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ABSTRACT

Dielectric multilayers with graded index treat the propagating waves impinging at
different angles very differently, due to total internal reflection. Such an ultra-sharp
change in the response can be exploited for filtering, manipulation and tailoring of spatially
distributed electromagnetic signals. Various utilities of the proposed filter such as power
splitting, DC isolation, beam shifting and low-profile energy interaction are demonstrated,
even in the presence of losses. The proposed setup can be vital as component in the
operation of integrated photonic devices dealing with optical signal processing and analog
information control.
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1 INTRODUCTION

1.1 Demand for Photonic Devices

Structures that can transform the spatial distribution of the electromagnetic waves,
like lenses, have been a major research objective of scientists for centuries. For instance,
Maxwell himself has performed an extensive work on the formulation of generic laws
governing the interaction of light with optical instruments [1]. Also, attempts to remedy
the aberrations accompanying any image magnification by finite apertures have been
recorded as early as 1948 [2]. In this regard, Luneburg was the first to capture the simple
idea of changing the refractive index into a cylindrical or spherical domain so that all
incoming rays have the same path length and get focused by exiting from the same point
of the device [3]. Since then, no big research breakthrough occurred until the seminal
works by Pendry reporting that the evanescent waves from a source can be restored at a
distant target with use of negative refraction [4] and that suitably anisotropic media with
inhomogeneous characteristics can control the electromagnetic fields within their volume
[5]. Significant progress towards the wavefront engineering has been also made with help
from epsilon-near-zero materials [6] and periodic placements of artificial particles that can
impose any given law of diffraction via suitable phase shifts [7].

These and the related advances in the techniques of modulation of the incident fields
have led to a number of fascinating applications. In particular, analog computing with
spatially distributed signals has become feasible by utilization of subwavelength pat-
terned screens [8], optimized inhomogeneous blocks surrounded by closed-loop networks
[9] or platforms with tunable elements [10]. Importantly, on-chip architectures have been
proposed based on an inversely designed silicon canvas that executes multiplexing [11],
nanoslits of unequal length that perform focusing [12] and a cluster of dielectric nanoposts
allowing for edge detection [13]. Moreover, it has been shown that free space can be
substituted with nonlocal flat optical systems [14], while disordered scattering has been
applied to improve resolution and bandwidth in imaging and communication [15]. Simi-
larly, wavefront conversion is attainable with optimally loaded absorbing bilayers [16] and
signal generation with arbitrary profile becomes feasible with quantum-dot-distributed
feedback lasers [17]. Finally, neural networks are employed to design multilayered struc-
tures for temporal signal processing [18], while tensor impedance surfaces are used to
build transformation electromagnetics devices [19].

In the aforementioned works, metamaterials have played a key role towards efficient
implementation of blueprints created for the modification of electromagnetic signals. More
recently, it has been demonstrated that setups composed of only two types of unit cells
with different phase responses enable manipulation of waves in a programmable fashion
[20], while two-dimensional plasma metamaterial devices allow for demultiplexing and
waveguiding [21]. In addition, full control of optical transmission has been achieved via
composite metascreens [22], ultrafast optical switching has been shown in polaritronic
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metamaterials [23] and subwavelength resolution has been realized with metalenses in
the visible spectrum [24]. Such a plethora of metamaterial-based designs has ignited siz-
able funding initiatives by significant players like Defense Advanced Research Projects
Agency (DARPA) [25] and National Aeronautics and Space Administration (NASA) [26]
for producing tunable optical filters in military and space applications. Large industrial
interest has been also recorded towards the development of end-user metamaterial compo-
nents for controlling electrodynamic signals by growing [27] and emerging [28] technology
companies.

Metasurfaces, the two-dimensional siblings of metamaterials, are even more extensively
utilized for the spatial manipulation of electromagnetic fields [29, 30] since they fit into a
boundary without requiring bulky configurations. They can support useful functionalities
such as determining the Fourier transform of signals that interact with spatially varying
momentum [31] or evaluating second derivative across a plane [32]. Interestingly, high-
efficiency dielectric metasurfaces can be employed for optical edge detection [33], retro-
reflection incorporating space harmonics of different order [34] and independent control
of beam characteristics (phase, amplitude) [35]. Furthermore, simple metasurfaces enable
multifunctional processing of electromagnetic waves via two sets of vertically integrated
polarization-filtering meta-atoms [36] and allow for giant directivity boost that mitigates
interference in visible light communications [37].

1.2 Graded-Index Multilayers

In this thesis, I consider a graded-index planar multilayered layout positioned between
a dense incoming medium and vacuum. In this way, a propagating incident wave can be
either fully transmitted into air due to the smooth textural transition or perfectly reflected
due to total internal reflection. As a result, an ultra-sharp filtering of the impinging
light is performed based on the angle of propagation and can execute operations like DC
component isolation, power splitting or beam shifting. A variation analysis of the filter
selectivity with respect to the permittivity levels, number of layers, overall thickness and
presence of losses is provided to identify the functional modes of the device by trading
off the design parameters. Therefore, the proposed setup can be directly utilized as a
piece of integrated photonic systems serving a wide range of purposes from wavefront
manipulation and optical signal processing to angular switching and directional sensing.

It is important to stress that the considered structure is extensively used, even by
standard textbooks [38], but for objectives different from the ones of this thesis. Namely,
this work focuses on the previously unexplored applications of the graded index designs
for angular filtering by employing the total internal reflection to switch abruptly the
mode of operation. Additionally, the filtering efficiency is evaluated for a large number
of parameters both in lossless and lossy cases. Finally, based on the filtering properties,
some novel applications listed in the previous paragraph are proposed and examined.
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2 PROBLEM FORMULATION

2.1 Design Description

The filter design is based upon the structure depicted in Fig. 1(a), where U layers
of thickness d are filled with magnetically inert (permeability µ0) materials of relative
permittivities εu for u = 1, · · · , U ; the utilized Cartesian coordinate system (x, y, z) is
also defined. For the dielectric constants, the following inequality holds: ε > ε1 > ε2 >

· · · > εU−1 > εU > 1 indicating an almost linear drop of ε(z) for increasing z, as shown in
the bottom inset of Fig. 1(a). The layered configuration has an overall thickness denoted
by D ≡ Ud and is positioned between the dielectrically dense left half space (z < 0,
permittivity εε0) and the empty right half space (z > D) of unitary relative permittivity
(vacuum constants (ε0, µ0)).
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Figure 1: (a) The physical configuration of the examined filtering setup. A layered struc-
ture of overall thickness D and U layers of the same size d = D/U , is obliquely illuminated
by plane waves of wavelength λ traveling along directions that form various angles θ with
the horizontal z axis. The permittivity ε(z) drops with distance z, as shown in the bottom
graph, from ε > 1 (corresponding to the dense left half space) to unity (corresponding to
the empty right half space). (b) Sketch of the ideal |r(θ)|2 and the actual |R(θ)|2 reflec-
tivity of the device as (even) functions of the angle θ, when high-pass filtering operation
is desired. In the actual response, the permittivities may be considered as complex (lossy
materials).

The setup is obliquely illuminated by plane waves characterized by the same wave-
length λ of either TE (electric field Ey parallel to y axis, magnetic field H across zx plane)
or TM type (magnetic field Hy parallel to y axis, electric field E across zx plane), that
travel into vacuum along directions forming angles −π/2 < θ < π/2 with the z axis. In
order to treat the two polarizations with a unified notation, let us use the symbol F for
both polarizations: it represents the only (y-directed) electric field component in the case
of TE waves and the only magnetic component for TM waves.
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For a moment, let us assume that the excitation is a plane wave incident at an angle
θ. This is a strong assumption, but the Fourier analysis allows us to deduce the response
to an arbitrary excitation using only the response to plane waves as will be discussed in
more detail in the following section. Suppressing the time harmonic part of the form eiωt,
the propagating plane wave is described by Finc(z, x) = e−ik(z cos θ+x sin θ). When reflected,
the plane wave will be modulated by a complex reflection coefficient R(θ), which can be
analytically evaluated by employing the boundary conditions. The reflection coefficient, or
rather reflectivity |R(θ)|2, is what determines the amount of energy carried by the reflected
wave as dictated by Poyinting’s theorem [38]. Thus, filtering out part of the spectrum is
equivalent to constructing the system such that |R(θ)|2 = 0 for all angles in the undesired
spectrum. This is demonstrated in fig. 1(b), where the reflectivity is plotted as a function
of the angle of incidence θ. In the absence of losses (Im[ε(z)] = 0) and for a very smooth
permittivity transition (D → +∞ and U → +∞), the ideal response |r(θ)|2 is obtained.
One can identify the critical total reflection angle θc = arcsin(1/

√
ε) beyond which the

waves are purely evanescent into vacuum and thus 100% power reflection is recorded [39].
On the contrary, for 0 < θ < θc, the reflections are negligible since the textural transition
occurs across an extremely large distance (D) and with help from numerous (U) layers,
each of which has permittivity almost equal to these of the neighboring layers. In a more
realistic scenario where D is, at maximum, a few free-space wavelengths λ, one obtains
the curve of actual response |R(θ)|2 which yields some reflections for 0 < θ < θc while
absorbs a part of the incidence illumination for θ > θc, due to the inevitable losses. It
should be stressed that, for a lossless design, one always obtains |R(θ)| = 1 for θ > θc,
regardless of the finite thickness D/λ. This thesis aims at providing multilayers that work
as ultra-sharp, high-pass angular filters for the reflected beams, namely, photonic setups
that reflect only the rapidly varying input signals being spatially distributed along x axis.

2.2 Analytical Solution

The famous Maxwell equations are a set of four partial differential equations that sum-
marize the empirical laws describing the behavior of charged particles and electromagnetic
fields. They are an essential tool for the design of photonic devices, which, by definition,
employ the light-based phenomena to achieve the desired result. For the angular filter
discussed in this work, it is sufficient to state the homogeneous Maxwell equations, which
describe the electromagnetic fields in the absence of electric charges and currents [38]:

∇ · E = 0 (1)

∇ ·H = 0 (2)

∇× E = −µ
∂H

∂t
(3)

∇×H = ε
∂E

∂t
. (4)
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Taking the curl of both sides of equations (3) and (4), allows one to decouple the Maxwell
equations as follows:

∇×∇× E = −µ∇×
(
∂H

∂t

)
= −µ

∂

∂t
(∇×H) = −µε

∂2E

∂t2
(5)

∇×∇×H = ε∇×
(
∂E

∂t

)
= ε

∂

∂t
(∇× E) = −µε

∂2H

∂t2
. (6)

Now, using the definition of Laplacian of a vector field, ∇2F = ∇(∇ · F)−∇×∇×F,
one arrives at the wave equations:

∇2E = µε
∂2E

∂t2
(7)

∇2H = µε
∂2H

∂t2
, (8)

where equations (1) and (2) were used. As usual, equations (7) and (8) can be converted
into the scalar wave equations by imposing that the direction of the fields is given by a unit
vector normal to the wavevector. Among many solutions of the scalar wave equations, the
set of time harmonic plane waves {eiωt±iβ·r : |β|2 = ω2µε} can be shown to form a basis for
the Hilbert space of solutions. As follows from the Fourier analysis, this allows us to write
any solution as a weighted superposition of the plane waves. In general, the superposition
would be expressed as a multiple integral, but, from the constraint |β|2 = ω2µε and the
symmetry of the setup depicted in Fig. 1(a), one can infer that the integral will be over
only one independent component of the phase vector β, namely, βx. Then, βz can be
expressed as βz =

√
ω2µε− β2

x. Since the system is stationary, let us omit the time
harmonic part of the solution in the remaining sections.

With this, an arbitrary excitation can be written in the form:

Finc(z, x) =

∫ ∞

−∞
A(βx)e

−i(βzz+βxx)dβx, (9)

where A(βx) - complex amplitude of the plane wave with the corresponding phase. Note
that, βz can become complex; the plane waves with the phase satisfying β2

x ≥ ω2µε rep-
resent the evanescent part of the spectrum and they decay exponentially with increasing
z. This fact allows to neglect the evanescent waves if the device is sufficiently far away
from the source of excitation, so the boundaries of the Fourier integral would cover only
the far-field spectrum. Then, the phase constants βx and βz can be associated with the
angle of incidence of the plane wave, θ, and the wave number into the denser medium,
k ≡ k0

√
ε = 2π

√
ε/λ, through the relation βx = k cos θ and βz = k sin θ, respectively.

Under the far-field approximation, the Fourier integral for the incoming signal becomes:

Finc(z, x) =

∫ π/2

−π/2

A(θ)e−ik(z cos θ+x sin θ)dθ. (10)

It should be stressed that A(βx) ̸= A(θ), but rather A(βx)dβx = A(θ)dθ. In other words,
A(βx) and A(θ) are different functions that perform a similar role - they are amplitudes of
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the corresponding plane wave - hence, why they are denoted by the same symbol. While
somewhat confusing, this notation is very common in both Fourier optics and other fields
of physics. In parallel with (10), the reflected (z < 0) field can be expressed as:

Fref(z, x) =

∫ π/2

−π/2

A(θ)R(θ)e−ik(−z cos θ+x sin θ)dθ, (11)

where the complex R(θ) is the reflection coefficient for the respective wave polarization
that was mentioned in the previous section when the ideal response of the filter was
discussed; it is an even function of θ due to the symmetry of the configuration with
respect to z axis. Here, we can see the power of the Fourier optics: it allows to deduce
the response of the system to an arbitrary excitation from the response to plane waves
incident at different angles θ. In direct analogy to (11), the field in all the other regions
can be written in the form:

F (z, x) =

∫ π/2

−π/2

A(θ)f(z, θ)e−ikx sin θdθ. (12)

The kernel f(z, θ) of (12) equals to fu(z, θ) = Tu(θ)e
−iβuz + Ru(θ)e

+iβuz for (u − 1)d <

z < ud, into the u-th layer and ftran(z, θ) = T (θ)e−iβU (z−D) for z > D, into the vacuum
half space. Similarly to βz in the incidence medium, for (u− 1)d < z < ud, the quantity
βu = k

√
εu/ε− sin2 θ is the spatial frequency associated with the z-direction; it becomes

imaginary when the incidence angle θ exceeds the local critical angle.
The only unknowns in f(z, θ) are the coefficients Tu(θ) and Ru(θ) (or just T (θ) and

R(θ) in the rightmost and leftmost semi-infinite layers respectively). This unknowns can
be found analytically by employing the appropriate boundary conditions derived from the
Maxwell equations (3) and (4) in their integral form [38]:∮

C

E · dl = −µ
d

dt

∫∫
S

H · ds (13)∮
C

H · dl = 0, (14)

where the integrals are taken either over some closed curve C or the surface S enclosed
by the curve. By considering progressively smaller rectangular boxes whose boundary is
C and area is S, one can see that the value of the surface integral becomes negligible.
If the box encloses some interface, one can see that the contribution of the line integral
along the sides perpendicular to the interface will also be negligible (for a more detailed
derivation, see [38]). Then, the integrals become:

n̂× (E2 − E1) = 0 (15)

n̂× (H2 −H1) = 0, (16)

where n̂ - unit vector normal to the interface and subscripts 1 and 2 denote the fields on
the corresponding side of the interface. Finally, the unknown reflection and transmission
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coefficients can be determined by imposing the necessary magnetic and electric boundary
conditions (15) and (16) at every single interface z = ud for u = 0, · · · , U . Such a process
generates 2(U + 1) linear equations which, by eliminating the intermediate coefficients,
yield to the following 2 × 2 linear system with respect to the overall reflection R(θ) and
transmission T (θ) coefficients.[

R(θ)

1

]
=

{
M ·

(
U−1∏
u=1

Mu

)
· v

}
T (θ). (17)

The symbol Mu is used for the 2× 2 matrix representing the boundary conditions at
z = ud for u = 1, · · · , (U − 1) and written as:

Mu=

[
1+γu
2

e+iud(βu+1−βu) 1−γu
2

e−iud(βu+1+βu)

1−γu
2

e+iud(βu+1+βu) 1+γu
2

e−iud(βu+1−βu)

]
, (18)

where γu = βu+1

βu
for TE waves and γu = εuβu+1

εu+1βu
for TM waves. M is the 2 × 2 matrix

representing the boundary conditions at z = 0 and takes the form:

M =
1

2

[
1+γ β1

k cos θ
1−γ β1

k cos θ

1−γ β1

k cos θ
1+γ β1

k cos θ

]
, (19)

where γ = 1 for TE waves and γ = ε/ε1 for TM waves. The 2× 1 vector v concerns the
imposed regimes at z = Ud = D and is written as:

v =
1

2

[
e−iUdβU (1− γU)

e+iUdβU (1 + γU)

]
, (20)

where γu can be defined also for u = U with εU+1 = 1. Note that the intermediate
coefficients Tu(θ) and Ru(θ) for u = 1, · · · , U can be determined from the overall reflection
R(θ) and transmission T (θ) of (17), by employing the suitable transfer matrices [40].

As indicated in Fig. 1(b), even in the absence of losses, the actual response of the
system (|R(θ)|2) will differ from the ideal response (|r(θ)|2) due to textural transitions
in the multilayered system. To assess this difference for a given set of parameters, the
following metric is introduced:

ρ =

{
1

2θc

∫ θc

0

+
1

π−2θc

∫ π/2

θc

}∣∣|R(θ)|2−|r(θ)|2
∣∣ dθ. (21)

Two integrals with different weights are used to prevent the metric from spuriously favoring
lossless systems (|R(θ)| = |r(θ)| = 1 for θ > θc) with small critical angles θc. The sum of
two integrals is divided by two for normalization; thus, ρ = 1 in the worst-case scenario
of a structure being totally transparent for θ > θc and behaving as impenetrable screen
for θ < θc.
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3 NUMERICAL RESULTS

3.1 Proof of Concept

To demonstrate the operation of the proposed setup as an angular filter, it would
be meaningful to represent the electromagnetic signal along the longitudinal axis passing
normally through each layer. In Fig. 2(a), I assume TE fields and show the magnitude
of the sole electric component |F = Ey| with respect to z/λ for plane waves traveling
along various incoming directions θ and with unitary magnitude. As anticipated, the
incident beams at angles θ > θc become evanescent when they find themselves into a
layer of sufficiently sparse material with εu < ε sin2 θ. As a result, they have a vanishing
transmissivity and, thus, reflect 100% (in the lossless case) of the incident power and
create standing-wave patterns. On the contrary, when less oblique waves are considered
with θ < θc, the reflections are negligible and practically all the power is channeled
into free space. Remarkably, as they pass through the filter, they fluctuate around an
increasing, on average, magnitude. Indeed, higher electric fields are required to carry the
same amount of energy in sparser dielectrics.
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Figure 2: Magnitude of the sole field component as a function of longitudinal coordinate
z/λ for various incidence angles θ, smaller or bigger than the critical one θc, in the scenario
of: (a) TE waves, (b) TM waves. Vertical dashed lines denote boundaries of each layer.
Incidence of unitary magnitude is considered. Plot parameters: ε = 3, U = 20, D = 5λ.

In Fig. 2(b), I assume TM waves and show the magnitude of the sole magnetic
component |F = Hy| with respect to z/λ. A similar behavior is recorded manifesting the
operational switch between matching regimes (θ < θc) and perfectly reflecting regimes
(θ > θc). Unlike Fig. 2(a), the sole component of the field when θ < θc is decreasing with
respect to z/λ, since the wave impedance is inversely proportional to

√
εu and only one

of the two waves (traveling along positive z), dominate into each layer.
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3.2 Performance Variation

To study the efficiency of the considered device as an ultra-sharp angular filter, it is
more instructive to evaluate the variation of the inverse metric (21), namely 1/ρ, with
respect to the basic parameters of the system. In Fig. 3(a), I assume TE waves and
show the quantity 1/ρ across the map of number of layers U and overall optical thickness
D/λ. Two completely different kinds of behavior are observed: in the upper-left triangle,
the filtering score is low even when the optical thickness of the device is substantial,
while across the rest of the contour plot, 1/ρ is high and increases significantly with
the total size. The border between the two regions of Fig. 3(a) corresponds to filters
with individual layers almost equal to half of the operational wavelength (d ∼= λ/2). Once
d > λ/2 (upper-left triangle), the response depends strongly on the developed Fabry-Perot
resonances; indeed, even a filtering device with significant D/λ, may operate poorly due
to constructive interference between the reflected waves. Once d < λ/2, the performance
1/ρ is enhanced when the setup is thicker (increased D/λ) and more finely chopped
(increased U). As expected, when the textural contrast between the neighboring layers
vanishes, the wave effectively travels in a locally homogeneous medium, resulting in very
weak reflections (less than 1% in most points).
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Figure 3: Performance 1/ρ as a function of the number of layers U and the total thickness
of the device D/λ, in the cases of: (a) TE waves, (b) TM waves. Incidence of unitary
magnitude is considered. Plot parameters: ε = 3.

In Fig. 3(b), I assume TM waves and repeat the calculations of Fig. 3(a); the two
contour plots bear a close qualitative resemblance to each other. However, the filter works
better in this scenario, namely, ρ is much smaller. The reason is that, for TM polarization,
the electric field "feels" the permittivity gradient only with one of its two components,
contrary to TE waves whose entire electric field vector is parallel to the interfaces and the
reflections get relatively boosted. Note also the performance peak at the upper-left corner
indicating a setup with reflected waves that interfere destructively so that only a small
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portion of energy is reflected back. Finally, in both cases of Fig. 3, the score does not
improve further by increasing the number of layers beyond a specific threshold since the
permittivity transition is already quite smooth and the textural discretization becomes
saturated.
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Figure 4: Performance 1/ρ as a function of the maximal permittivity ε and the total
thickness of the device D/λ, in the cases of: (a) TE waves, (b) TM waves. Incidence of
unitary magnitude is considered. Plot parameters: U = 30.

Furthermore, in Fig. 4(a), I consider TE waves and represent the quantity 1/ρ as a
function of the maximal permittivity ε and the overall optical thickness D/λ. As expected,
the filtering performance grows with total thickness, but gets smaller with the incidence
permittivity. Indeed, as ε decreases, the leftmost medium becomes electrically sparser
requiring less layers to reach its saturation limit. Similar qualitative conclusions hold for
Fig. 4(b) dealing with TM fields, while, quantitatively, higher scores are spotted due to
the nature of the developed waves, as indicated above.

3.3 Signals Filtering

To demonstrate the potential applications, it would be meaningful to see the response
of the considered filter when fed by incoming signals with characteristic spatial distribu-
tions. In Fig. 5(a), I demonstrate how the proposed setup suppresses the DC component
of the incoming illumination and reflects back only its harmonic part. Such a finding
can be directly used in an integrated photonic system for the protection of sensitive
equipment from large static intensity; it is rejected in the outer space and the operation
continues with the oscillating signals. In particular, I impose at z = 0 a field given by
Finc = 1 + cos (κx), with k0 < κ < k so that its spatial frequency κ is totally reflected,
contrary to the DC offset which always passes through. Since the input is non-causal,
the spatial Fourier transform of Finc is a combination of three delta functions centered at
θ = 0 and θκ = ± arccos (κ/k), where θκ is the incidence angle of the wave constituting
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the harmonic part of the input. Because R(θ) is an even function, the reflected signal
takes the form: Fref = R(0) + R(θκ) cos (κx), where R(0) and R(θκ) are complex. In
Fig. 5(a), I represent only the real parts of the waveforms and observe that the reflected
component is a copy of the input signal shifted by the phase Arg[R(θκ)] and it fluctuates
around zero instead of unitary level, since R(0) → 0.
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Figure 5: Spatial distribution of the real parts of the incident and reflected signals at z = 0
(TE polarization): (a) harmonic signal with a DC offset (DC isolator), (b) sum of two
harmonic signals with large spatial frequency difference (power splitter). Plot parameters:
ε = 3, U = 20, D = 5λ.

It is also instructive to see how the proposed filter responds to the input Finc =

cos(κ1x)+cos(κ2x) comprising two harmonics (κ1, κ2). For such a signal, the output would
be given by Fref = R(θ1) cos (κ1x) + R(θ2) cos (κ2x), where θ1 and θ2 are the respective
incidence angles. Indeed, if I select the spatial frequencies such that κ1 < k0 < κ2 < k,
the reflection coefficients would satisfy |R(θ1)| ≪ |R(θ2)|, meaning that only one of the
two harmonics would be ultimately present. This is illustrated by Fig. 5(b), where I
show how the real part of the reflected signal is just the tone with frequency κ2, while
the other harmonic, oscillating with κ1, is filtered out. Since the two tones participate in
the incoming signal with equal weights, the fact that only one of them is fully reflected
means that the proposed device acts as a power splitter.

3.4 Beam Splitting

A more realistic input signal of finite power that may excite the device is the modulated
Gaussian pulse written as:

Finc(z = 0, x) = 4
√

γλ2 e−γx2

cos (κx). (22)

The non-negative parameter γ controls how concentrated the pulse is and the factor 4
√

γλ2

is added to normalize the signal in terms of the energy it carries; κ is, again, the frequency
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of oscillations. The spatial Fourier transform of Finc is a function of βx and given by:

A(βx) =
1

4
√
π 4
√
γλ2

[
e−

(βx+k)2

4γ + e−
(βx−k)2

4γ

]
. (23)

As was mentioned before, the Fourier amplitudes in terms of the angle of incidence can be
obtained using the relations A(βx)dβx = A(θ)dθ and θ = arccos (βx/k) ⇔ βx = k cos θ.
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Figure 6: (a) Magnitude of spectral Fourier transform of modulated Gaussian pulses with
different spread, but the same power, serving as incoming signals (z = 0, TE polarization).
Note that βx < 0 is omitted, because the input is even. (b, c, d) Spatial distribution of
the real parts of the incident and reflected signals for the respective excitations of Fig.
6(a). (b) γ = 0.001/λ2, (c) γ = 0.01/λ2 and (d) γ = 0.1/λ2. Plot parameters: ε = 3,
U = 20, D = 5λ.

I will consider three signals like the ones of (22) with different γ values, whose Fourier
transforms (23) are represented in Fig. 6(a) with respect to βx/k. The vertical dashed
lines denote the part of the spectrum k0 < βx < k, which is perfectly reflected, namely,
the involved waves become evanescent into vacuum despite being originally propagating.
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Note that the depicted quantity is an even function of βx and, thus, it is plotted only for
βx > 0. It is clear that when γ gets smaller, the signal in the Fourier domain concentrates
around a specific βx

∼= ±κ and, accordingly, resembles a non-causal harmonic tone along
x-axis. This case is examined in Fig. 6(b) (the smallest value of γ = 0.001/λ2), where
the input waveform is spread over many wavelengths, decaying reluctantly from x = 0.
The (real part of) reflective output also oscillates over a large part of x-axis, but with its
magnitude increasing away from the origin, indicating a different local spatial distribution
across the front interface of the device, compared to the excitation.

In Fig. 6(c), a higher value of γ is regarded and the operation of the setup as a spatial
splitter is more directly demonstrated. Indeed, the system is fed by a single Gaussian
pulse, but outputs two pulses with a considerable physical separation. Note that the
reflected field occupies two continuous bands of spatial frequencies βx (with nonzero size,
unlike delta functions in the examples of Fig. 5), each of which contributes with a different
phase via the reflection coefficients R(arccos (βx/k)). These phase shifts result in a spatial
translation in either positive or negative x-direction depending on whether βx > 0 or
βx < 0, respectively. It is stressed that the gap between the reflected pulses increases
for larger γ, because the signals are more spatially concentrated around their symmetry
axes. This is further exemplified in Fig. 6(d), where the response to the input (22) is
plotted for the case of largest γ = 0.1/λ2. Such a spatial redistribution of propagated
power can be exploited in phased arrays applications, where reduction of grating lobes
[41], reconfigurable beamforming [42] and directional gain enhancement [43] are typical
aims.

3.5 Spatial Shifting

To further examine the physical shift of the reflection peak, consider the signal
(22), where the real harmonic tone is replaced by its complex exponential: Finc =
4
√
γλ2 e−γx2

eiκx. The spatial Fourier transform of this signal is similar to the one given by
(23) except that it consists of only one Gaussian. In other words, the Fourier transforms,
unlike those of signals in Fig.6(a), are indeed unilateral and only nonzero for βx > 0. In
Fig. 7(a), I plot the transform for three inputs with different κ values; clearly, the inputs
with small κ are only partially reflected since the portion of the signal with βx < k0 is
almost perfectly transmitted. The latter scenario is illustrated in Fig. 7(b) (the smallest
κ = 6/λ), where the reflected signal is substantially suppressed compared to the incoming
one. On the contrary, when only a small portion of the input is transmitted (κ = 7/λ,
Fig. 7(c)), the reflection looks similar to the original pulse, but with a lower peak and,
overall, a wider profile. Finally, as depicted in Fig. 7(d) (κ = 8/λ), if the input pulse is
within the interval k0 < βx < k, then the reflected signal is almost an exact copy of the
incoming one.
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Figure 7: (a) Magnitude of spectral Fourier transform of complex modulated Gaussian
pulses centered around different values of βx = κ, serving as incoming signals (z = 0,
TE polarization). (b, c, d) Spatial distribution of the magnitudes of the incident and
reflected signals for the respective excitations of Fig. 7(a). (b) κ = 6/λ, (c) κ = 7/λ and
(d) κ = 8/λ.

In all the examined examples, the reflection peak is physically shifted with respect
to the original one, which can be explained by referring to the Goos-Hänchen effect [44].
The considered input can be decomposed into a set of waves incident at different angles
θ with the major propagation direction dictated by κ. Due to the slight variation in θ,
the incoming waves are reflected with phase differences, which result in an interference
pattern being observed. Due to the finite aperture of the incoming beam, one does not
record standing waves originating from the superposition of the reflected components, but
rather a spatial translation of the magnitude peak. Therefore, the proposed setup can
also be used as an efficient reflective beam shifter in sensing and switching applications.
This is demonstrated in Fig. 8(b), where the direction of the propagation of a beam
emitted by an aperture radiator is altered using the proposed structure. The reflected
beam remains largely focused with only little dispersion. Note that, as depicted in Fig.
8(a), if the number of layers is insufficient, then the emitted beam will disperse upon
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reflection creating an interference pattern.
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Figure 8: Electric field spatial distribution Ey under excitation from an aperture radiator.
(a) The area 0 < z < D is filled with dense material of the permittivity ε. The interference
pattern is observed due to the Goos-Hänchen effect. (b) The area 0 < z < D is filled
with graded-index multilayers. Only small dispersion in the reflected beam is observed.
Simulation parameters: ε = 50, U = 10, D = 0.1λ, TE polarization.

Another potential utility of the proposed multilayered structure concern the interaction
of filtered waves with components that are located into free space. In Fig. 9, I consider
a line source into the dense medium, in the presence of a two-dimensional, near-field
scatterer of arbitrary shape and examine three scenarios: when the area 0 < z < D is
empty (left panel), when it is filled with a dense material of permittivity ε (central panel)
and when it is replaced by the optimal graded-index multilayers (right panel).

-1 +1
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scattererline 
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air dense multilayers

λ

Figure 9: Electric field spatial distribution Ey under line source excitation from the front
side and an arbitrary-shaped impenetrable scatterer near the rear interface. In the left
panel, the intermediate region is filled with air, in the middle one, it is filled with dense
medium and, in the right one, it is filled with the proposed graded-index multilayers.
Simulation parameters: ε = 50, U = 10, D = 0.1λ, TE polarization.
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In the left panel, I record huge reflections due to the small distance of the antenna
from the abrupt interface, accompanied by strong diffusion of the signal into the free space
that gets substantially perturbed by the scatterer. In the central panel, the reflections
are mitigated but, at the same time, very low percentage of the incident power leaks
to interact with the external component; therefore, the textural discontinuity isolates
the scatterer from the dense medium. However, when the graded-index multilayers are
employed, the reflections are almost negligible, while the diffused field “engulfs” the near-
field object admitting it to exchange energy with the region of dielectric constant ε as if
the material contrast is absent. Note that the incoming illumination penetrates through
the slabs and goes around the scatterer so that the field isophase lines are closed and
maximize its object-source engagement, unlike in the left panel.

Noticeably, the multilayered device can be paired with suitable gratings operated as
arrays of optical switches or modulators for use in advanced optical signal processing and
communication systems [45]. Similarly, the angular filtering with the proposed structure
may work under an electromagnetic bandgap created by a row of defect rods achieving
polarization isolation [46]. It should be stressed that all of the investigated examples
were TE polarized, but the obtained results would be qualitatively identical if the inputs
were TM waves. The reason is that the portion of the spectrum |βx| > k0 is totally
reflected, while the remaining part with |βx| < k0 is almost fully transmitted, regardless
of the polarization of the input. So, the reflected waveform is dictated only by the spatial
distribution of the incident signal without much regard to the polarization (TE/TM).

3.6 Dissipation Effect

All of the previous designs were of lossless nature, since dense dielectrics with negligible
thermal effects can be easily found. However, it would be interesting to identify the
influence of a loss tangent in the intermediate layers u = 1, · · · , U . In particular, let us
assume equal relative losses for each of them, namely, Im[εu] = −Re[εu] tan δ; that results
in the exponential decay of the amplitude of the propagating waves across the interior of
the device, which effectively blurs the distinction between purely propagating and purely
evanescent signals. It is noteworthy that the introduction of losses affects negatively both
of the terms in the metric (21): for waves incident at angles θ < θc, larger reflections occur
at z = 0, because of the abrupt transition from the lossless incoming medium (Im[ε] = 0)
to the lossy first layer (Im[ε1] ∼= −ε tan δ). As for the waves incident at θ > θc, they will
be partially absorbed not only into the layers that were propagative, but also into these
that were evanescent in the lossless case (tan δ = 0).

In Fig. 10, the performance 1/ρ, as defined by (21), is plotted as a function of the
loss tangent tan δ > 0 and total optical thickness D/λ; note that due to losses the second
term in equation (21) is not zero anymore. In Fig. 10(a), where the TE-polarized input
is considered, a strong deterioration in the achieved score is recorded for increasing losses
since a considerable amount of input power dissipates. When it comes to the optical size of
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Figure 10: Performance 1/ρ as a function of tan δ and the total thickness of the device
D/λ, in the cases of: (a) TE waves, (b) TM waves. Incidence of unitary magnitude is
considered. Plot parameters: ε = 3, U = 30.

the device D/λ, it renders the filter more efficient due to the smoother textural transition
as indicated by Fig. 3 and 4; on the other hand, a thicker design leads to more substantial
thermal losses as seen from the performance minimum in the top right corner. Similarly,
in Fig. 10(b) (TM polarization), the same thermal conversion is observed; nevertheless,
in the low-loss region, a higher performance is noticed for the TE polarized input, which
is in agreement with the trends presented in the lossless scenario of Fig. 3.
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Figure 11: Performance 1/ρ as a function of tan δ and the maximal permittivity ε, in
the cases of: (a) TE waves, (b) TM waves. Incidence of unitary magnitude is considered.
Plot parameters: U = 30, D/λ = 3.

In Fig. 11(a), I consider a TE-polarized input and represent the metric 1/ρ as a
function of the loss tangent tan δ > 0 and the permittivity of the incidence medium ε. As
in the lossless case in Fig. 4, the highest performance is recorded for the smallest ε due
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to the decreased material discontinuity across the proposed setup. When the tangent loss
increases, the performance drops more rapidly for larger ε since the intermediate relative
permittivities acquire more significant imaginary parts. Similar conclusions can be drawn
by examining Fig. 11(b), where the decline of 1/ρ is even more abrupt both with respect
to tan δ and ε due to the adopted TM polarization.
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CONCLUSION

Designs for angular filtering, based on a multilayered structure with increasingly
sparser dielectric slabs, have been proposed. Due to total internal reflection, the por-
tion of the spectrum with high spatial frequency is reflected in its entirety, contrary to
the remaining portion which is subjected to almost perfect transmission because of the
smooth permittivity change. The sharpness of the filter has been tested against the num-
ber of layers, the total optical thickness and the permittivity of the incidence medium;
it seems that the separation between the two bands remains clear even in the presence
of substantial dissipation. Once the proposed configuration gets supplied with a mod-
ulated Gaussian signal, it physically splits the single pulse into two identical ones with
smaller amplitude; alternatively, the device can spatially shift the maximum of the pulse,
as dictated by the Goos-Hänchen effect. Thus, the proposed ultra-sharp responses can
be employed in numerous photonic operations from power splitting and beam shifting to
suppression of sidelobes and low-profile interactions with near-field scatterers.

Seeing the recent advances in miniaturizing the optical devices through metamaterials,
one can attempt to modify the proposed filter by assuming the incidence medium to be
vacuum and using multilayers terminated by epsilon-near-zero and lossier substances.
Another meaningful expansion of this work would be to examine alternative utilities
for similar structures by perturbing the permittivities of the used media in a non-linear
fashion, so that the emerging bandgaps lead to selective filtering across several bands.
Importantly, manipulation of evanescent modes can be performed with a related setup by
involving thin plasmonic layers supporting negative refraction. The permittivities of each
layer can make a multi-dimensional parametric space into which the, properly defined,
performance of the considered planar filter can be maximized accordingly. Due to the
inherent complexity of these optimization problems, deep learning techniques assisted by
artificial neural networks can be utilized in direct analogy to nanophotonic designs of
multilayered scatterers [47, 48].
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