Model Predictive Control of
Skid-Steered Mobile Robot with

Deep Learning System Dynamics

Zhan Dorbetkhany, Matteo Rubagotti, Almas Shintemirov

Outline

Introduction.
Literature.
Methodology.

MPC designs and testing.

ok wnN e

Conclusion.

C
O
4+

O

>
S

O

—
+
£

Introduction

Objectives:

1. Develop a path following MPC based on spatial kinematic model of skid-steered mobile robot.

2. Create a framework for development data-driven model predictive control for mobile robots.

This work was inspired by:

G. Huskic, S. Buck, M. Herrb, S. Lacroix, and A. Zell, “High-speed path " following control of skid-steered
vehicles,” The International Journal of Robotics Research, vol. 38, no. 9, pp. 1124-1148, 2019.

Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide Scara-muzza, and Markus Ryll.
Real-time neural mpc: Deep learning model predictive control for quadrotors and agile robotic platforms.
IEEE Robotics and Automation Letters, pages 1-8, 2023.

Literature review: MPC for mobile robots

Used in control of many types of autonomous vehicles.
Relies on vehicles motion model.

Allows definition of system or obstacle related constraints.

P wnNnpe

Used in path following control using spatial motion models.

SSMR Kinematics\

x SSMR model in global coordinates

Y| = |sin —z;0gcosf

X cos xrcpsind [v]
9 0 1

SSMR longitudinal/angular velocity to wheel
speed mapping

_ MYICR, VI — CrYICR,Ur o QU — Q- Uy
x — ’ - :
YICR, —YICR,

YICR, — YICR;

Path curvature:

SSMR Spatial Kinematics

Spatial conversion scheme:

i = [B, 5] m — B, =l

Yo = [—sinf, cosb,] lﬂ — c(s)sze,

SSMR spatial state-space model

Ze = vz 080 + xrcpwsinb, — (1 — c(s)ye),
Ye = Uy c080, — x1cpWsSin b, — c(s)sz,,

0. = w — c(s)s.

(5] = 't (8)y () — Y (s)z’s (s)

Literature review: data-driven MPC

Data-driven MPC approaches: parameter inference, residual learning, full dynamics learning.
Tim Salzmann et. al. propose a method for using large neural networks in real-time:

xi

,out
RTN-MPC QP Preperation Phase RTN-MPC DD Preperation Phase

Linearize consitenc Linearize the learned
y 5

R earned Dyr
CONSISTENEY condition: 6 Learned Dyn. 4y namics: £, 3
Coa Linearize cost function,
: approx. Hessian: q, xr, H - X — xi
5 7 i % ~l 7 k
S Linearize continuity F *() S &
Continuity conditions: A, B f, J fD X, u) =~ fD _’_ JD,’C i
' u— 'llk

T

X'k=0
PO ;
q, r, H, A, B, G RNEITR IR Response 1]x xk Hz
e » T 5 p Dk
Solving Solve the QP u-—u,

I
X Xk

_ qqt
u—u,

Methodology

The project involved several stages:

First stage: path following MPC implementation using ACADO optimization toolkit and
MATLAB environment.

First stage has been published in a conference.
Second stage: development of framework for design for time-domain and path following
MPC with data-driven component using Python environment, ACADOS optimization toolkit,

and Pytorch-Casadi integration.

All testing was done using WeBots simulation environment. Version R2020b for MATLAB,
modified R2023a for Python.

Path following MPC in MATLAB

Control Objective: navigate a predefined path and avoid obstacles.
System state: T = (xe,ye,ee,vl,vr,s)
Control inputs:u = (ay, ar)

System model: ', = v, cos @, + x7crw sin B — $(1 — c(s)ye),
Ye = Vg cOsl, — xrcpwsin b, — c(s)sz.,
O = w — c(s)s,
U = a,
Up = Qg

$=wv,co80, + xrrcrwsinb,.

MPC design

Obstacle avoidance terms:

ao = 6_((ye_yeobs)2+(m6_weobs)2—(Tobs+7'ca7")2) 9

. _ —((ye+track_width/2 Q—Tg
arLB e ((y /) bs),

—((ye—track_width/2)?—r2,)

aoB = e

Obstacle Cost term

MPC design

Optimal control problem:

h 2(.’176, Ye, 963 v, Uy, Ug, GO, (IiB, (lOB),
hrep = (0,0,0,0,0,v,,.,,0,0,0).

) 1 tn
in 5 [() = hres (M)
to
gk b=l
rnm S (l)l < ?JITL(I,.Lﬂ rrLLrL S ?) < ?}rfL(.L.L

a'rn'i'n S al S a"n’L(L.’L'} arnin S a"l" S a’"LCL.’L‘?

Results: Simulation in WeBots

22NN Ss—
- ==
Favnanan e
\\\\\\ —
- =
- = \\i

https://docs.google.com/file/d/10_NlTFeeU76pppj-L7w69DkZc087W5sJ/preview

-30
20

Results: ve

Velocity profile, 1 ms target, 3.5s horizon

-15 10 5 0 5 10 15 20 25 30

profiles

Velocity profile, 2 ms target, 3.5s horizon

Velocity profile, 3 m/s target, 3.5s horizon

25

25

N

o

Error(m)

05

Results: errors

1 m/s target

3000
iteration

4000

5000

6000

25

o

Error(m)

05

o

2 m/s target
|
\
|
||
I “
||
|l
|
oo/) AV — i
1000 1500 2000 2500
iteration

3000

25

N

o

Error(m)

05

3 m/s target

\ MM Mo n N
L ¥y W A A V)

1000
iteration

1500

2000

Results: computation times

1 m/s target
60 T T T

2 m/s target 3 m/s target

T T 60 T

4

S
S
=

40

30 1 301

10 10 10 |
! .J.h.“n.uhm.. 1“\ T 1M Ladl Mll i e~ A AL J‘MWWMWWM

0 L
0 1000 2000 3000 4000 5000 6000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000
iteration iteration iteration

computation time(ms)

[N
o

computation time(ms)
8
.
computation time(ms)

Results: comparison

aaaaaaaaaaaa th 1 m/s velocity target and varying horizons

Target speed

1m/s

2m/s

3m/s

Average error

0.0155m

0.0255m

0.0501

Average computation time

Time-domain MPC in Python

Control Objective: reach a reference point.
Control inputs:u = (ay, ar)
System model:

T =v,co80 + xrcpwsin b,
1 = vz co80 — xyopwsin b,
0 =w,

’l)l = ay,

V=l

Time-domain MPC in Python

Optimal Control Problem:

b= 0500 By Gty 85)

h-ref = (-’L'refa Yrefs 0,0,0,0, 0)

], e :
min 5 / 1R(T) = Brer ()13
t

L]

s = flwym),

Umin S (%) S Umazxs Umin S Uy S Umaz

Umin < 01 < Gmazs Omin < Qr < Gmag,

Time-domain MPC in Python: testing

closed-loop simulation

1.0

0.8

0.6

0.4

velocity in [m/s]

0.2

0.0

Data-driven Time-domain MPC

Control Objective: reach a reference point.
Control inputs:u = (ay, ar)
System model: i = fyn(z,u), approximation of a two-layer neural network

Data-driven Time-domain MPC

OCP: same as in time-domain MPC, but with learned state-space model.

Dataset: mix of simulation data and artificially generated data from nominal equations.
Model training:

Training Loss and Accuracy on Dataset

0.075

0.070

0.065

=]
=)
=)
o

Loss/Accuracy

o
=
@
vl

0.050

0.045

~—— traihloss
—— val_loss

Data-driven Time-domain MPC.: testing

closed-loop simulation

ylm]
w IS
° o o o
N S > @
locity in [m/s]

0.0

Path following MPC in Python

Control Objective: navigate a predefined path and avoid borders.

System model: same as in MATLAB implementation.
OCP changed:

h Z(mm Yes 0(37 Uy, Ur, S, Ay, a”l')?

h1~(3f - (07 O) Oy 03 O’ Sr(ff) O: O) Sircf — Scurr(:nt + ifljs'vsrcf’ Z e [17 N]
. 1 2
min 7 [|A(T) = hares (7))
to

8k, = iz,),
Urnin S Uy S Urnaax, Urnin S Uy S Urnaaz s

Amin S a S Amaz, (min S Q. S Amazs

Yemin S Ye S Yemaz

Path following MPC in Python:testing

Data-driven Path following MPC

Control Objective: navigate a predefined path and avoid borders.
System model: & = I f(z,u) + (1 —) fun (,),
OCP: unchanged from python version of path following MPC

Data-driven Path following MPC

—

—_—
;%é

Conclusion

Project results:
1. A path following MPC based on spatial kinematic model of SSMR with static obstacle avoidance.
2. Aframework for development of data-driven MPC of SSMR.

3. Several Python implementations of MPC for SSMR.

2.

Future work

Add path following contouring control variant.

Develop an effective data-driven MPC of SSMR.
Experiment using more advanced simulation and real robotic platforms.

