cases. When compared with PFEMed few-shot learner, our configuration showed bet-

ter results in all task on ISIC 2018 dataset and 2-way-10-shot and all 3-way tasks on

BreakHis x100 dataset, only falling short on Pap smear dataset. From this, we can

state that ViTs, when paired with ProtoNets, can be effectively utilized for few-shot

medical image classification tasks.

Furthermore, we assessed the effectiveness of Cutout, Mixup, and Cutmix data

augmentation techniques when applied to ViT small and ResNet50 on the ISIC 2018

dataset. These augmentation techniques generally did not yield positive effects on

the performance of models, except for the Mixup method. It improved test scores in

4 and 3 tasks out of 6 for ResNet50 and ViT_small models respectively when used

with the Reptile algorithm. For ProtoNet scores, the only compatible augmentation

method Cutout deteriorated the model performance in most of the cases.
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We also proposed a new ViT architecture which combines ConViT and Squeeze&Excitation

block. Preliminary results demonstrated that this architecture is performing worse

than a standard ConViT when paired with ProtoNets. However, these are only prelim-

inary scores from pretraining on a small dataset. Later, we plan to perform training

on much bigger dataset to draw final conclusion on the performance of the proposed

architecture.

For a future direction, we plan to use data generation techniques like Variational

Autoencoders or GANs for input augmentation. Additionally, we may try to develop

a ViT based architecture designed for FSL tasks.
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