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Abstract. We solve inverse problems of determining continuous time-dependent
source terms in evolution equations. As a particular case, one inverse initial-
boundary value problem with observation data at a spatial point is sufficient to
recover the coefficient explicitly. The concept is illustrated with analytical and
numerical examples.
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1. Introduction

Inverse problems are considered one of the youngest as well as complicated parts
of Applied Mathematics [7]. Understanding the essence of such problems allows us
to see the wide applicability of the topic in almost all areas of science. In a simple
manner, the aim of inverse problems is to study the system knowing its current state
and change it to the desired one in the future [5]. Consequently, the topic has been
widely used in physics, geophysics, astronomy, medicine, and other natural sciences
[7].

Obviously, inverse problems are classified into subtypes and inverse source problem
is one of its subtypes. According to the Kabanikhin book [7], there are unknown
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functions included in the direct problem, in addition to unknown u(t, x). Based
on this unknown function in direct problems, inverse problems are classified. Thus,
inverse source problems have such classification since it is required to determine the
source or function F (t, x) in the mathematical model further (2.1).
Inverse problems of time-dependent source terms identification have been an area of

interest for many studies in different fields [1], [11]. As an example, inverse problems
in parabolic equations with nonlocal boundary conditions and an integral observa-
tion [6] have been used for the population model investigation. Hazanee et al. [6]
observed a one-dimensional heat equation with arbitrary fixed time with which they
aimed to find the source term. Furthermore, there is a reference [4] that the method
of determining continuous time-dependent source coefficients in inverse problems was
used in the biology field as well, namely helping to construct a mathematical model
for electroencephalography. To reach this, authors [4] used a common elliptic equa-
tion as an inverse problem to localize the source in space and time. Localization of
the source implies an inverse problem depending on the chosen direct model of the
electromagnetic field [2].

In the previous paper [8], multidimensional inverse problems were studied while
the main feature of the method of recovering source terms is to solve inverse problems
by considering one initial-boundary value problem with observation data at a spatial
point. In the general case, we consider two initial-boundary value problems which
contain unknown coefficients and each problem requires observation data at a fixed
spatial point. This paper is the continuation of the previous results arising from
[8] and extending to fractional differential equations [3], [10] and abstract Cauchy
problems [9]. However, it studies inverse source problems and in contrast to the
aforementioned papers, initial-boundary value problems are considered.

Let Ω be an open bounded domain in Rn (n ≥ 1) with piecewise smooth boundary
∂Ω and let T be a positive real number. For convenience, throughout the paper we
use the following notations: ΩT := (0, T )× Ω and ST := (0, T )× ∂Ω.
Let p ∈ C1(Ω̄) be such that p > 0 in Ω. We define an elliptic operator L : C2(Ω) →

C(Ω) given by
Lu(x) := ∇x · (p(x)∇xu(x)) , x ∈ Ω.

Then if u, v ∈ C2(Ω) ∩ C1(Ω), Green’s second identity holds (see, [12])∫
Ω

(
v(ξ)Lu(ξ)− u(ξ)Lv(ξ)

)
dξ

=

∫
∂Ω

p(ξ)

(
u(ξ)

∂v

∂n
− v(ξ)

∂u

∂n

)
dS.

(1.1)

This work has a five-part structure. In Section 2, we study divergence form para-
bolic equations considering particular and general cases. The particular case observes
the initial-boundary value problem and, by solving an inverse problem of finding a
unique pair (u, r), states a theorem being able to express an unknown term r(t). In
contrast, the general case already contains the unknown term r(t) in the auxilary
problem. Solving this inverse problem, we also provide another theorem. In Section
3, divergence form hyperbolic equations are calculated considering two cases as well.
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The same as in the previous section approach is applied to study general and partic-
ular cases. As an examples, in sections 4 and 5, we provide numerical experiments
for diffusion and wave equations.

2. Divergence form parabolic equations

2.1. Particular case. We consider the following initial-boundary value problem

ρ(x)∂tu(t, x)−∇x ·
(
p(x)∇xu(t, x)

)
= F (t, x), (t, x) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = 0, (t, x) ∈ ST ,

(2.1)

where ρ ∈ C(Ω), p ∈ C1(Ω) be such that ρ > 0, p > 0 in Ω, F ∈ C(ΩT ) and
u0 ∈ C(Ω). Then there exists a unique solution u ∈ C1,2(ΩT ) ∩ C(ΩT ) of (2.1), see
[12]. The solution is given by

u(t, x) =

∫ t

0

∫
Ω

G(t− τ, x, ξ)F (τ, ξ)dξdτ

+

∫
Ω

G(t, x, ξ)u0(ξ)ρ(ξ)dξ, (t, x) ∈ ΩT ,

(2.2)

where

G(t, x, ξ) =
∞∑
n=1

φn(x)φn(ξ)

∥φn∥2
e−λnt, x, ξ ∈ Ω, t > 0,

∥φn∥2 =
∫
Ω

ρ(ξ)φ2
n(ξ)dξ,

(2.3)

λn and φn are the nth eigenvalue and corresponding eigenfunction of the problem

∇ ·
(
p∇φ

)
+ λsφ = 0, in Ω

φ = 0, on ∂Ω.

Following the paper [8] where our method was introduced, we solve the following
inverse problem of finding a unique pair (u, r) explicitly

ρ(x)∂tu(t, x)−∇x ·
(
p(x)∇xu(t, x)

)
= r(t), (t, x) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = 0, (t, x) ∈ ST ,

(2.4)

from the given observation data at a point x0 ∈ Ω

h1(t) := u(t, x0), (2.5)

which is continuously differentiable in [0, T ].
To find (u, r) we solve an auxiliary (direct) problem

∂tv(t, x)−∇x ·
(
p(x)∇xv(t, x)

)
= 0, (t, x) ∈ ΩT ,

v(0, x) = ∇x ·
(
p(x)∇x

(
ρ(x)u0(x)

))
, x ∈ Ω,

v(t, x) = 0, (t, x) ∈ ST ,

(2.6)
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and we denote the solution of (2.6) x = x0 ∈ Ω by h2, that is,

h2(t) := v(t, x0), (2.7)

for all t ∈ [0, T ]. Moreover, the solution of (2.6) is given by

v(t, x) =

∫
Ω

G(t, x, ξ)∇ξ ·
(
p(ξ)∇ξ

(
ρ(ξ)u0(ξ)

))
ρ(ξ)dξ, (t, x) ∈ ΩT . (2.8)

Now we state a theorem, which is the main feature of our method.

Theorem 2.1. Assume that

(i) ρ ∈ C2(Ω̄) be such that ρ > 0 in Ω;
(ii) p ∈ C1(Ω̄) be such that p > 0 in Ω and p = 0 on ∂Ω;
(iii) u0 ∈ C2(Ω̄);
(iv) the unknown coefficient r ∈ C[0, T ];
(v) h1 defined by (2.5) belongs to C1[0, T ].

Then there exists a unique pair (u, r) of the problem (2.4)-(2.5) where r is given by

r(t) = h′
1(t)− h2(t) for all t ∈ [0, T ].

Note that h2 is derived from the direct problem (2.6), that is, from the solution of
(2.6) at x = x0 ∈ Ω and h2 is a continuous function in [0, T ].

Proof. Assumptions (i-iii) allow to find representation of a solution of (2.4) and (2.6),
which are

u(t, x) =

∫ t

0

∫
Ω

G(t− τ, x, ξ)r(τ)dξdτ

+

∫
Ω

G(t, x, ξ)ρ(ξ)u0(ξ)dξ, (t, x) ∈ ΩT ,

(2.9)

and

v(t, x) =

∫
Ω

G(t, x, ξ)∇ξ ·
(
p(ξ)∇ξ

(
ρ(ξ)u0(ξ)

))
ρ(ξ)dξ, (t, x) ∈ ΩT . (2.10)

correspondingly. By differentiating (2.9) in time, then using

∂tG(t− τ, x, ξ) = ∇ξ ·
(
p(ξ)∇ξG(t− τ, x, ξ)

)
, t > τ,

∂tG(t, x, ξ) = ∇ξ ·
(
p(ξ)∇ξG(t, x, ξ)

)
, t > 0,

and from (2.3), x and ξ are interchangeable that is why

∇y(p(ξ)∇ξG(t− τ, x.ξ)) = ∇x(p(x)∇xG(t− τ, x.ξ))

we get

∂tu(t, x) =

∫ t

0

∫
Ω

∂tG(t− τ, x, ξ)r(τ)dξdτ + r(t)

+

∫
Ω

∂tG(t, x, ξ)ρ(ξ)u0(ξ)dξ

=

∫ t

0

∫
Ω

∇ξ ·
(
p(ξ)∇ξG(t− τ, x, ξ)

)
r(τ)dξdτ + r(t)

+

∫
Ω

∇ξ ·
(
p(ξ)∇ξG(t, x, ξ)

)
ρ(ξ)u0(ξ)dξ

(2.11)



INVERSE TIME-DEPENDENT SOURCE PROBLEMS IN EVOLUTION EQUATIONS 5

Now we can use Green’s second identity (1.1) (continuation of (2.11))

∂tu(t, x) =

∫ t

0

∫
Ω

G(t− τ, x, ξ)r(τ)∇ξ ·
(
p(ξ)∇ξf(τ, ξ)

)
dξdτ + r(t)

+

∫
Ω

G(t, x, ξ)∇ξ ·
(
p(ξ)∇ξ

(
ρ(ξ)u0(ξ)

))
dξ

= v(t, x) + r(t), (t, x) ∈ ΩT .

(2.12)

□

2.2. General case. When F (t, x) = r(t)f(t, x) for all (t, x) ∈ ΩT , where f is given,
the auxiliary problem (2.6) contains the unknown term r and it requires observation
data at a given point. Thus, we consider the following inverse problem of finding the
unique pair (u, r) explicitly

ρ(x)∂tu(t, x)−∇x ·
(
p(x)∇xu(t, x)

)
= r(t)f(t, x), (t, x) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = 0, (t, x) ∈ ST ,

(2.13)

and

∂tv(t, x)−∇x ·
(
p(x)∇xv(t, x)

)
= r(t)∇x ·

(
p(x)∇xf(t, x)

)
, (t, x) ∈ ΩT ,

v(0, x) = ∇x ·
(
p(x)∇x

(
ρ(x)u0(x)

))
, x ∈ Ω,

v(t, x) = 0, (t, x) ∈ ST ,

(2.14)

from the observation data at a point x0 ∈ Ω

h1(t) := u(t, x0), (2.15)

which is continuously differentiable in [0, T ], and

h2(t) := v(t, x0), (2.16)

which is continuous in [0, T ].

Theorem 2.2. Assume that

(i) ρ ∈ C2(Ω̄) be such that ρ > 0 in Ω;
(ii) p ∈ C1(Ω̄) be such that p > 0 in Ω and p = 0 on ∂Ω;
(iii) u0 ∈ C2(Ω̄);
(iv) f ∈ C0,2 (ΩT );
(v) the unknown coefficient r ∈ C[0, T ];
(vi) h1 defined by (2.15) belongs to C1[0, T ];
(vii) h2 defined by (2.16) belongs to C[0, T ].

Then there exists a unique pair (u, r) of the problem (2.13)-(2.16) where r is given
by

h′
1(t) = h2(t) + r(t)f(t, x0) for all t ∈ [0, T ].
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Proof. Assumptions (i-iv) allow us to find representation of a solution of (2.13) and
(2.14), which are

u(t, x) =

∫ t

0

∫
Ω

G(t− τ, x, ξ)r(τ)f(τ, ξ)dξdτ

+

∫
Ω

G(t, x, ξ)ρ(ξ)u0(ξ)dξ, (t, x) ∈ ΩT ,

(2.17)

and

v(t, x) =

∫ t

0

∫
Ω

G(t− τ, x, ξ)r(τ)∇ξ ·
(
p(ξ)∇ξf(τ, ξ)

)
dξdτ

+

∫
Ω

G(t, x, ξ)∇ξ ·
(
p(ξ)∇ξ

(
ρ(ξ)u0(ξ)

))
dξ, (t, x) ∈ ΩT ,

(2.18)

correspondingly. By differentiating (2.17) in time, then using

∂tG(t− τ, x, ξ) = ∇ξ ·
(
p(ξ)∇ξG(t− τ, x, ξ)

)
, t > τ,

∂tG(t, x, ξ) = ∇ξ ·
(
p(ξ)∇ξG(t, x, ξ)

)
, t > 0,

and the Green’s second identity (1.1), we get

∂tu(t, x) =

∫ t

0

∫
Ω

∂tG(t− τ, x, ξ)r(τ)f(τ, ξ)dξdτ + r(t)f(t, x)

+

∫
Ω

∂tG(t, x, ξ)ρ(ξ)u0(ξ)dξ

=

∫ t

0

∫
Ω

∇ξ ·
(
p(ξ)∇ξG(t− τ, x, ξ)

)
r(τ)f(τ, ξ)dξdτ + r(t)f(t, x)

+

∫
Ω

∇ξ ·
(
p(ξ)∇ξG(t, x, ξ)

)
ρ(ξ)u0(ξ)dξ

=

∫ t

0

∫
Ω

G(t− τ, x, ξ)r(τ)∇ξ ·
(
p(ξ)∇ξf(τ, ξ)

)
dξdτ + r(t)f(t, x)

+

∫
Ω

G(t, x, ξ)∇ξ ·
(
p(ξ)∇ξ

(
ρ(ξ)u0(ξ)

))
dξ

= v(t, x) + r(t)f(t, x), (t, x) ∈ ΩT .

(2.19)

Since we have data (2.15),(2.16) at x0 ∈ Ω , at x0 ∈ Ω the formula (2.19) implies

h′
1(t) = h2(t) + r(t)f(t, x0),

for all t ∈ [0, T ]. □

The homogeneous Dirichlet boundary condition can be replaced with the homoge-
neous Neumann boundary condition.
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3. Divergence form hyperbolic equations

Moreover, this approach also works for the divergence form hyperbolic equations

ρ(x)∂2
t u(t, x)−∇x ·

(
p(x)∇xu(t, x)

)
= F (t, x) in ΩT ,

u(0, x) = u0(x) in Ω,

∂tu(0, x) = u1(x) in Ω,

u(t, x) = 0 on ST ,

(3.1)

where ρ ∈ C(Ω), p ∈ C1(Ω) be such that ρ > 0, p > 0 in Ω, F ∈ C(ΩT ), u0 ∈ C1(Ω)
and u1 ∈ C(Ω). Then there exists a unique solution u ∈ C2,2(ΩT )∩C1,0(ΩT ) of (3.1),
see [12]. The solution is given by

u(t, x) =

∫ t

0

∫
Ω

G(t− τ, x, ξ)F (τ, ξ)dξdτ

+

∫
Ω

∂tG(t, x, ξ)u0(ξ)ρ(ξ)dξ +

∫
Ω

G(t, x, ξ)u1(ξ)ρ(ξ)dξ,

where G is defined by (2.3).

3.1. Particular case. We solve the following inverse problem of recovering r

ρ(x)∂2
t u(t, x)−∇x ·

(
p(x)∇xu(t, x)

)
= r(t) in ΩT ,

u(0, x) = u0(x) in Ω,

∂tu(0, x) = u1(x) in Ω,

u(t, x) = 0 on ST .

(3.2)

from the observation data at a point x0 ∈ Ω

h1(t) := u(t, x0), (3.3)

which is twice continuously differentiable in [0, T ]. To find (u, r) we solve an auxiliary
(direct) problem

∂2
t v(t, x)−∇x ·

(
p(x)∇xv(t, x)

)
= 0 in ΩT ,

v(0, x) = ∇x ·
(
p(x)∇x

(
ρ(x)u0(x)

))
in Ω,

∂tv(0, x) = ∇x ·
(
p(x)∇x

(
ρ(x)u1(x)

))
in Ω,

v(t, x) = 0 on ST .

(3.4)

and we denote the solution of (3.4) x = x0 ∈ Ω by h2, that is,

h2(t) := v(t, x0), (3.5)

which is continuous in [0, T ]. Now we state a theorem, which is the main feature of
our method.

Theorem 3.1. Assume that

(i) ρ ∈ C2(Ω̄) be such that ρ > 0 in Ω;
(ii) p ∈ C1(Ω̄) be such that p > 0 in Ω and p = 0 on ∂Ω;
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(iii) u0 ∈ C2(Ω̄);
(iv) u1 ∈ C2(Ω̄);
(v) the unknown coefficient r ∈ C[0, T ];
(vi) h1 defined by (3.3) belongs to C2[0, T ];

Then there exists a unique pair (u, r) of the problem (3.2)-(3.4) where r is given by

r(t) = h′′
1(t)− h2(t) for all t ∈ [0, T ].

Proof. Proof of the theorem is a particular case of the following theorem. □

3.2. General case. We solve the following inverse problem of recovering r

ρ(x)∂2
t u(t, x)−∇x ·

(
p(x)∇xu(t, x)

)
= r(t)f(t, x) in ΩT ,

u(0, x) = u0(x) in Ω,

∂tu(0, x) = u1(x) in Ω,

u(t, x) = 0 on ST .

(3.6)

and

∂2
t v(t, x)−∇x ·

(
p(x)∇xv(t, x)

)
= r(t)∇x ·

(
p(x)∇xf(t, x)

)
in ΩT ,

v(0, x) = ∇x ·
(
p(x)∇x

(
ρ(x)u0(x)

))
in Ω,

∂tv(0, x) = ∇x ·
(
p(x)∇x

(
ρ(x)u1(x)

))
in Ω,

v(t, x) = 0 on ST .

(3.7)

from the observation data at a point x0 ∈ Ω

h1(t) := u(t, x0), (3.8)

which is twice continuously differentiable in [0, T ], and

h2(t) := v(t, x0), (3.9)

which is continuous in [0, T ].

Theorem 3.2. Assume that

(i) ρ ∈ C2(Ω̄) be such that ρ > 0 in Ω;
(ii) p ∈ C1(Ω̄) be such that p > 0 in Ω and p = 0 on ∂Ω;
(iii) u0 ∈ C2(Ω̄);
(iv) u1 ∈ C2(Ω̄);
(v) f ∈ C0,2 (ΩT );
(vi) the unknown coefficient r ∈ C[0, T ];
(vii) h1 defined by (3.8) belongs to C2[0, T ];
(viii) h2 defined by (3.9) belongs to C[0, T ].

Then there exists a unique pair (u, r) of the problem (3.6)-(3.7) where r is given by

h′′
1(t) = h2(t) + r(t)f(t, x0) for all t ∈ [0, T ].

The proof is almost the same as in Theorem (2.2). Note that the homogeneous
Dirichlet boundary condition can be replaced with the homogeneous Neumann bound-
ary condition.
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Figure 1. comparison and absolute error of r(t) = π2t+ π2 + 1 in Example (4.1), FEM, ∆t = 0.01, ∆x = 0.02

4. Numerical experiments

To illustrate the concept, we provide structural analysis using Finite Element
Method (FEM) in MATLAB.

4.1. Diffusion equations.

Example 4.1.

∂tu(t, x)− ∂2
xu(t, x) = (π2t+ π2 + 1) sin(πx), 0 < t < 1, 0 < x < 1

u(t, x)|t=0 = sin(πx), 0 < x < 1

u(t, 0) = 0, 0 < t < 1,

u(t, 1) = 0, 0 < t < 1,

(4.1)

and

∂tv(t, x)− ∂2
xv(t, x) = −π2(π2t+ π2 + 1) sin(πx), 0 < t < 1, 0 < x < 1,

v(t, x)|t=0 = −π2 sin(πx), 0 < x < 1,

v(t, 0) = 0, 0 < t < 1,

v(t, 1) = 0, 0 < t < 1,

(4.2)

Their solutions are u = (t+ 1) sin(πx), v = −π2(t+ 1) sin(πx).

r(t) = π2t+ π2 + 1.
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Figure 2. r(t) = π2t2 + π2 + 2 in Example (4.2), FEM, ∆t = 0.01, ∆x = 0.02

4.2. Wave equations.

Example 4.2.

∂2
t u(t, x)− ∂2

xu(t, x) = (π2t2 + π2 + 2) sin(πx), 0 < t < 1, 0 < x < 1

u(0, x) = sin(πx), 0 < x < 1

∂tu(0, x) = 0, 0 < x < 1

u(t, 0) = 0, 0 < t < 1,

u(t, 1) = 0, 0 < t < 1,

(4.3)

and

∂2
t v(t, x)− ∂2

xv(t, x) = −π2(π2t2 + π2 + 2) sin(πx), 0 < t < 1, 0 < x < 1,

v(0, x) = −π2 sin(πx), 0 < x < 1,

∂tv(0, x) = 0, 0 < x < 1

v(t, 0) = 0, 0 < t < 1,

v(t, 1) = 0, 0 < t < 1,

(4.4)

Their solutions are u = (t2 + 1) sin(πx), v = −π2(t2 + 1) sin(πx).

r(t) = π2t2 + π2 + 2.



INVERSE TIME-DEPENDENT SOURCE PROBLEMS IN EVOLUTION EQUATIONS 11

5. Conclusion

In this paper, we continued the investigation of inverse problems by identifying
time-dependent source terms. Considering one initial-boundary value problem with
observation data at a spatial point and thus solving inverse problems, one can solve
inverse problems by recovering source terms. There are two main features of the pa-
per. Firstly, the theorems for each case were derived from the found data in observed
inverse problems. Secondly, we could consider inverse problems with observation
data at (1,0) which allows observing problems an uncountable number of cases. In
contrast, in the previous paper [8] while considering partial differential equations,
non-zero coefficients were used.
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