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Abstract

Portfolio risk management is a process aimed at maintaining profit streams and re-
ducing uncertainties in investment decisions. Value-at-Risk (VaR) is a widely used metric
to quantify the potential loss of profits. Although historical simulations and Gaussian
distribution are common methods for estimating VaR, modelling the joint multivariate
distribution of portfolio investments can be challenging. Copula models offer a solution to
these challenges for joint distributions. In this study, we calculated VaR and Conditional
Value-at-Risk (CVaR) for a portfolio consisting of the four least correlated stocks among
the 15 largest companies in the SP 500 using historical simulations and copula models. We
evaluated portfolio based on equal weighting. The optimal ARIMA-GARCH model was
selected using Akaike Information Criteria (AIC) values. Furthermore, the performance
of the VaR estimations was compared and analyzed using goodness-of-fit tests.

Keywords: VaR, Copula, ARIMA-GARCH, Risk Management, Data Series

1 Introduction
In the risk management domain, risk signifies the numerical probability of incurring a loss or
experiencing returns that are lower than anticipated (12). A key responsibility of financial risk
managers is to curtail client losses while adhering to specified risk levels. Ascertaining the
extent of risk is a vital component of risk mitigation.

This project represents the value of a portfolio consisting of d investments, each with weights
w1, ..., wd, at a given time t as Vt =

∑d
i=1wiV(i,t), where V(i,t) denotes the value of the i-th

investment in the portfolio at time t (12). Additionally, all weights are non-negative and
collectively sum up to 1 (wi ≥ 0,

∑d
i=1wi = 1). Each investment can be influenced by multiple

risk factors. Examples of non-mutually exclusive risks affecting an investment are interest-rate
risks, management risks, marketability risks, political risks, and unsystematic and systematic
risks, among others (10). While some risks can be readily quantified, others cannot. A portfolio
investment risk analyst’s role is to evaluate the impact of various risk factors on all investments
within the portfolio. Consequently, the portfolio’s value hinges on both time and risk factors
that might concurrently influence all d investments. Therefore, Vt is rewritten as Vt = f(t, Zt),
where f represents a function, t denotes the time period, and Zt signifies a d-dimensional
random vector of risk factors that is equal to Zt = [Z(1, t), ..., Z(d,t)] (12). In this project, the
4-dimensional case is considered as an example, with d equating to 4 in all calculations.
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Moreover, the portfolio’s loss between day t and t+1 is defined as the difference in portfolio
values across these two days (Lt+1 := L[t∆,(t+1)∆] = −(Vt+1−Vt)). In this case, ∆ typically corre-
sponds to 1/365, representing one day in a calendar year, and t ∈ N (12). To assess a portfolio’s
risk, it is necessary to identify the loss distribution function: FL(y, t∆) := P (L[t∆,(t+1)∆] ≤ y),
where y represents the potential portfolio loss value(12). Crucially, understanding the joint
distribution function for all d investments in the portfolio is essential for estimating the loss
distribution function. However, this requires knowledge of the dependence structure of the
investments. The utilization of time-series models and copulas as a means to estimate risks
and discern the dependence structure of investments will be presented, and this theory will
subsequently serve as the foundation for analyzing 4 stocks listed in SP500 corporations.

2 Theory

2.1 Value-at-Risk

One of the most common methods for assessing market risks is VaR. VaR calculates the maxi-
mum expected loss at a specific confidence level (typically 95% or 99%) over a particular time
horizon (usually a year for commodities) under normal market conditions (12). A positive VaR
value indicates the worst potential loss, while a negative VaR value implies a higher likelihood
of increased profits (4). Absolute VaR is defined as the value of the absolute losses of the port-
folio in dollars. VaR can also be employed to estimate each investment’s marginal contribution
to the portfolio risks and to determine the expected loss if any investment is removed from the
portfolio (7).

Definition. Given a confidence level α ∈ (0, 1), the VaR of our portfolio at the confidence
level α is represented by the smallest number y such that the probability that the loss L
surpasses y is at most 1− α.

V aRα = infy ∈ R : P (L[t∆,(t+1)∆] > y) ≤ 1− α = infy ∈ R : FL(y, t∆) ≥ α (1)

VaR is easily interpretable, as it encapsulates risks in a single number. For instance, if our
model suggests a yearly VaR at a 95% confidence level of $1 million, it means there is a 5%
chance of experiencing a loss greater than $1 million in a year (12). In this project, we will
consider confidence levels of 90%, 95%, and 99.5%.

Various methods exist for estimating VaR, with the following three being the most common:
analytical estimation based on return distribution assumptions, empirical computations using
past returns histograms, and Monte Carlo simulations-based computations (12). Each of these
methods has its pros and cons due to the assumptions they make when modelling.

For instance, VaR can be modelled using normality assumptions (known as parametric or
normal VaR) or t-student distribution assumptions (referred to as t-series VaR) of returns.
To be accurate, the financial loss distribution functions should follow normal or t-student
distributions. However, financial losses typically exhibit high kurtosis values, indicating fatter
tails (4). This implies a higher probability of extreme positives and negatives, which is called
a leptokurtic distribution. As a result, normal VaR may not be the most appropriate way
to model VaR for financial data, as it might significantly underestimate or overestimate VaR
values (7). This has been demonstrated by various empirical evidence (16). Due to these
frequent errors, there is substantial criticism against using this model in such cases. Hence, it
is crucial to focus on tail dependence, as a good model should capture tail behaviour, be easily
implemented, and be extendable for larger portfolios (16).

Furthermore, VaR can be calculated using non-parametric predictions based on historical
returns, which do not make any assumptions about risk-factor distributions (7). This method
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relies on the past financial performance of investments. The main critique of this approach
is that the present cannot always accurately predict the future with high certainty (10). The
success of this method depends on the relevance of the data used for various risk factors (12).
If new risk factors emerge, this approach will quickly fail. Additionally, the assumption that
all days have equal weight in making predictions is not always accurate. As a result, estimates
derived from historical returns might be higher or lower than the actual risk and will be influ-
enced by volatility trends. To mitigate the impact of volatility, various volatility models are
employed, with the GARCH model being a frequently used example that will be utilized in this
paper (10), (2).

As previously mentioned, parametric VaR estimation for a portfolio can become extremely
complex due to the need to model the joint multivariate distribution function. This complexity
stems from the joint distribution function for a random vector of risk factors, which implicitly
describes both the individual marginal behaviour of risk factors and the dependence structure
between them (10). The dependence structure between risk factors can take any form. While
assuming mutual independence between risk factors is the simplest approach, it is often un-
realistic due to factors such as macroeconomic systematic risk factors (e.g., the state of the
economy, coronavirus pandemics) that may impact all investments in the portfolio simultane-
ously. Consequently, in most situations, there will be dependence between different investments
in the portfolio, and assuming independence might be an unrealistic idea.

2.2 Copulas

The concept of copula can prove to be useful in situations like the one mentioned above where
we should not simply assume independence but derive the dependence structure of various
investments. Copulas are such dependence functions that can isolate the dependencies and
provide us with models of univariate distributions separated from their dependence (4). Addi-
tionally, the dependence by copulas is expressed on a quantile scale, which is similar to VaR and
is also quite interpretable (12). Copula-based VaR models might also provide better and more
accurate VaR forecasts compared to parametric and historical simulation methods, according
to various researches in the field(1),(16).

Definition. A d-dimensional copula is a distribution function on [0, 1]d with standard
uniform marginal distributions. We denote it C(u) = C(u1, ..., ud).

Copula function C is a mapping of the form C: [0, 1]d → [0, 1]. This means that it is a
mapping of a d-dimensional unit cube into the unit interval. The following properties must
hold.

• C(u1, ..., ud) is d-increasing (increasing in each component).

• C(1, ..., 1, ui, 1, ..., 1) = ui for all i ∈ 1, ..., d, ui ∈ [0, 1].

Here, "d-increasing" stands for a d-dimensional analog of a non-decreasing function of one
variable (14).

Theorem. For all copulas C(u1, ..., ud) we have the Fréchet bounds

max{
d∑

i=1

ui + 1− d, 0} ≤ C(u) ≤ min{u1, ..., ud} (2)

The lower bound is denoted as W (u) and the upper bound is M(u) (12).
In 1959 Sklar highlighted the applications of copulas in the studies of multivariate distribu-

tion functions. This theorem suggests that copulas are contained in all multivariate distribution
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functions and that they can be used with univariate distribution functions to construct multi-
variate cdfs (12).

Sklar’s Theorem. Let F be a joint distribution function with marginal distribution func-
tions F1, ..., Fn. Then, there exists a copula C: [0, 1]d → [0, 1], such that, for all x1, ..., xn in
(−∞,∞),

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (3)

If the marginals are continuous, then C is unique. If that’s not the case, C is uniquely deter-
mined on RanF1 × ... × RanFn, where RanFi is the range of Fi. Also, if C is a copula and
F1, ..., Fn are univariate dfs, then F , defined above is a joint distribution function with margins
F1, ..., Fn (14).

From Sklar’s theorem we get that copula links marginal distributions to a joint distribution.
Thus, for continuous distribution functions, the question of obtaining the joint distribution
function is changed to the selection of the appropriate copula based on goodness-of-fit tests (4).

2.3 Copula types and application to the 4 dimensional model

There exist various forms of copulas, including fundamental, explicit, and implicit types. Fun-
damental copulas serve as representations for specific dependence structures, while explicit
copulas possess closed-form expressions, and implicit copulas employ Sklar’s theorem, deriving
from well-known multivariate distribution functions (12). Some fundamental copulas include
independence (

∏d
i=1 ui) and comonotonicity (M(u) = minu1, . . . , ud) copulas. Random vari-

ables associated with such copulas are referred to as independent and comonotonic, respectively
(14). The lower Fr’echet bound (W (u) = max

∑d
i=1 ui + 1− d, 0) functions as a copula only

in 2-dimensions, but not in d ≥ 3. This specific copula is known as the counter monotonicity
copula (12).

Regarding explicit copulas, Archimedean, Elliptical, and Extreme-Value copulas are preva-
lent (16). In the present study, two Archimedean copulas will be employed, specifically Gumbel
and Clayton copulas, which belong to the well-researched Archimedean copula family and have
been selected for this paper. The Archimedean model’s general formula is as follows:

C(u1, u2, ..., ud) = ϕ[−1](ϕ(u1) + ϕ(u2) + ...+ ϕ(ud)) (4)

here ϕ is a strict generator, with ϕ−1 being completely monotonic on [0,∞) (5). As in this
project, we consider the 4-dimensional case, the formula for Archimedean models will have a
form of

C(u1, u2, u3, u4) = ϕ[−1](ϕ(u1) + ϕ(u2) + ϕ(u3) + ϕ(u4)), (5)

where ϕ is a generator function of the copula (14). Overall, not all copulas can be extended to
d ≥ 3 and this depends on the following theorem.

Theorem. Let ϕ be a continuous strictly decreasing function to [0,∞) such that ϕ(0) = ∞
and ϕ(1) = 0, and let ϕ−1 denote the inverse of ϕ. If C is the function from [0, 1]d to [0, 1], then
C is an d-dimensional copula for all d ≥ 2 if and only if ϕ−1 is completely monotonic on [0,∞)
(14).

Additionally, the Gaussian copula is going to be used in this paper after checking individual
marginal distribution functions and transforming them into normal distribution functions (4).
It belongs to the Elliptical copula family and has a symmetric distribution of multivariate data
(12). The gaussian copula is an implicit formula that does not have a simple closed form. Its
formula for d-dimensions can be represented as follows.

CGa
P (u1, u2, ..., ud) = P (Φ(X1) ≤ u1, ...,Φ(Xd) ≤ ud) = ΦP(Φ

−1(u1) + Φ−1(u2) + ...+ Φ−1(ud))
(6)
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Here X ∼ Nd(0, P ), where P is the correlation matrix of Y, where YNd(µ,Σ) is a Gaussian
random vector. Φ is the standard univariate normal distribution function and ΦP denotes the
joint distribution function of X. Also, CGa

P , Gaussian copula, highlights the parametrization of
copula by 1

2
d(d− 1) parameters of the correlation matrix (12).

The generator functions and some important characteristics of Archimedean 4-dimensional
copulas selected for this capstone project are summarized in the Table I. Domain for Clayton
copula is [-1, ∞] and for Gumbel copula is [1,∞]

Table 1: First three columns of selected Archimedean four-variate copulas
Copula Generator 4-dimensional Copula

Clayton ϕ(t; θ) = t−θ−1
θ

(u−θ
1 + u−θ

2 + u−θ
3 + u−θ

4 − 3)−1/θ

Gumbel ϕ(t; θ) = (−ln(t))θ exp{−[(−ln(u1))
θ + (−ln(u2))

θ + (−ln(u3))
θ1/θ + (−ln(u4))

θ]1/θ}

It is essential to mention the various applications of 4-dimensional copulas in different fields.
Copulas have found widespread use in finance, insurance, and risk management due to their
ability to model complex dependence structures among multiple random variables (15; 6). In
particular, 4-dimensional copulas can be applied to study the joint behaviour of four distinct
assets or risk factors.

In insurance and actuarial science, 4-dimensional copulas are used to model the joint distri-
bution of claim frequencies and severities for different lines of business, enabling a comprehensive
assessment of the insurer’s risk exposure. Moreover, in portfolio management and asset alloca-
tion, 4-dimensional copulas can offer insights into the dependence structure among various asset
classes or investment strategies, facilitating more informed diversification and risk management
decisions. Recent advancements in copula-based models have also explored the applications of
deep learning techniques for more accurate estimation and forecasting, especially in the field of
finance (18).

To generate 4 dimensional copulas we used Pair Copula Construction, which allows for free
specification of n(n 1)/2 bivariate copulas. The modeling scheme is based on a decomposition
of a multivariate density into n(n1)/2 bivariate copula densities, of which the first n1 are
dependency structures of unconditional bivariate distributions, and the rest are dependency
structures of conditional bivariate distributions.(11). For the four-variate case, this method
will look like in equation 7 and Figure 1.
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C(u1, u2, u3, u4) =C12(u1, u2) · C23(u2, u3) · C34(u3, u4)

· C13|2((F (u1|u2), F (u3|u2)) · C24|3(F (u2|u3), F (u4|u3))

· C14|23(F (u1|u2, u3), F (u4|u2, u3))

Where

F (u1|u2) =
∂C12(u1, u2)

∂u2

F (u3|u2) =
∂C23(u2, u3)

∂u2

F (u2|u3) =
∂C23(u2, u3)

∂u3

F (u4|u3) =
∂C34(u3, u4)

∂u3

F (u1|u2|u3) =
∂C13|2(F (u1|u2), F (u3|u2)

∂F (u3|u2)

F (u4|u2|u3) =
∂C24|3(F (u4|u3), F (u2|u3)

∂F (u2|u3)

(7)

Figure 1: Four-dimensional Pair Copula Construction.

2.4 Dependence measures

There are various dependence measures, but the ones that will be discussed in this section are
the most commonly used ones: Pearson’s linear correlation, rank correlation (Kendall’s tau and
Spearman’s rho) and coefficients of tail dependence.

Pearson’s linear correlation measures the linear dependence between variables and can
take values from -1 to 1. If the value of ρ is positive, then random variables are positively
correlated, if it is negative, then - negatively correlated. For random variables X and Y with
Cov(X, Y ) = E[(X − µx)(Y − µY )], it is defined as following:

Corr =
Cov(X, Y )

σXσY

(8)

Correlation takes an important part in the financial and portfolio management theory but
there are some cautions. This concept is natural only in the context of multivariate normal dfs.
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Moreover, as it can be seen from the formula above, correlation makes sense only if variances of
X and Y are finite. This might create issues for heavy-tailed distributions prevalent in finances,
as it might not be the most suitable model to describe dependence between random variables
(12).

Rank correlations are copula-based measures of dependence. This means that they only
depend on the copula and not on the marginal distribution functions, compared to Pearson’s
linear correlation which considers both of those values (12). Overall, they are easily calculated
only from the ranks (orders) of data in the sample of each random variable. Two common rank
correlation coefficients are Kendall’s tau and Spearman’s rho and they will be discussed in this
section.

Kendall’s tau is a measure of concordance. For random vectors (X1, X2) and (X̃1, X̃2),
concordant pairs have the following relation: (X1 − X̃1)(X2 − X̃2) > 0. On the other hand,
discordant pairs are such pairs which have (X1− X̃1)(X2− X̃2) < 0. If we try to interpret this,
with the increase of one random variable, another one tends to increase, then the probability
of them being concordant rather than discordant is higher (12).

Using this definition of concordance, we can denote Kendall’s tau (ρτ (X1, X2)) in such a
way that

ρτ (X1, X2) = P ((X1 − X̃1)(X2 − X̃2) > 0)− P ((X1 − X̃1)(X2 − X̃2) < 0) (9)

For the trivariate case, Joe’s extension of Kendall’s tau using bivariate copulas is the fol-
lowing:

ρτ (X1, X2, X3) =
1

3
{ρτ (X1, X2) + ρτ (X1, X3) + ρτ (X2, X3)} (10)

As for the relation of Kendall’s tau with bivariate copulas, Nelsen suggests that

ρτ (X1, X2) = −1 + 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2) (11)

Spearman’s rho is another measure of dependence. It is defined as linear correlation of
unique copula associated with the general multivariate random vector X.

ρS(X) = ρ(F1(X1), F2(X2), ..., Fd(Xd)) (12)

Here, F1, ..., Fd are marginal distribution functions (14). Both of those rank correlation depen-
dence measures also take values from -1 to 1, similar to Pearson’s correlation. Value of -1 is
associated with countermonotonicity and value of 1 - with comonotonicity (12).

Spearman’s rho also has the formula suggested by Nelsen:

ρS(X1, X2) = 12

∫ 1

0

∫ 1

0

C(u1, u2)du1du2 − 3 (13)

It is stated that for rank correlations for continuous marginal dfs depend only on the unique
copulas (5). Therefore, Kendall’s tau inverse will be used to infer the parameters of copulas
based on the ranks associated with our sample. Also, because the structure of dependence
changes over time, time series models will be used for analysis of the financial data.

Moreover, as identified above, financial data frequently departs from normality and has a
leptokurtic distribution with skewness, also known as fat-tail problem. This problem is present
in both univariate and multivariate settings, where large market movements tend to occur
together. This concept is tail dependence (5). This concept is necessary for risk managers to
know to work against unwanted events (1). Also, in finances high losses are of interest for
risk managers, so upper and lower tail dependence coefficients are usually computed to analyze
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the joint behavior of random variables. The formulas for lower and upper tail dependence are
written below.

λL = lim
α→0+

C(α, α)

α
(14)

λU = lim
α→1−

1− 2α + C(α, α)

1− α
= lim

α→1−
2− 1− C(α, α)

1− α
(15)

Moreover, tail dependence coefficients for the chosen trivariate copulas are listed in the
Table II (1).

Table 2: Tail dependence of copula families
Copula name Parameter range Lower tail Upper tail
Gaussian (-1, 1) 0 0
Clayton α ∈ [−1, 0) ∪ (0,∞) 2−

1
α 0

Gumbel α ∈ [1,∞) 0 2− 2−
1
α

2.5 Time series basics

For financial return series there are some empirical observations that apply to most of series of
changes in the risk-factors (for example, log returns in this project). Those facts are as follows:

(1) Return series are not independent and identically distributed;
(2) Series of absolute or squared returns have significant serial correlation;
(3) Conditional expected returns approach zero;
(4) Volatility is not fixed and varies over time;
(5) Return series possess leptokurtic distribution (there are narrower centers and higher

chances of extreme values compared to normal distribution);
(6) Extreme returns tend to appear in clusters (if there are extreme results, they are usually

followed by other extreme ones) (12).
In this project we will be able to empirically check if those facts apply to the data series of

the assets in the portfolio.
Definition. Time series model for a single risk factor denoted by (Xt)t∈Z is a family of rvs,

indexed by integers and defined on the probability space (Ω,F , P ).
The definition of stationarity is important for time series. So, the following two definitions

should provide some explanation of strictly and weakly stationary time series.
Definition. Time series (Xt)t∈Z is called strictly stationary if Xt1 , ..., Xtn = Xt1+k

, ..., Xtn+k
,

for all t1, .., tn, k ∈ Z and for all n ∈ N.
Definition. Time series (Xt)t∈Z is called covariance (weakly) stationary if the first two

moments exists and satisfy the following:

µ(t) = µ, t ∈ Z (16)

γ(t, s) = γ(t+ k, s+ k), t, s, k ∈ Z (17)

From the definition of covariance stationary time series, we see that covariance between Xt

and Xs only depends on their separation |s − t|, known as lag (12). Thus, this means that
stationary time series do not have any trends or effects of seasons. They are not dependent
on time. Non-stationary series, on the other hand, show some dependence on seasons or other
similar trends and depend on the particular time index. Time series analysis is concerned
with changing non-stationary time series into stationary time-series. This is done after the
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identification and removal of trends (3). There are various tests to check the trends and
correlation of data. One of the possible solutions is checking the ACF and PACF plots.

Definition. Autocorrelation Function, also denoted as ACF - ρ(h) of covariance stationary
time series (Xt)t∈Z. It is the following:

ρ(h) = ρ(Xh, X0) = γ(h)/γ(0),∀h ∈ Z, (18)

where h is the lag.
ACF summarizes how observation values are correlated with lag values. On the y-axis,

correlation coefficient can take values between -1 and 1 (3). On the other hand, we can also look
at Partial Autocorrelation Function (PACF). It summarizes how an observation is correlated
with lag values given that is not accounted for by previous observations with lags (3). After
calculations, the results of autocorrelation and partial autocorrelations of residuals of time
series can be plotted. Such plots are called autocorrelation plots or correlograms and they play
an important role in analyzing the stationarity of data.

Augmented Dickey-Fuller test is a formal test to check the stationarity of data. This is a
unit root test that checks the existence of trends behind the time series. In this test we have
two hypotheses:

H0: Time series has a unit root, which means it is non-stationary. That is there is a time
dependent structure.

H1: Time series doesn’t have a unit root, which means it is stationary. That is there is no
time dependent structure (3).

2.6 Time series models

As dependence structure between assets change with time, the time series should be used to
analyze our return series. Additionally, volatility can be higher or lower than average values in
some periods. Models like ARIMA and GARCH have been used in most latest researches to
model financial data (4),(16).

The Autoregressive Integrated Moving Average Model (ARIMA) is a standard class of a
statistical model that is used for time series forecast and analysis (3). This model creates
covariance stationary time series and uses dependency between residual errors from a moving
average model with a number of lagged observations and observation values. ARIMA(p,d,q)
has three parameters, for which integer values are substituted to indicate what kind of ARIMA
model is used in the forecasting. The parameters show the next factors:

p - how many lag observations are included in the model(lag order);
d - how many times raw observations are differenced (degree of differencing);
q - how large is the moving average window (order of moving average).
ARIMA (p,d,q) model is ARMA (p,q) model differenced d times (3).
The formula for ARMA(p,q) model is as follows:

yt = C + ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p − ϵt − θ1ϵt−1 − θ2ϵt−2 + ...− θqϵt−q, (19)

where yt - data on which the ARMA model is applied, C - constant, ϵt - white noise. The
parameters ϕi are AR coefficients and parameters θi are MA coefficients. ARMA(p,q) can also
be rewritten in terms of lags:

(1− Σp
i=1ϕiL

i)yt = (1− Σq
j=1θjL

j)ϵt, (20)

where L - lag operator(2). This is often reduced to:

ϕp(L)yt = θq(L)ϵt, (21)
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where ϕp(L) = (1− Σp
i=1ϕiL

i) and θq(L) = (1− Σq
j=1θjL

j)
The general formula for ARIMA(p,d,q) model in terms of lag operator is as follows:

ϕp(L)(1− L)dyt = θq(L)ϵt, (22)

Both ACF and PACF plots are used as graphical diagnostic tests to decide on the values of
p,d,q for ARIMA model. If ACF trails off and PACF has a hard cut-off after a particular lag,
the appropriate model is AR and lag is a value of p. If PACF trails off and ACF has a hard
cut-off after a particular lag, the appropriate model is MA and lag is a value of q. If, both of
those functions trail off, the appropriate model is ARIMA (3).

The Generalized Autoregressive Conditional Heteroscedasticity, also denoted as GARCH,
is an exponential decay model. This model is designed to capture volatility clustering of data
returns. Volatility, being a measure of intensity of random changes in returns of investments,
can affect assets vastly. GARCH model using past returns and historical volatilities models the
variance (4).

Suppose, rt is a stochastic process of daily log returns. Then a univariate normal GARCH(m,n)
process is defined in the following way:

rt = µt + ϵt (23)
ϵt = σtzt (24)

σ2
t = α0 + Σn

i=1αiϵ
2
t−i + Σm

j=1βjσ
2
t−j (25)

such that rt - log return at time t, µt - expected value of the conditional log return at time t,
ϵt - mean corrected return at time t (4).

The simplest GARCH model - GARCH (1,1). It is quite frequently used in finances and
can capture the volatility of the market pretty well (4). It is defined in the following way:

rt = µt + ϵt (26)
σ2
t = α0 + α1ϵ

2
t−1 + βjσ

2
t−1 (27)

Moreover, GARCH model’s parameters can be found and checked using historical data.
Sample data with its volatility clusters is used to estimate parameters and fit the most ap-
propriate GARCH model (4). It is usually done in the software due to the complexity of
calculations.

2.7 Criteria of checking

To evaluate the goodness of a model, information-theoretic approach considers the information
discrepancy compared to true distribution generating the data as the most important criterion
(8). In this project Akaike and Bayesian information criteria (AIC and BIC respectively) for
choosing a suitable model, quite commonly used information criteria, are used.

AIC takes an important role as a model selection criterion in different fields (8). It is
identified as following:

AIC = −2ln(L̂) + 2p, (28)

where p - number of estimated parameters of model, L̂ - maximum value of the likelihood
function.

This evaluation criterion analyzes the model, parameters of which are estimated using MLE
method. As we can see from the formula, it penalizes the models with high number of estimated

10



parameters and rewards the models that have high log-likelihood values. Overall, it is a fairly
flexible method to capture the "badness" of the model.

BIC is also used very widely. This criterion evaluates the models from the Bayesian stand-
point.

BIC = −2ln(L̂) + p× log(N), (29)

where p - number of estimated parameters of model, L̂ - maximum value of the likelihood
function, N - sample size.

Similarly to AIC, BIC is used as an information criterion to evaluate models estimated by
the MLE method, given the sample size is sufficiently large (8). For sample sizes greater than
8, BIC penalizes the model more compared to AIC. However, the overall idea of penalizing
the models with high number of estimated parameters and rewarding the ones with high log-
likelihood values stays the same.

When comparing different models, the model with the smallest values of AIC and BIC is
condired to be better than others.

3 Application
First, we will clean the data by removing dates with incomplete closing price information. Next,
we will transform the series of daily closing prices using log differences—a common transfor-
mation for financial data. As a result, we will have Yt = logPt − logPt−1 = log Pt

Pt−1
, where

Pt represents the closing price on day t (16), (1), (4). Then, we will perform basic descriptive
statistics for the log-returns of the investments, including measures of central tendency, dis-
persion, kurtosis, and skewness. As previously mentioned, financial data often exhibit skewed
distributions and fat tails (1). Additionally, we will compute Pearson’s linear correlation and
Kendall’s tau values for the four investments in the portfolio. We will plot the returns data for
all four investments and examine potential volatility clusters, investigating the causes of these
clusters. We will also conduct normality and unit-root tests, such as the Shapiro-Wilk and
Augmented Dickey Fuller tests, to determine if the return series follows a normal distribution
and are stationary. Furthermore, we will examine ACF and PACF plots for all investments in
the portfolio and perform the Ljung-Box test to assess data autocorrelation, which helps detect
volatility clusters and shows the potential impact of today’s movement on future movements
(4). The null hypothesis for this test is that the data exhibits no serial autocorrelation. As is
customary with formal tests, we will base our judgments on the p-values of this test.

If the data is not independently and identically distributed, we will fit it into a time series
model. Here, we will fit the return series to ARIMA models if there is a serial correlation in
the returns and insignificant serial correlation in the squared returns. If a significant serial
correlation exists in the squared observations, we will apply GARCH models to capture data
volatility. We will select the most suitable model based on the Akaike Information Criterion
and Bayesian Information Criterion, with the smallest value representing the most appropriate
model. We will use ACF and PACF correlograms along with the Ljung-Box test once more to
evaluate the model’s appropriateness and assess whether the time-series models have improved
serial correlation in residuals and square residuals. Next, we will compute the 4-dimensional
copula parameters using the rank-based Maximum Pseudo-Likelihood (MPL) estimation pro-
cedure (9), employing pseudo-observations of standardized residuals to estimate the marginals
and copula parameters. This procedure is also widely used in other research (16). We will then
fit copulas to the time series and choose the most suitable one based on the goodness-of-fit test
of Cramer Von Mises (Sn) and tail dependence coefficients (9). The Cramer Von Mises test
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measures how closely the empirical copula matches the fitted copula. Models with smaller Sn

values or higher p-values are considered more appropriate.

3.1 Data Descripton

Figure 2: Log-returns

Yahoo Finance data for Closing Prices of Amazon, Tesla, Johnson&Johnson, and Exxon-
Mobil for the period between 07-01-2017 and 07-01-2022 is used. Data was cleared and log
returns of the closing prices were calculated. Log Returns can be seen in Figure 2.

Table 1 contains some basic statistical information about log-returns of each company.

Company Mean Variance Skewness Kurtosis
Amazon 0.000173031 0.000487055 -0.363357 5.42749
Tesla 0.00357789 0.00196852 -0.272662 3.81645
JNJ 0.000334513 0.000195966 0.0173411 7.66999
XOM 0.000177193 0.000613054 -0.16025 4.04234

One can observe that the log returns for the companies exhibit a positive mean. The log
returns of JNJ are right-tailed, whereas those of the other companies are left-tailed. All the
companies display substantial kurtosis, which strongly suggests the non-normality of the log
returns. The small p-values obtained from the Jarque-Bera test for the normality of the log
returns corroborate this observation. The Kolmogorov-Smirnov test also yields similar findings.
According to the Kolmogorov-Smirnov test, if the p-value is below 0.05, the distribution is
likely not Gaussian. The p-values for Amazon, Tesla, Johnson&Johnson, and ExxonMobil are
0.0002449, 0.0001795, 0.0000006, and 0.00406235, respectively.

Amazon, Tesla, Johnson&Johnson, and ExxonMobil have the following correlation coeffi-
cients:
In this project, an equally weighted portfolio will be constructed, assigning a weight of 0.25 to
each asset. The correlation coefficients are relatively low since the portfolio has been designed
to select a combination of the four smallest correlation coefficients among the top 15 S&P
companies.
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Table 3: Correlation coefficients of companies
Company 1 Company 2 Correlation coefficient
AMZN TSLA 0.4128
AMZN JNJ 0.2701
AMZN XOM 0.2120
TSLA JNJ 0.1387
TSLA XOM 0.2054
JNJ XOM 0.3425

3.2 Calculating VAR using historical data

Value at risk is one of the most widely used risk measures in finance. VaR was popularized
by J.P. Morgan in the 1990s. The executives at J.P. Morgan wanted their risk managers to
generate one statistic that summarized the risk of the firm’s entire portfolio, at the end of each
day. What they came up with was VaR.
In order to formally define VaR, we begin by defining a random variable L, which represents
the loss to our portfolio. L is simply the opposite of the return to our portfolio. If the return
of our portfolio is $600, then the loss, L, is +$600 (12).
Monte Carlo simulations are widely used throughout finance, and they can be a very powerful
tool for calculating VaR İmagine that we have N random variables, X1, X2, . . ., XN, repre-
senting the returns of different stocks. In order to describe the relationships between each of
the variables, we could form an N × N covariance matrix, where each element, σi,j corresponds
to the covariance between the ith and jth random variables (13):

Σ =

σ1,1 . . . σ1,n
... . . . ...

σn,1 . . . σn,n

 (30)

If the covariance matrix satisfies certain minimum requirements, we can decompose the covari-
ance matrix, rewriting it in terms of a lower triangular matrix, L, and its transpose, L’, which
is an upper triangular matrix.This is what is known as a Cholesky decomposition [3].

Σ = LL′ (31)

Monte Carlo simulation happens by taking L part of the Cholesky decomposition and mul-
tiplying it by a vector of i.i.d standard normal variables. By comparison with historical and
parametric Value at Risks, Monte Carlo simulations var are generally considered to be the most
flexible (12).
90% 99% and 99.5% confidence level VARs were calculated using different methods for portfo-
lios using data from 2017-07-01 to 2022-07-01. Predictions were made with 100000 simulations.

Table 4: Historical VARs using different methods
Portfolio Historical Var Normal Var t-dist Var MC Var
90% 1.172986 1.313834 1.314509 1.218557
99% 2.494242 2.359622 2.362600 2.38972
99.5% 2.881441 2.609340 2.613267 2.430796
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3.3 Determining Marginal Distributions

To continue observing the nature of the series, Augmented Dickey-Fuller (ADF) test also needs
to be conducted. As usual, the results are analyzed using the p-value, where a p-value below
0.05 suggests us to reject H0, and a p-value greater than 0.05 suggests we fail to reject H0. We
fail to reject the Null hypothesis for all investments in the portfolio, since all of the p-values
are greater than 0.05. This means that all time series seem to have a unit root and appear to
be non-stationary.

Additionally, autocorrelation and partial autocorrelation functions are used to check the
correlation of series. According to ACF plots, the returns have some serial autocorrelation.
Additionally, high serial correlation in the squared returns signifies the existence of volatility
clusters. This is indeed true and agrees with our analysis of volatility clusters above. Ljung-Box
test with a lag of 20 is also conducted to check the autocorrelation of time series. The p-values
are 0.005914 for AMZN, 0.08386 for TSLA, 4.411e-16 for JNJ, and 7.083e-6 for XOM.

So, returns seem to be non-normal, and non-stationary and have serial autocorrelation in
both ordinary returns and squared returns. As a result, ARIMA-GARCH models are used
to ensure that the volatility of data is captured. After fitting the most appropriate ARIMA-
GARCH model, we should plot ACF and PACF correlograms to visually inspect the usefulness
of ARIMA-GARCH models in making residuals serially independent.

Autocorrelation seems to be largely reduced for all investments after the use of ARIMA-
GARCH models. The chosen ARIMA-GARCH models for every investment in the portfolio
based on the lowest values of AIC and the Ljung-Box test’s p-values are summarized in Table
IV. Using those correlograms and Ljung-Box p-values, it seems that at 95% confidence level,
the residuals for all four investments are serially independent.

Table 5: Companies and chosen ARIMA(p,d,q)-GARCH(m,n) models based on AIC criterion
Company ARIMA-GARCH model type Ljung-Box p-values
AMZN ARIMA(3,0,3)-GARCH(1,1) 0.7382
TSLA ARIMA(2,0,2)-GARCH(1,1) 0.4967
JNJ ARIMA(3,0,4)-GARCH(1,1) 0.8632
XOM ARIMA(2,0,3)-GARCH(1,1) 0.07914

3.4 Choosing and fitting copula

Table 6: Copulas and parameter estimates
Copula Parameter Log-likelihood Goodness of fit p-values AIC BIC
Gumbel 1.063 24.8369 0.19508 -47.67381 -42.53812
Normal 0.1217 47.23343 0.16723 -92.46686 -87.33117
Clayton 0.1493 56.53083 0.22935 -111.0617 -105.926

From the Table V it looks as if all copulas are quite good fits for the transformed data
series. Clayton copula shows the best values of AIC, BIC and goodness of fit test’s p-values, so
it is used further to calculate VaR, as the best-fit copula. Based on researches, Clayton copula
is the most suitable choice for dependence structure in cases of any financial turmoils (1) and
the fact that it has shown to be the most appropriate in this time-period corresponds to the
economy’s condition in 2020 quite well.
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3.5 Estimating VaR

Monte-Carlo simulations, where losses from the adjusted copula are randomly generated, are
used in this section. Additionally, marginal distribution functions are estimated. Here, the
normal and t-student distribution functions are fitted. VaR is estimated with both of those
marginals and then, the results are compared.

As a result, Clayton Copula with 0.1493 parameters is used with both t-student and normal
marginal distributions. The estimations of VaR for the equally weighted portfolio using Clayton
copula with different marginals and historical simulations are summarized in Table VI.

Table 7: Value-at-Risk
Model Marginal 90% 99% 99.5%

Clayton Copula t-student 0.9124409 1.6913028 1.8667663
Clayton Copula normal 1.227861 2.251884 2.482578

Historical 1.172986 2.494242 2.881441

Overall, it seems that Clayton copula with normal distribution marginals shows the highest
VaR values and VaR calculated from the normal marginals has the lowest VaR values. Due to
both of those VaR estimations having very strong assumptions, it seems that Clayton copula
with normal marginals is the best fit. It has a higher VAR for 90% confidence level but for
99% and 99.5% confidence levels VARs are slightly lower. In general, there is little difference
between Historical and Clayton Copula VARS.

Conclusion
This study aimed to estimate the Value at Risk (VaR) for an equally weighted portfolio con-
sisting of Amazon, Tesla, Johnson&Johnson, and ExxonMobil stocks. The data analysis re-
vealed that the log returns for the companies exhibit positive means, non-normality, and non-
stationarity. ARIMA-GARCH models were employed using AIC criteria to choose the best fit
to capture the volatility of the data and to make the residuals serially independent.

In order to model the dependence structure among the portfolio assets, copulas were utilized.
The Clayton copula, with the best AIC, BIC, and goodness of fit test p-values, was chosen as
the most appropriate copula for this case. VaR estimation was conducted using Monte Carlo
simulations, and both t-student and normal marginal distributions were fitted. The results
showed that the Clayton copula with normal marginal distributions provided the closest to
historical VaR values.

In conclusion, the Clayton copula with normal marginals was considered the best fit for
estimating VaR in the given portfolio. The VaR values at 90%, 99%, and 99.5% confidence
levels were 1.227861, 2.251884, and 2.482578, respectively. The study provides valuable insights
into the risk assessment of the selected portfolio, and the methodology can be extended to other
portfolios and assets for risk management purposes.

Further Investigations
In order to improve the understanding of the risk characteristics of the chosen equally weighted
portfolio, several further investigations can be conducted. This section outlines potential ex-
tensions to the current research project.

Extending Copula Dimensions: The current project uses a four-dimensional copula
to model the dependence structure of the assets in the portfolio. It is possible to extend
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the dimensions of the copula to include more assets in the analysis, which would provide a
better understanding of the portfolio’s overall risk and dependence structure. Including a larger
number of assets would enable a more comprehensive analysis of the diversification benefits and
potential tail risks.

Exploring Other Copula Types: In this project, Clayton, Gumbel, and Normal copulas
were tested, and the Clayton copula was chosen as the best fit. However, other copula types,
such as the Student’s t copula, Frank copula, and Joe copula, could also be considered to better
understand the dependence structure of the assets in the portfolio. Different copulas may better
capture the dependence structure, particularly during periods of market stress.

Additional Value-at-Risk (VaR) Calculation Methods: The current project uses
several methods for calculating VaR, including historical, normal, t-distribution, and Monte
Carlo simulations. Additional methods, such as the Filtered Historical Simulation, Extreme
Value Theory (EVT), and Conditional Value-at-Risk (CVaR), could also be employed to provide
a more comprehensive understanding of the portfolio’s risk profile. Also, as it was performed
in the recent article about Copula ARMA-GARCH by Siroos Shahriari, S.A. Sisson, and Taha
Rashidi, fitted ARMA-GARCH models can be compared to the mean absolute percentage error
(MAPE) and root mean square error (RMSE) values of model predictions on synthesised data
to demonstrate the goodness of fit (17)

Incorporating Conditional Value-at-Risk (CVaR): CVaR, also known as Expected
Shortfall (ES), measures the expected loss in the worst-case scenarios beyond the VaR threshold.
Incorporating CVaR analysis would provide a more accurate estimation of potential losses
during extreme events and help to better understand the tail risks of the portfolio.

Extending the Time Period: The current project examines a 5-year time period for
the selected assets. To better understand the risk and dependence structure of the portfolio,
it is possible to extend the time period under analysis. Investigating a longer time period
could provide valuable insights into how the relationships between the assets and the overall
risk of the portfolio change over time. This would also help to capture any structural changes
in the market, evolving market conditions, and the impact of various economic events on the
portfolio’s risk profile.

By extending the dimensions of the copula, exploring other copula types, employing addi-
tional VaR calculation methods, and incorporating CVaR, the project could provide a more
comprehensive understanding of the portfolio’s risk characteristics and aid in the development
of more robust risk management strategies.
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Figure 3: Log-returns

Appendix

Listing 1: My R code
l ibrary ( " readx l " )
l ibrary ( " e1071" )
l ibrary ( " car " )
l ibrary ( " t s e r i e s " )
l ibrary ( " copula " )
l ibrary ( "VineCopula" )
l ibrary ( "aTSA" )
l ibrary ( " f o r e c a s t " )
l ibrary ( " rugarch " )
l ibrary ( " gofCopula " )
l ibrary ( " c o r r p l o t " )
l ibrary ( "RColorBrewer" )
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Figure 4: Log-returns

l ibrary ( "univariateML" )
l ibrary ( "MASS" )

data = read_ex c e l ( "data2 . x l sx " )

sapply (data , mean, na .rm=TRUE)
logAMZN = d i f f ( log (data$Clos ingPr i c e_AMZN) , l ag=1)
logTSLA = d i f f ( log (data$Clos ingPr i c e_TSLA) , l ag=1)
logJNJ = d i f f ( log (data$Clos ingPr i c e_JNJ) , l ag=1)
logXOM = d i f f ( log (data$Clos ingPr i c e_XOM) , l ag=1)
summary(logAMZN)

#Shapiro Wilk formal t e s t o f normal i ty
shap i ro . t e s t (logAMZN)
shap i ro . t e s t ( logJNJ )
shap i ro . t e s t ( logTSLA)
shap i ro . t e s t (logXOM)
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Figure 5: Log-returns

#Autocor re l a t i on f unc t i on s o f r e turns and re turns squared
par (mfrow=c ( 2 , 2 ) )
a c f (logAMZN, main="AMZN␣ re tu rn s " )
a c f (logAMZN^2 , main="AMZN␣ re tu rn s ␣ squared " )
pac f (logAMZN, main="AMZN␣ re tu rn s " )
pac f (logAMZN^2 , main="AMZN␣ re tu rn s ␣ squared " )
par (mfrow=c ( 2 , 2 ) )
a c f ( logTSLA , main="TSLA␣ re tu rn s " )
a c f ( logTSLA^2 , main="TSLA␣ re tu rn s ␣ squared " )
pac f ( logTSLA , main="TSLA␣ re tu rn s " )
pac f ( logTSLA^2 , main="TSLA␣ re tu rn s ␣ squared " )
par (mfrow=c ( 2 , 2 ) )
a c f ( logJNJ , main="JNJ␣ re tu rn s " )
a c f ( logJNJ^2 , main="JNJ␣ re tu rn s ␣ squared " )
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pacf ( logJNJ , main="JNJ␣ re tu rn s " )
pac f ( logJNJ^2 , main="JNJ␣ re tu rn s ␣ squared " )
par (mfrow=c ( 2 , 2 ) )
a c f (logXOM, main="XOM␣ re tu rn s " )
a c f (logXOM^2 , main="XOM␣ re tu rn s ␣ squared " )
pac f (logXOM, main="XOM␣ re tu rn s " )
pac f (logXOM^2 , main="XOM␣ re tu rn s ␣ squared " )

#Box−Ljung t e s t wi th 20 l a g s
Box . t e s t (logAMZN, lag =20, type=c ( "Ljung−Box" ) )
Box . t e s t ( logTSLA , lag =20, type=c ( "Ljung−Box" ) )
Box . t e s t ( logJNJ , l ag =20, type=c ( "Ljung−Box" ) )
Box . t e s t (logXOM, lag=20, type=c ( "Ljung−Box" ) )

#Augmented−Dickey−Fu l l e r
adf . t e s t (logAMZN)
adf . t e s t ( logTSLA)
adf . t e s t ( logJNJ )
adf . t e s t (logXOM)

#ARIMA model
AMZN= as .numeric (logAMZN)
TSLA = as .numeric ( logTSLA)
JNJ = as .numeric ( logJNJ )
XOM = as .numeric (logXOM)
AMZN = AMZN [ ! i s .na(AMZN) ]
TSLA = TSLA [ ! i s .na(TSLA) ]
JNJ = JNJ [ ! i s .na(JNJ ) ]
XOM = XOM [ ! i s .na(XOM) ]
AMZN_f . a i c = In f
AMZN_f . order = c ( 0 , 0 , 0 )
TSLA_f . a i c = In f
TSLA_f . order = c ( 0 , 0 , 0 )
JNJ_f . a i c = In f
JNJ_f . order = c ( 0 , 0 , 0 )
XOM_f . a i c = In f
XOM_f . order = c ( 0 , 0 , 0 )
for (p in 1 : 4 ) for (d in 0 : 2 ) for (q in 1 : 4 ) {
AMZN_curr . a i c = AIC( arima (AMZN, order=c (p , d , q ) ,

optim . control=l i s t ( maxit=1000)))
TSLA_curr . a i c = AIC( arima (TSLA, order=c (p , d , q ) ,

optim . control=l i s t ( maxit=1000)))
JNJ_curr . a i c = AIC( arima (JNJ , order=c (p , d , q ) ,

optim . control=l i s t ( maxit=1000)))
XOM_curr . a i c = AIC( arima (XOM, order=c (p , d , q ) ,

optim . control=l i s t ( maxit=1000)))
i f (AMZN_curr . a i c < AMZN_f . a i c ) {
AMZN_f . a i c = AMZN_curr . a i c
AMZN_f . order = c (p , d , q)
AMZN_f . arima = arima (AMZN, order=AMZN_f . order )
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}
i f (TSLA_curr . a i c < TSLA_f . a i c ) {
TSLA_f . a i c = TSLA_curr . a i c
TSLA_f . order = c (p , d , q)
TSLA_f . arima = arima (TSLA, order=TSLA_f . order )

}
i f (JNJ_curr . a i c < JNJ_f . a i c ) {

JNJ_f . a i c = JNJ_curr . a i c
JNJ_f . order = c (p , d , q)
JNJ_f . arima = arima (JNJ , order=JNJ_f . order )

}
i f (XOM_curr . a i c < XOM_f . a i c ) {
XOM_f . a i c = XOM_curr . a i c
XOM_f . order = c (p , d , q)
XOM_f . arima = arima (XOM, order=XOM_f . order )

} }
cat ( "ARIMA␣ order ␣ f o r ␣AMZN: " , AMZN_f . order , "\n" )
cat ( "ARIMA␣ order ␣ f o r ␣TSLA: " , TSLA_f . order , "\n" )
cat ( "ARIMA␣ order ␣ f o r ␣JNJ : " , JNJ_f . order , "\n" )
cat ( "ARIMA␣ order ␣ f o r ␣XOM: " , XOM_f . order , "\n" )

par (mfrow=c (2 , 2 ) )
a c f ( resid (AMZN_f . arima ) )
a c f ( resid (AMZN_f . arima )^2)
pac f ( resid (AMZN_f . arima ) )
pac f ( resid (AMZN_f . arima )^2)
par (mfrow=c (2 , 2 ) )
a c f ( resid (TSLA_f . arima ) )
a c f ( resid (TSLA_f . arima )^2)
pac f ( resid (TSLA_f . arima ) )
pac f ( resid (TSLA_f . arima )^2)
par (mfrow=c (2 , 2 ) )
a c f ( resid (JNJ_f . arima ) )
a c f ( resid (JNJ_f . arima )^2)
pac f ( resid (JNJ_f . arima ) )
pac f ( resid (JNJ_f . arima )^2)
par (mfrow=c (2 , 2 ) )
a c f ( resid (XOM_f . arima ) )
a c f ( resid (XOM_f . arima )^2)
pac f ( resid (XOM_f . arima ) )
pac f ( resid (XOM_f . arima )^2)

#GARCH
AMZN_garch = garch (AMZN , trace=FALSE)
AMZN_r e s = AMZN_garch$ r e s [−1]
AMZN_r e s = AMZN_r e s [ ! i s .na(AMZN_r e s ) ]
TSLA_garch = garch (TSLA, trace=FALSE)
TSLA_r e s = TSLA_garch$ r e s [−1]
TSLA_r e s = TSLA_r e s [ ! i s .na(TSLA_r e s ) ]
JNJ_garch = garch (JNJ , trace=FALSE)
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JNJ_r e s = JNJ_garch$ r e s [−1]
JNJ_r e s = JNJ_r e s [ ! i s .na(JNJ_r e s ) ]
XOM_garch = garch (XOM, trace=FALSE)
XOM_r e s = XOM_garch$ r e s [−1]
XOM_r e s = XOM_r e s [ ! i s .na(XOM_r e s ) ]
summary(AMZN_garch )
summary(TSLA_garch )
summary(JNJ_garch )
summary(XOM_garch )

#ACF PACF a f t e r garch
par (mfrow=c (2 , 2 ) )
a c f (AMZN_r e s )
a c f (AMZN_r e s ^2)
pac f (AMZN_r e s )
pac f (AMZN_r e s ^2)
par (mfrow=c (2 , 2 ) )
a c f (TSLA_r e s )
a c f (TSLA_r e s ^2)
pac f (TSLA_r e s )
pac f (TSLA_r e s ^2)
par (mfrow=c (2 , 2 ) )
a c f (JNJ_r e s )
a c f (JNJ_r e s ^2)
pac f (JNJ_r e s )
pac f (JNJ_r e s ^2)
par (mfrow=c (2 , 2 ) )
a c f (XOM_r e s )
a c f (XOM_r e s ^2)
pac f (XOM_r e s )
pac f (XOM_r e s ^2)

#Standard i zed r e s i d u a l s wi th mean o f 0 , s tandard d e v i a t i on o f 1
sA = sd (AMZN_r e s )
sT = sd (TSLA_r e s )
sJ = sd (JNJ_r e s )
sX = sd (XOM_r e s )
s t_AMZN_r e s = AMZN_r e s/sA
mean( s t_AMZN_r e s )
sd ( s t_AMZN_r e s )
s t_JNJ_r e s = JNJ_r e s/sJ
mean( s t_JNJ_r e s )
sd ( s t_JNJ_r e s )
s t_TSLA_r e s = TSLA_r e s/sT
mean( s t_TSLA_r e s )
sd ( s t_TSLA_r e s )
s t_XOM_r e s = XOM_r e s/sX
mean( s t_XOM_r e s )
sd ( s t_XOM_r e s )
#Pseudo−ob s e r va t i on s
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mg = cbind ( s t_AMZN_res , s t_JNJ_res , s t_TSLA_res , s t_XOM_r e s )
set . seed (13)
pseudo = pobs ( as .matrix (mg) )
pairs (mg) #to p l o t and see the c o r r e l a t i o n s o f pa i rw i s e re tu rns o f a s s e t s
pairs ( pseudo )

f i t c o p_norm = f i tCopu la ( normalCopula (dim=4) , data=pseudo , method="mpl" )
summary( f i t c o p_norm)
tau ( normalCopula (param=0.1207))
f i t c o p_g = f i tCopu la ( gumbelCopula (dim=4) , data=pseudo , method="mpl" )
summary( f i t c o p_g )
tau ( gumbelCopula (param=1.063))
f i t c o p_c l = f i tCopu la ( claytonCopula (dim=4) ,data=pseudo , method="mpl" )
summary( f i t c o p_c l )
tau ( claytonCopula (param=0.1293))

cat ( "Log−l i k e l i h o o d ␣ o f ␣Gaussian␣ copula : " , l ogL ik ( f i t c o p_norm ) , "\n" )
cat ( "AIC␣ o f ␣Gaussian␣ copula : " , AIC( f i t c o p_norm ) , "\n" )
cat ( "BIC␣ o f ␣Gaussian␣ copula : " , BIC( f i t c o p_norm ) , "\n" )
cat ( "Log−l i k e l i h o o d ␣ o f ␣Gumbel␣ copula : " , l ogL ik ( f i t c o p_g ) , "\n" )
cat ( "AIC␣ o f ␣Gumbel␣ copula : " , AIC( f i t c o p_g ) , "\n" )
cat ( "BIC␣ o f ␣Gumbel␣ copula : " , BIC( f i t c o p_g ) , "\n" )
cat ( "Log−l i k e l i h o o d ␣ o f ␣Clayton␣ copula : " , l ogL ik ( f i t c o p_c l ) , "\n" )
cat ( "AIC␣ o f ␣Clayton␣ copula : " , AIC( f i t c o p_c l ) , "\n" )
cat ( "BIC␣ o f ␣Clayton␣ copula : " , BIC( f i t c o p_c l ) , "\n" )

#Greatness−of− f i t t e s t f o r copu las us ing parameters from above
gofCopula ( normalCopula (param=0.1207 , dim=4) , as .matrix (mg) , N=100 , method="Sn" )
gofCopula ( claytonCopula (param=0.1293 , dim=4) , as .matrix (mg) , N=100 , method="Sn" )
gofCopula ( gumbelCopula (param=1.063 , dim=4) , as .matrix (mg) , N=100 , method="Sn" )

#Marginal Normal Di s t s
mod_Gauss_AMZN = f i t d i s t r ( s t_AMZN_res , "normal" )
mod_Gauss_AMZN
cat ( "AIC␣ o f ␣normal␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣AMZN: " , AIC(mod_Gauss_AMZN) , "\n" )
cat ( "BIC␣ o f ␣normal␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣AMZN: " , BIC(mod_Gauss_AMZN) , "\n" )
mod_Gauss_TSLA = f i t d i s t r ( s t_TSLA_res , "normal" )
mod_Gauss_TSLA
cat ( "AIC␣ o f ␣normal␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣TSLA: " , AIC(mod_Gauss_TSLA) , "\n" )
cat ( "BIC␣ o f ␣normal␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣TSLA: " , BIC(mod_Gauss_TSLA) , "\n" )
mod_Gauss_JNJ = f i t d i s t r ( s t_JNJ_res , "normal" )
mod_Gauss_JNJ
cat ( "AIC␣ o f ␣normal␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣JNJ : " , AIC(mod_Gauss_JNJ) , "\n" )
cat ( "BIC␣ o f ␣normal␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣JNJ : " , BIC(mod_Gauss_JNJ) , "\n" )
mod_Gauss_XOM = f i t d i s t r ( s t_XOM_res , "normal" )
mod_Gauss_XOM
cat ( "AIC␣ o f ␣normal␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣XOM: " , AIC(mod_Gauss_XOM) , "\n" )
cat ( "BIC␣ o f ␣normal␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣XOM: " , BIC(mod_Gauss_XOM) , "\n" )

#Marginal t−s tuden t d i s t r i b u t i o n s
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mod_t_AMZN = f i t d i s t r ( s t_AMZN_res , " t " )
mod_t_AMZN
cat ( "AIC␣ o f ␣t−student ␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣AMZN: " , AIC(mod_t_AMZN) , "\n" )
cat ( "BIC␣ o f ␣t−student ␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣AMZN: " , BIC(mod_t_AMZN) , "\n" )
mod_t_TSLA = f i t d i s t r ( s t_TSLA_res , " t " )
mod_t_TSLA
cat ( "AIC␣ o f ␣t−student ␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣TSLA: " , AIC(mod_t_TSLA) , "\n" )
cat ( "BIC␣ o f ␣t−student ␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣TSLA: " , BIC(mod_t_TSLA) , "\n" )
mod_t_JNJ = f i t d i s t r ( s t_JNJ_res , " t " )
mod_t_JNJ
cat ( "AIC␣ o f ␣t−student ␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣JNJ : " , AIC(mod_t_JNJ) , "\n" )
cat ( "BIC␣ o f ␣t−student ␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣JNJ : " , BIC(mod_t_JNJ) , "\n" )
mod_t_XOM = f i t d i s t r ( s t_XOM_res , " t " )
mod_t_XOM
cat ( "AIC␣ o f ␣t−student ␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣XOM: " , AIC(mod_t_XOM) , "\n" )
cat ( "BIC␣ o f ␣t−student ␣marginal ␣ d i s t r i b u t i o n ␣ o f ␣XOM: " , BIC(mod_t_XOM) , "\n" )

#simu la t i on o f copu las
r = 10000
norm_cop_e s t = normalCopula (0 . 1207 , dim=4)
sim_va l_normc = rCopula ( r , norm_cop_e s t )
gumb_cop_e s t = gumbelCopula ( 1 . 063 , dim=4)
sim_va l_gumbelc = rCopula ( r , gumb_cop_e s t )
c l ay_cop_e s t = claytonCopula (0 . 1293 , dim=4)
sim_va l_c l aytonc = rCopula ( r , c l ay_cop_e s t )

#with normal margina ls
sim_va l_AMZN = qnorm( sim_va l_c l aytonc [ , 1 ] , mean=mod_Gauss_AMZN$ es t imate [ [ 1 ] ] ,

sd=mod_Gauss_AMZN$ es t imate [ [ 2 ] ] )
sim_va l_TSLA = qnorm( sim_va l_c l aytonc [ , 1 ] , mean=mod_Gauss_TSLA$ es t imate [ [ 1 ] ] ,

sd=mod_Gauss_TSLA$ es t imate [ [ 2 ] ] )
sim_va l_JNJ = qnorm( sim_va l_c l aytonc [ , 1 ] , mean=mod_Gauss_JNJ$ es t imate [ [ 1 ] ] ,

sd=mod_Gauss_JNJ$ es t imate [ [ 2 ] ] )
sim_va l_XOM = qnorm( sim_va l_c l aytonc [ , 1 ] , mean=mod_Gauss_XOM$ es t imate [ [ 1 ] ] ,

sd=mod_Gauss_XOM$ es t imate [ [ 2 ] ] )

#with t margins
sim_va l_AMZN_t = qnorm( sim_va l_c l aytonc [ , 1 ] , mean=mod_t_AMZN$ es t imate [ [ 1 ] ] ,

sd=mod_t_AMZN$ es t imate [ [ 2 ] ] )
sim_va l_TSLA_t = qnorm( sim_va l_c l aytonc [ , 1 ] , mean=mod_t_TSLA$ es t imate [ [ 1 ] ] ,

sd=mod_t_TSLA$ es t imate [ [ 2 ] ] )
sim_va l_JNJ_t = qnorm( sim_va l_c l aytonc [ , 1 ] , mean=mod_t_JNJ$ es t imate [ [ 1 ] ] ,

sd=mod_t_JNJ$ es t imate [ [ 2 ] ] )
sim_va l_XOM_t = qnorm( sim_va l_c l aytonc [ , 1 ] , mean=mod_t_XOM$ es t imate [ [ 1 ] ] ,

sd=mod_t_XOM$ es t imate [ [ 2 ] ] )

w = cbind ( 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 )
alpha = c ( 0 . 9 , 0 . 9 9 , 0 . 9 95 )
MC_data = cbind ( sim_va l_AMZN, sim_va l_TSLA, sim_va l_JNJ , sim_va l_XOM)
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MC_Lsim = −(MC_data%∗%t (w) )
MC_data_t = cbind ( sim_va l_AMZN_t , sim_va l_TSLA_t , sim_va l_JNJ_t , sim_va l_XOM_t )
MC_Lsim_t = −(MC_data_t%∗%t (w) )
quantile (MC_Lsim , alpha )
quantile (MC_Lsim_t , a lpha )
#h i s t o r i c a l s imu la t i on s
quantile (mg, alpha , method=" h i s t o r i c a l " )
normal_var <− mean(mg) − sd (mg) ∗ qnorm(1 − alpha )
t_degree s_freedom <− df . r e s i d u a l (lm(mg ~ 1) )
t_var <− mean(mg) − sd (mg) ∗ qt (1 − alpha , df = t_degree s_freedom )

#Vi s u a l i z a t i o n s
par (mfrow=c (2 , 2 ) )
plot ( s t_AMZN_res , type=" l " , main="Standardized ␣Res idua l s ␣ o f ␣AMZN␣GARCH␣Model" , xlab="Time" , ylab="Res idua l s " )
plot ( s t_TSLA_res , type=" l " , main="Standardized ␣Res idua l s ␣ o f ␣TSLA␣GARCH␣Model" , xlab="Time" , ylab="Res idua l s " )
plot ( s t_JNJ_res , type=" l " , main="Standardized ␣Res idua l s ␣ o f ␣JNJ␣GARCH␣Model" , xlab="Time" , ylab="Res idua l s " )
plot ( s t_XOM_res , type=" l " , main="Standardized ␣Res idua l s ␣ o f ␣XOM␣GARCH␣Model" , xlab="Time" , ylab="Res idua l s " )

cor_matrix <− cor (mg)
c o r r p l o t ( cor_matrix , method=" c i r c l e " , t l . col="black " , t i t l e="Cor r e l a t i on ␣Matrix␣ o f ␣ Standardized ␣Res idua l s " )

# Load requ i r ed l i b r a r i e s
l ibrary ( ggp lot2 )

# Create a new data frame with da te s and c l o s i n g p r i c e s
c l o s i n g_p r i c e s <− data . frame (

Date = data$Date ,
AMZN = data$Clos ingPr i c e_AMZN,
TSLA = data$Clos ingPr i c e_TSLA,
JNJ = data$Clos ingPr i c e_JNJ ,
XOM = data$Clos ingPr i c e_XOM

)

# Reshape the data frame in to long format f o r g g p l o t 2
l ibrary ( t i dy r )
c l o s i n g_p r i c e s_long <− gather ( c l o s i n g_pr i c e s , key = "Stock" , va lue = "Clo s ingPr i c e " , −Date )

# Create the p l o t wi th g g p l o t 2
p <− ggp lot (data = c l o s i n g_p r i c e s_long , aes ( x = Date , y = Clos ingPr i ce , c o l o r = Stock ) ) +

geom_l i n e ( ) +
labs ( t i t l e = "Stock␣Clos ing ␣ Pr i c e s " , x = "Date" , y = "Clos ing ␣ Pr i ce " ) +
theme_minimal ( )

# Disp lay the p l o t
print (p)
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