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Introduction

Objectives:

1. Develop a path following MPC based on spatial kinematic model of skid-steered mobile robot.

2.  Create a framework for development data-driven model predictive control for mobile robots.

This work was inspired by:

G. Huskic, S. Buck, M. Herrb, S. Lacroix, and A. Zell, “High-speed path " following control of skid-steered
vehicles,” The International Journal of Robotics Research, vol. 38, no. 9, pp. 1124-1148, 2019.

Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide Scara-muzza, and Markus Ryll.
Real-time neural mpc: Deep learning model predictive control for quadrotors and agile robotic platforms.
IEEE Robotics and Automation Letters, pages 1-8, 2023.




Literature review: MPC for mobile robots

Used in control of many types of autonomous vehicles.
Relies on vehicles motion model.

Allows definition of system or obstacle related constraints.
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Used in path following control using spatial motion models.




SSMR Kinematics\

x SSMR model in global coordinates

Y| = |sin —z;0gcosf

X cos xrcpsind [v]
9 0 1

SSMR longitudinal/angular velocity to wheel
speed mapping
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Path curvature:

SSMR Spatial Kinematics

Spatial conversion scheme:

i = [ B, 5] m — B, =l

Yo = [—sinf, cosb,] lﬂ — c(s)sze,

SSMR spatial state-space model

Ze = vz 080 + xrcpwsinb, — (1 — c(s)ye),
Ye = Uy c080, — x1cpWsSin b, — c(s)sz,,

0. = w — c(s)s.
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Literature review: data-driven MPC

Data-driven MPC approaches: parameter inference, residual learning, full dynamics learning.
Tim Salzmann et. al. propose a method for using large neural networks in real-time:
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Methodology

The project involved several stages:

First stage: path following MPC implementation using ACADO optimization toolkit and
MATLAB environment.

First stage has been published in a conference.
Second stage: development of framework for design for time-domain and path following
MPC with data-driven component using Python environment, ACADOS optimization toolkit,

and Pytorch-Casadi integration.

All testing was done using WeBots simulation environment. Version R2020b for MATLAB,
modified R2023a for Python.




Path following MPC in MATLAB

Control Objective: navigate a predefined path and avoid obstacles.
System state: T = (xe,ye,ee,vl,vr,s)
Control inputs:u = (ay, ar)

System model: ', = v, cos @, + x7crw sin B — $(1 — c(s)ye),
Ye = Vg cOsl, — xrcpwsin b, — c(s)sz.,
O = w — c(s)s,
U = a,
Up = Qg

$=wv,co80, + xrrcrwsinb,.




MPC design

Obstacle avoidance terms:

ao = 6_((ye_yeobs )2+(m6_weobs )2—(Tobs+7'ca7")2) 9

. _ —((ye+track_width/2 Q—Tg
arLB e ((y / ) bs),

—((ye—track_width/2)?—r2, )

aoB = e

Obstacle Cost term




MPC design

Optimal control problem:

h 2(.’176, Ye, 963 v, Uy, Ug, GO, (IiB, (lOB),
hrep = (0,0,0,0,0,v,,.,,0,0,0).
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Results: Simulation in WeBots
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https://docs.google.com/file/d/10_NlTFeeU76pppj-L7w69DkZc087W5sJ/preview
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Results: ve

Velocity profile, 1 ms target, 3.5s horizon
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Results: errors
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Results: computation times
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Results: comparison

aaaaaaaaaaaa th 1 m/s velocity target and varying horizons

Target speed
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Average error
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Time-domain MPC in Python

Control Objective: reach a reference point.
Control inputs:u = (ay, ar)
System model:

T =v,co80 + xrcpwsin b,
1 = vz co80 — xyopwsin b,
0 =w,

’l)l = ay,

V=l




Time-domain MPC in Python

Optimal Control Problem:

b= 0500 By Gty 85 )

h-ref = (-’L'refa Yrefs 0,0,0,0, 0)
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Time-domain MPC in Python: testing

closed-loop simulation
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Data-driven Time-domain MPC

Control Objective: reach a reference point.
Control inputs:u = (ay, ar)
System model: i = fyn(z,u), approximation of a two-layer neural network




Data-driven Time-domain MPC

OCP: same as in time-domain MPC, but with learned state-space model.

Dataset: mix of simulation data and artificially generated data from nominal equations.
Model training:

Training Loss and Accuracy on Dataset
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Data-driven Time-domain MPC.: testing

closed-loop simulation
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Path following MPC in Python

Control Objective: navigate a predefined path and avoid borders.

System model: same as in MATLAB implementation.
OCP changed:

h Z(mm Yes 0(37 Uy, Ur, S, Ay, a”l')?
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Path following MPC in Python:testing




Data-driven Path following MPC

Control Objective: navigate a predefined path and avoid borders.
System model: & = I f(z,u) + (1 — ) fun (, ),
OCP: unchanged from python version of path following MPC




Data-driven Path following MPC
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Conclusion

Project results:
1. A path following MPC based on spatial kinematic model of SSMR with static obstacle avoidance.
2. Aframework for development of data-driven MPC of SSMR.

3.  Several Python implementations of MPC for SSMR.




2.

Future work

Add path following contouring control variant.

Develop an effective data-driven MPC of SSMR.
Experiment using more advanced simulation and real robotic platforms.




