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Despite significant advances in imaging, frame-based cameras still have a number 

of shortcomings.

Latency & Motion Blur Dynamic Range
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Event-based Imaging

Fig.1 Comparison between conventional and 

event based camera (Adapted from [2])

❖Bioinspired sensors that measures only 

brightness changes in the scene

❖ Low-latency (~1 µs)

❖No motion blur

Fig.2 Difference between outputs of cameras. 

(Retrieved from [4])

❖Ultra-low power (mW)

❖High dynamic range >120 db
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Characteristics Frame-based 

camera

Event camera

Update rate syncronous aynschronous

Latensy yes ≈ 0

Dynamic range 53 db >120 db

Motion blur exist absent

Temporal 

resolution

low high
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Operating Principles of Event Cameras
❖Similar to the human retina work;

❖ The light first hits the photoreceptor of 

the pixel;

❖Each peak event is then processed in 

a bipolar cell;

❖ The signal voltage values are 

compared by the comparators in the 

third step. 

Figure 2-2: Pixel technical diagram of DAVIS event-based sensor. 

Adapted from [19]



Operating Principles of Event Cameras

Fig.3 Graphical representation
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𝑝 𝑥, 𝑦, 𝑡 = ቊ
𝑂𝑁 𝑖𝑓 𝐼 𝑥, 𝑦, 𝑡 − 𝑇 𝑥, 𝑦 > 0

𝑂𝐹𝐹 𝑖𝑓 𝐼 𝑥, 𝑦, 𝑡 − 𝑇 𝑥, 𝑦 < 0



Output Data Format

● Pixel location - x and y;

● p – ON (1) and OFF (0) events;

● t - timestamp in microseconds
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Grayscale transformImage–like visualization 

with accumulation time



In the article (Li et.al, 2020):

❖ constructed a robotic grasping dataset named Event-Grasping dataset ;

❖ developed a deep neural network for grasping detection that considers the angle 

learning problem as classification instead of regression.

Paper (Taunyazov et al, 2020):

❖ this work contributes an event-driven visual-tactile perception system;

❖ authors developed a novel biologically-inspired tactile sensor NewTouch;

❖ visual-tactile system (using the NeuTouch and Prophesee event camera).

Authors in the article (Mueggler et.al, 2015):

❖ proposes a method to predict collisions with objects thrown at a quadrotor using a 

pair of event-based sensors;

❖ demonstrated that method allows a quadrotor initiating evasive maneuvers early.

Event-based Imaging for Robotics
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In the article (Vidal et.al, 2020):

❖ demonstrated the autonomous quadrotor flight using an event camera for state 

estimation, unlocking flight scenarios that were not reachable with traditional visual-

inertial odometry;

❖ the first state estimation pipeline that fuses three sensors.

Paper (Gallego et al, 2020):

❖ presented an approach to track the 6-DOF pose of an arbitrarily moving event 

camera from an existing photometric depth map in natural scenes;

❖ compared the 6-DOF motion of the event camera with standard cameras.

Authors in the article (Falanga et.al, 2015):

❖ study the effects that perception latency has on the maximum speed a robot can 

reach to safely navigate through an unknown cluttered environment;

❖ showed the maximum latency that the robot can tolerate to guarantee safety.



The dataset contains more
than 14 hours recordings of a 1 

megapixel event camera and the 
it consist 7 classes: pedestrians, 

two wheelers, cars, trucks, buses, 
traffic signs, traffic lights

Fig.5 Prophesee architecture for object detection. 

Retrieved from [10].

Perot et.al introduced of a novel architecture for 
event-based object detection. Authors showed that
directly predicting the object locations is more 
efficient and more accurate than applying a detector 
on the gray-level images.
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Face and Facial Landmarks Detection

Fig.6 Face and facial landmarks detection
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In the article (Barua et.al, 2016):

❖ limited datasets for face detection;

❖ used RGB images dataset;

❖ reconstructed frame-based images to event-based output;

❖ apply face detection on reconstructed gray-scale images.

Face detection using eye blink:

Papers (Lenz et al, 2020) and (Cian Ryan et.al, 2020):

❖ algorithm for eye blink detection;

❖ using the area of eye blink detection, probabilistic places a bounding box for the 

face.

Papers [20],[21] identify problems with absent of large dataset of event-streams:

❖ propose the transformation of frame-based dataset images into images similar to 

event-based
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Thesis Objectives
❖ Created and published the first rich and structured dataset of 689 minutes of machine 

learning-transformed event streams, captured at different lighting conditions, from 

different viewpoints and distances, with multiple people in the scene, and a greater 

number (73) and diversity of participants;

❖ For the first time, 12 research-based DFES models were created and trained for face 

and landmark detection that use outputs based directly on events;

❖ Experiments and comparative analysis of DFES models.

13



Faces in Event Streams (FES) Dataset
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Faces in Event Streams (FES) Dataset:

❖ Two major parts: controlled (laboratory) and 

uncontrolled (wild);

❖ 73 subjects: 31 female and 42 male participants;

❖ 59 experiments for each subject:

• under bright and dim lighting conditions;

• 50, 150, and 400 cm distances from the camera;

• head postures and movements: left-right, up-down, 

circular movements of the head and counting;

• walking: zigzag, walking toward the camera, and 

sideways;

• Uncontrolled data were collected in indoor 

environments

FES dataset

Duration 693 min

Participants 73

Resolution 480 x 360

Camera Prophese 

PPS3MVCD

Environment controlled, 

wild

Bounding box ✓

Facial 

landmarks

5 points
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Dataset Annotation and Visualization:

❖ An image-like visualization of event 

streams is obtained by accumulating 

events over a short period of time (the 

accumulation time);

❖ Event streams were rendered by 
defining ON events as white pixels, OFF 
events as black pixels, and background 
as gray.

❖ Grayscale images obtained using 

Metavision software;

❖ The annotation was done by ISSAI 

laboratory moderators using CVAT 

annotation tool;
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Fig. 3 Screenshots of the free CVAT toolkit (https://cvat.ai).



Deep Learning Model Architecture

❖ Event stream is represented as a 

sequence of events: 

E={e = (xi, yi, pi, ti)}

❖ Sequence of events is transformed into a 

tensor map Hk using histogram 

preprocessing method;

❖ qk = the encoded information from the 

past stored as an internal state;

❖ The original feature extractor in our model 

was changed to the ResNet-18, ResNet-

34, and ResNet-50 variants.
Fig. 8 Our model architecture. Adapted from [10].
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Methodology of experiments
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❖ Determination of the Optimal Accumulation Time

Training models on a FES dataset with different 

accumulation times for choosing the optimal 

accumulation time

❖ Training models for bounding box detection.

The code for determining the architecture of the model 

was written using the PyTorch tool

❖ Training models for bounding box and facial 

landmarks detection

Adapting the code for adding facial landmarks 

detection.

❖ Inference Time and Real-time Detection 

Experiment Figure 9. Data visualization of event streams at different accumulation 

times: a)200 𝜇s, b) 5 ms, c) 33 ms, and d) 100 ms.



mAP50 results for Face Bounding Box Detection
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mAP50 Laboratory Testing Set mAP_50 Wild Testing Set mAP_50 Overall Testing Set

Model

Feature 

extractor Delta_t Large Medium Small Overall Large Medium Small Overall Large Medium Small Overall

DFESBB Original 33 ms 0.375 0.4 0.328 0.353 0.57 0.13 0.06 0.1 0.375 0.4 0.328 0.353

DFESBB Original 50 ms 0.99 0.978 0.97 0.978 0.919 0.273 0.138 0.146 0.99 0.976 0.8 0.93

DFESBB Original 100 ms 0.989 0.973 0.964 0.977 0.8 0.231 0.133 0.15 0.989 0.964 0.8 0.927

DFESBB ResNet-18 50 ms 0.99 0.974 0.97 0.978 0.83 0.3 0.149 0.165 0.99 0.97 0.827 0.936

DFESBB ResNet-34 50 ms 0.989 0.962 0.952 0.965 0.794 0.436 0.17 0.182 0.99 0.969 0.8 0.931

DFESBB ResNet-50 50 ms 0.988 0.964 0.9 0.957 0.73 0.12 0.05 0.1 0.988 0.96 0.715 0.884

DFESFL+BB Original 33 ms 0.371 0.397 0.38 0.37 0.599 0.443 0.26 0.252 0.369 0.393 0.325 0.347

DFESFL+BB Original 50 ms 0.989 0.978 0.871 0.973 0.728 0.782 0.482 0.528 0.989 0.97 0.7 0.918

DFESFL+BB Original 100 ms 0.989 0.976 0.7 0.937 0.64 0.7 0.645 0.653 0.989 0.949 0.575 0.868

DFESFL+BB ResNet-18 50 ms 0.99 0.969 0.8 0.96 0.72 0.75 0.47 0.5 0.99 0.96 0.7 0.9

DFESFL+BB ResNet-34 50 ms 0.99 0.978 0.869 0.966 0.789 0.75 0.498 0.54 0.99 0.97 0.72 0.912

DFESFL+BB ResNet-50 50 ms 0.985 0.928 0.75 0.925 0.184 0.282 0.124 0.138 0.984 0.873 0.52 0.8



MNE results for Facial Landmarks Detection
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NME Laboratory Testing Set NME Wild Testing Set NME Overall Testing Set

Model Feature extractor Delta_t Large Medium Small Overall Large Medium Small Overall Large Medium Small Overall

DFESFL+BB Original 33 ms 0.335 0.298 0.577 0.394 16.69 15 15.87 15.74 0.358 1.5 5.387 2.52

DFESFL+BB Original 50 ms 0.398 0.342 0.6 0.44 16.09 12.01 13.8 13.5 0.432 1.44 4.85 2.338

DFESFL+BB Original 100 ms 0.57 0.45 0.83 0.61 9.965 14.23 14.72 14.73 0.6 1.35 3.74 1.99

DFESFL+BB ResNet-18 50 ms 0.414 0.373 1.276 0.656 16.8 12.7 15.9 15.3 0.45 1.615 5.9 2.786

DFESFL+BB ResNet-34 50 ms 0.383 0.325 0.6 0.42 17.9 12.5 14 13.7 0.414 1.638 4.79 2.365

DFESFL+BB ResNet-50 50 ms 0.84 1.98 3.03 1.8 16.54 14.23 15.46 15.32 0.92 3.281 6.98 3.65



Thesis Timeline
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