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Abstract

This project is aimed to analyze the exponential model, Von Bertalanffy model, and the dynamic carrying
capacity model based on the Canada population data. The unknown parameters in these models would be found
out by using a special function in R language called ~nls (Nonlinear Least Squares). The mathematical theory
of the nls function would be introduced and explained. In order to examine if the models are appropriate for the
Canada population, residual plots of the three models will be found out to compare. Furthermore, comparison
method AIC (Akaike’s Information Criteria) would be used to determine the best model fitted to the Canada
population among the three models. The model which shows the best result could be used as an actuarial life
contingency model for the Canada population data in the future.

1 Introduction

Exponential model is widely used growth model which should fit to any population data in normal situation.
In this project, it will be used as an compared model with the other two models. Because Von Bertalanffy and
dynamic carrying capacity models are not used for population data commonly, thus the main aim is to examine
these two models based on Canada population data. Von Bertalanffy model was proposed by Von Bertallanffy
in 1938 for animal growth as an mechanistic model. This model was extensively used for fisheries research by
people. And it is similar in shape with the other widely used growth model called Gompertz model[8]. Gompertz
model was used for different human population data by many researchers. Dynamic carrying capacity model is
mostly used in the field of ecology by biologists and ecologists. It was firstly introduced by the ecologist C.S.
Holling in 1973, which primarily used to observe the animal population growth[5]. Moreover, it is also used
in the filed of tumor growth such as in the paper of Sebastien in 2014[2]. In this project, the two models will
firstly used for Canada population growth. Thus, this paper will contribute to the research of finding models’
suitability to different fields.

This project studied three models such as Exponential model, Von Bertalanffy model, and Dynamic carrying
capacity model based on Canada population data. In the section 2, three models’ mathematical expressions and
explicit formulas are introduced. After introducing the explicit formulas of the models, the unknown parameters
in the formulas are estimated by ~nls function with R language in Section 3. Then, the final results of the three
models and their plots for the Canada population data are found out. Moreover, in Section 3, the mathematical
theory pertaining to the function denoted as ~nls is explained. In Section 4, two different examine methods
which are residual plots and AIC are used for three models.

2 Growth models

2.1 Exponential model

The mathematical expression of exponential model, with the value k as the growth rate, P as the population
amount with time t is[8]:
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Explicit formula of having P in the left hand side:
— P(t)=C -kt



2.2  Von Bertalanffy model

The mathematical equation of the Von Bertalanffy model where a, b, v are the unknown parameters|2]:
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The explicit formula of it[2]:

P(t) = (§ + (P 7 = ) e )=

Py here is the Canada population in 1867.
2.3 Dynamic carrying model
The mathematical expression of the Carrying capacity model, with values K as the upper asymptote and a
as the growth rate[2]:
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Explicit formula:
Pit)y=C- plat-(log(K)+log(t)+1))

C in this formula is an constant which is also an unknown parameter.

3 Estimation of unknwon parameters

3.1 Canada population data

Based on the data provided by the Statcan, the constructed table below illustrates the population growth
in Canada from 1867 to 2007 with a frequency of 10 years[4]:

H Year \ Population H
1867 3,463,446
1877 4,064,000
1887 4,626,000
1897 5,122,000
1907 6,411,000
1917 8,060,000
1927 9,637,000
1937 11,045,000
1947 12,551,000
1957 16,610,000
1967 20,378,000
1977 23,725,921
1987 26,448,855
1997 29,907,172
2007 32,976,026

The data from this table will be used to find the unknown parameters of the three models. In the real process
every single year’s population amount will be used instead of ten year base in this table.

3.2 NLS function in R

In this project, the “~nls” function in R coding language will be used in order to derive the parameters for

the models. This “~nls” function means “nonlinear least squares” and has been derived mathematically. The
nonlinear least squares function is a method commonly used for estimating the parameters of a mathematical
model that describes the relationship between a set of independent variables and a dependent variable. Nonlinear
least squares are typically used when the relationship between the variables cannot be described by a linear
model. This is done by adjusting the parameter values until the sum of the squared errors is minimized.
According to the book “Nonlinear regression” written by Seber and Wild[8], first of all, we take some function
of y, which represents a nonlinear model



yi = f(zi;87) + e
where 8* is the vector of unknown parameters to be estimated, and i = 1,2,3,........ n, e; is an error which is
normally distributed, and z; is the vector of predictor variables Given a set of observed data points (z;,y;) for
i =1,2,...,n, the goal of NLS is to find the values of the unknown parameters 3 = (51, f2, ..., Bp) that minimize
the sum of squared residuals (SSR), defined as:

SSR(B) = 31, (i — f(z:,8))°

To solve for the values of 8 that minimize SSR(8), we can use an iterative algorithm such as the Gauss-
Newton algorithm. The Gauss-Newton method is an iterative method used in Nonlinear Least Squares (NLS)
estimation to update the parameter estimates. It is based on the Taylor series approximation of the nonlinear
function f(z;,3) around the current parameter estimates 3y. Then:
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It can be expressed as:

AY = A(Bo)AB + ¢
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Ap
which can be solved by 8rs = [A(B0)T A(Bo)] L A(Bo)TAY

Bnew = 60 + BLS
This process would be repeated

min(Si (i — (@0, 8))°)

until the proper £ is found out[1].

However, this process requires a considerable amount of effort to derive the values mathematically manually
using this function, and it is much easier to apply the ”~nls” function in R coding language since it has the
same properties and gives faster results.

3.3 Results of exponential model

The complete R codes for fitting our models to Canada population data and finding the unknown parame-
ters is in the Appendix. Following is the result of finding the unknown parameters of exponential model with
the ~nls function in R language:

Formula: Population ~ a * exp(b * Year)

Parameters:

Estimate Std. Error t value Pr(>Itl)
a 2.906e-07 1.020e-07 2.848 0.00507 **
b 1.616e-02 1.775e-04 91.062 < 2e-16 ***

Signif. codes: @ ‘***’ @9 @01 ‘**’ 0.01 ‘*’ 9.5 ‘.’ 0.1 * ’ 1
Residual standard error: 964900 on 139 degrees of freedom

Number of iterations to convergence: 103
Achieved convergence tolerance: 1.807e-06

The output gave us the values of a and b which are the C and k in our model. Thus, it could be found out that
this model fitted to Canada population data is:
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Following is the plot of exponential model which is the red line with the Canada population data:
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3.4 Results of Von Bertalanffy model
The output of the Von Bertalanffy model in R language is the following:

Formula: p ~ Ca/b + (p[1]7(1 - gamma) - a/b) * exp(-b * (1 - gamma) *
t)AL/(1 - gamma))

Parameters:

Estimate Std. Error t value Pr(>ltl)
a @.7450 258.7822 @.003 0.998
b ©.6992 258.9927 ©0.003 0.998

gamma  @.9975 0.8961 1.113 0.268
Residual standard error: 846700 on 138 degrees of freedom

Number of iterations to convergence: 784
Achieved convergence tolerance: 1.49e-08

The values of a, b and v are 0.745, 0.6992, and 0.9975 Correspondingly. Therefore, the model of Von Bertalanffy
fitted to the data is:

= (0.745 1-0.9975 _ 0.745 \ . ,—0.6992(1—0.9975)t\ T=55075
P= (0.6992 + (B 0.6992) e )

— P~ (1065550343 — 0.0212 - ¢~ 0-0017481)400

Following is plot of the Von Bertalanffy model fitted to the data:
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3.5 Results of dynamic carrying capacity model

The output of the dynamic carrying capacity model is:

Formula: p ~ C * exp(a * t * (log(k) - log(t) + 1))

Parameters:

Estimate Std. Error t value Pr(>Itl)
a 5.822e-03 6.280e-04 9.270 3.37e-16 ***
k 1.427e+03 4.265e+02 3.346 0.00106 **
C 2.267e+06 1.259e+@05 18.010 < 2e-16 ***

Signif. codes: @ “***’ @ @01 ‘**’ @.01 ‘*> 0.05 “.” 0.1 * > 1
Residual standard error: 752000 on 138 degrees of freedom

Number of iterations to convergence: 92
Achieved convergence tolerance: 1.49e-08

It found out that the values of the unknown parameters a, k and C. By plugging these values to the model, we
got the following formula:

P = 2267000 - 60.005822-t(log(1427)7log(t)+1)

The graph of the model with the Canada population data is the following:
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4 Examine methods

4.1 Residual plots

Application of the residual plot can demonstrate the efficiency of specific modeling. In this paper, it will
be used to check the efficiency of Exponential model, Von Bertalanffy model, and dynamic carrying capacity
model for the Canada population growth. The formula of residual is:

T =Y — Ui

Where residual r; are the differences between observed values and the predicted values by the nonlinear models.
In case when the residual plot shows some a trend in the graph, then the modeling considered suitable. Because
it shows the nonlinear relationship between the predictor variable and the response variable[7]. Following are
the residual plots of three models:
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Residual Plot
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First one was the residual plot of Exponential model, second one and third one were Von Bertalanffy model
and dynamic carrying capacity model. It is viewed that all three residual plots showed some tendencies which
are fluctuating at the beginning and then increasing for a while and decreasing at the end. This is relevant to
the growth pattern of the Canada population data. According to the result of Martin et al. in 2017, it could
be concluded that these three models are suitable for Canada population data[7].

4.2 AIC method

In order to compare the three models, it is needed to use another compare method which is AIC (Akaike’s
Information Criteria).AIC (Akaike’s Information Criteria) is one of the widespread tools in statistics to estimate
whether the model fits the data. Following is how AIC is calculated[3]:

AIC = nlog(6?) + 2K

Where 9
6_2 _ Z(el)

n

€; here are the residuals estimated in the fitted model, K is the total number of parameters in the model, and n
is the recorded measurements[3]. In this paper, to estimate AIC values of three models, R language was used.
The R coding for calculating AIC of the three models is also in the Appendix. The AIC value of the exponential
model is 4290.033, the Von Bertalanffy model is 4254.152, and the dynamic carrying capacity model is 4220.711.
From the results of residual plots, it shows that the three models are all suitable for Canada population data.
Moreover, a lower value of AIC indicates a better model fit[3]. Thus, the model with the lowest AIC value is
considered to be the best fit. From the results of AIC values, it could be concluded that the dynamic carrying
capacity model is the most suitable model for Canada population model with the lowest value of AIC.



5 Future expansion

Nonlinear regression analysis is widely used in population studies to represent the complex linkages between
population variables. Due to advances in computing power and statistical methods, future extensions of non-
linear regression analysis have the potential to yield more precise and complex population models. Integrating
machine learning algorithms into nonlinear regression models is a potential extension that could lead to more
flexible and adaptive models capable of accounting for nonlinear relationships between variables. Nonlinear
regression models can incorporate contextual variables such as geographic location and socioeconomic status
by using a hierarchical modeling approach. This provides a more complete picture of the factors influencing
population dynamics. In addition, advances in Bayesian statistics can account for variability and uncertainty in
model parameters, making population models more reliable and resilient. Overall, upcoming modeling improve-
ments could provide scientists with powerful tools to model population dynamics more accurately and better
inform policy decisions.

6 Conclusion

This paper has examined the Von Bertalanffy model and the dynamic carrying capacity model based on
Canada population data compared to the exponential model. By using the ~nls function in R language, the
unknown parameters in the models were found out. The mathematical theory of how the ~nls function works
was explained. For the purpose of analyzing if the models are proper for the data, two comparison methods
were used to test the models which were residual plots and the AIC method. From the results, three models
are all fitted well to the data. However, the dynamic carrying model is the most suitable model for the Canada
population growth to some extent. In the future, this model could be used as an actuarial life contingency model
to calculate different actuarial quantities. This paper showed the suitability of different models to different fields,
gave people more possibilities in modeling work.
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8 Appendix

R codes for fitting the exponential model to the Canada population, finding the unknown parameters, AIC, and

residual plots of the model:
setwd("~/downloads")
Data = readxl::read_xlIsx("Canada.data.xlsx")
Data = cbind(Time = rownames(Data), Data)
Data$Time = as.numeric(Data$Time)

model1 <- nls(Population ~ a * exp(b * Year), data = Data, start = c(a = 1, b = 0.01), control =
nis.control(maxiter = 104))

plot(Data$Year, Data$Population, pch = 1, xlab = "Year", ylab = "Population")

lines(Data$Year, predict(model1), col = "red")

summary(model1)

residuals <- resid(model1)

plot(fitted(model1), residuals, main = "Residual Plot", xlab = "Predicted Values", ylab = "Residuals")
AlIC(modell)

R codes for fitting the Von Bertalanffy model and dynamic carrying capacity model to the Canada population,

finding the unknown parameters, AIC, and residual plots of the model are the following:
library('minpack.Im’)

data_used <- read.csv('Canada.csv')

10 = data_used[,1]

t = data_used[,1]-data_used[1,1]+1

p = data_used[,2]

vb_model <- nIsLM(p ~ (a/b +( p[1](1-gamma) - a/b )* exp(-b*(1-gamma)*t) )A(1/(1-gamma)),
start = list(a = 2, b=3, gamma=0.01),control=nls.Im.control(maxiter=1024, ftol=1e-6, maxfev=1e6))
plot(t0, p, pch = 1, xlab = "Year", ylab = "Population")
lines(t0, predict(vb_model), col = "red")
summary(vb_model)
AIC(vb_model)
residuals <- resid(vb_model)
plot(fitted(vb_model), residuals, main = "Residual Plot", xlab = "Predicted Values", ylab = "Residuals")

dcc_model <- nIsLM(p ~ C*exp(a*t*(log(k)-log(t)+1)), start = list(a = 5, k=2,C =0.5),control=nls.Im.control(maxiter=1024, ftol=1e-6, maxfev=1e6))

plot(t0, p, pch = 1, xlab = "Year", ylab = "Population")

lines(t0, predict(dcc_model), col = "red")

summary(dcc_model)

AIC(dcc_model)

residuals <- resid(dcc_model)

plot(fitted(dcc_model), residuals, main = "Residual Plot", xlab = "Predicted Values", ylab = "Residuals")
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