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Abstract: Dimensional accuracy and geometric characteristics of the manufactured parts bear sig-
nificant importance in product assembly. In Rapid Investment Casting, these characteristics can
be affected by the printing parameters of the Additive Manufacturing method used in the pattern
production process. Stereolithography is one of the important AM techniques mostly exploited in RIC
due to its accuracy, smooth surface, and precision. However, the effect of SLA printing parameters on
the dimensional accuracy and geometric characteristics have not been studied thoroughly. This study
considers an experimental approach to study the effect of SLA printing parameters such as layer
thickness, build angle, support structure density, and support touchpoint size on the dimensional
accuracy and geometrical characteristics of the Castable Wax printed patterns and the Al cast parts.
Taguchi’s Design of Experiment was used to define the number of experimental runs. SolidCast
simulation was used to design the orientation of casting feeder to achieve directional solidification.
Coordinate Measuring Machine measurements of deviations in the printed and cast parts were
analyzed using the “Smaller-the-better” scheme in the two-step optimization method of Taguchi
experiments. Build angle and Layer thickness were identified to be the first and the second most
impactful parameters, respectively, affecting both the dimensional and geometric accuracy of Castable
Wax patterns and Al cast parts, with optimal values of 0 deg and 0.25 µm, respectively. Both printed
and cast parts had twice as many deviations in geometry as in dimensions. The sphere roundness and
angularity were found to be the most and least accurate geometric characteristics, respectively. The
dimensions in the Z direction were more accurate than in the X-Y directions, showing the smallest
size deviations for height measurements and large deviations in the length, width, and diameter of
the hole.

Keywords: rapid investment casting; stereolithography; additive manufacturing; dimensional
accuracy

1. Introduction

Investment casting (IC), also known as lost wax casting, is a near net shape and
high-quality metal part manufacturing process. Precision and ability to cast high com-
plexity geometries for mass production makes IC preferable over other casting methods
like sand casting, in industries like medicine, automotive, aerospace, military, firearm,
power generation, energy, gas and oil, food, jewelry, and custom commercial needs [1].
Conventionally, the IC process consists of four main stages: pattern making, shell/mold
building, metal pouring, and shell removal from cast parts [2]. Traditional IC wax patterns
are made using metal molds–prepared hard tooling. The advances in Additive Manufac-
turing (AM) technologies allow to integrate the 3D printing methods into the IC pattern
making stage. Integration of AM into the IC process is called rapid investment casting
(RIC). If conventional IC pattern production costs around USD 1415–70,752 and may take
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2–16 weeks including the metal mold production for a new pattern, RIC can reduce the
production cost and lead time by 60% and 89% respectively, due to the elimination of
metal mold fabrication process [3,4]. Prakash et al. [5] compared the life cycle analysis
of conventional IC and RIC production of aluminum casts. Their study showed that RIC
resulted in a reduction of production time, cost, energy consumption, and carbon emissions
by 19%, 93%, 70%, and 71%, respectively.

AM techniques can be applied in the RIC process through direct and indirect ap-
proaches. Direct RIC implies printing of the wax pattern using a 3D printer, while in the
indirect RIC the wax pattern is cast using 3D printed molds [6]. For complex geometry
pattern production, direct RIC is preferable over the indirect one, as in the indirect approach
pattern mold can be damaged [7]. Experimental comparison of conventional IC with direct
and indirect RIC performed by Chua et al. [8] showed that for small batch size production
direct RIC is more efficient in terms of lead time and total cost of production.

IC is also known as a precise casting method, where dimensional accuracy of the
final cast product is of importance. In the RIC process, dimensional accuracy of the cast
parts can be affected by the printing parameters of the 3D printing technology chosen for
the pattern production. In this study, Stereolithography (SLA) was chosen as the pattern
printing method due to its accuracy and precision. Stereolithography (SLA) was the first
technique used in the first rapid investment casting (RIC) attempts [9]. SLA provides better
accuracy and precision of the printed parts over other printing technologies, such as Fused
Deposition Modeling (FDM). However, dimensional accuracy is dependent upon different
printing parameters. Although SLA is widely used 3D printing technology, there are less
studies about the effect of SLA printing parameters on dimensional accuracy than, for
example, about FDM/FFF [2,10].

The main concern about the use of SLA in RIC comes from high thermal expansion of
photopolymers (resins) used in printing, which causes the shell cracking during dewaxing
heating. Therefore, during photopolymerization of liquid resin, thicker samples will result
in more volume expansion due to high thermal expansion [11,12]. This volumetric change
during photopolymerization causes dimensional variations of the part [13]. UV treatment
as a post-processing method might be needed in case of poor photopolymerization. Thus,
controlled photopolymerization is of great importance. The photopolymerization process is
mainly dependent on the laser power and laser exposure time [14,15]. Some studies [6,16]
showed the importance of these factors for the dimensional accuracy of the part. Laser
exposure time can be managed by the printing speed. Depth of light polymerization for
each resin might differ due to its composition.

In addition, built orientation and positioning on the build platform were studied by
Unkovskiy et al. [17]. In their study, parts built at 45◦ build angle and placed far from
the build platform edges provided good dimensional accuracy. Similar results with the
highest precision and good surface finish of the part when building at 45◦ build angle
were obtained in another study [18]. In both studies, 0◦, 45◦, and 90◦ build directions
were considered. Study investigating the effect of several factors, including resin type,
printing resolution, positioning, alignment, target structure, and the type and number
of support structures on the part’s surface roughness, revealed that alignment on the
printing bed is less influential than other studied parameters [10]. They also reported other
relevant parameters such as exposure time, speed of build platform movement from the
tank, and tank temperature, which might affect the part surface finish and accuracy. They
have stated that increased printing speed results in poor surface finish, which might be
explained with the poor polymerization due to less exposure time at higher printing speed.
Alharbi et al. [19] studied different build angles along with support types and found that
among nine build angles tested (90◦, 120◦, 135◦, 150◦, 180◦, 210◦, 225◦, 240◦, and 270◦)
the 120◦ build angle showed the minimum dimensional deviations when printed with
both thin and thick support types. Thin support structures resulted in better dimensional
accuracy [20]. The most accurate surgical templates were produced at 0◦ and 45◦ build
angles and the least accurate at 90◦ (among 0◦, 30◦, 45◦, 60◦, and 90◦) in the study by
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Rubayo et al. [21]. In terms of less printing time, 0◦ was the most effective and 90◦ was
the least, while in terms of material consumption 90◦ was better than 0◦. A study about
the effect of build angles and layer thickness on fit and internal gap of printed dental
prosthesis by Park et al. [16] reported that 45◦ and 60◦ angles result in smaller internal gap
and marginal discrepancy, and therefore provide the most dimensionally accurate results.

Resolution along the z- axis is defined by the layer thickness [12]. Layer thickness is one
of the important parameters in all additive manufacturing techniques that affects the surface
roughness and accuracy. Favero et al. [22] performed a study with three different layer
heights: 25, 50, and 100 µm, and observed more deviations in parts printed with 25 µm layer
thickness, while the least deviations were accounted for at 100 µm. Despite that, another
study concerning the same layer thickness values for SLA printed casts from gray and cast
resins, concluded that there are no statistically significant differences in accuracy among
them, and only printing time doubles with decreased layer height [23,24]. Similar results
were obtained by Loflin et al. [25] when assessing the printed orthodontic models and
100 µm layer thickness was recommended by them due to reduced printing time. However,
100 µm layer thickness of SLA printed parts produced the lowest printing accuracy in the
study by Zhang et al. [26] who compared 25, 50, and 100 µm layer thicknesses in DLP
(Digital Light Processing) and SLA printers. Park et al. [16] investigated the fit and internal
gap of SLA printed resin dental prosthesis and found 100 µm layer thickness provided the
best fit and 50 µm layer thickness offered smaller internal gap among studied 25, 50, and
100 µm layer thicknesses.

Dimensional accuracy of RIC products is an essential characteristic for prosthetic
dentistry [27]. Comparison between the copings fabricated by milling and RIC with
patterns printed by PolyJet and SLA printing methods were made by [28]. The accuracy of
the parts was assessed by the marginal gap measurement between the produced copings
and the implants. SLA showed a maximum of 0.128 mm and minimum of 0.042 mm
deviation from the coping design. Another comparison of SLA printed patterns and
the milled patterns used in the IC for post and core production was performed by [29].
Compared to the milled resin patterns SLA printed patterns showed dimensional stability
of patterns and the cast parts. However, both studies only compare the ability of SLA
applied RIC with conventional methods of production, but do not study the effect of SLA
on dimensional accuracy of RIC products. Dimensional accuracy of the RIC-produced
parts were studied in [7,30,31]. In these studies, FDM printing technology was applied
as the pattern production method. Application of SLA printing technology in RIC is not
properly studied.

Table 1 presents the summary of literature review findings.

Table 1. Summary of literature review.

Source AM Method Study Focus Findings

Lee et al. [11]
Mucci et al. [13]
Islam et al. [14]

SLA The effect of Laser exposure time on the
dimensional accuracy of printed part

Increased printing speed leads to less
laser exposure time and causes poor
polymerization, resulting in poor
accuracy and surface finish

Arnold et al. [10]
Unkovskiy et al. [17] SLA

The effect of Printing
direction/positioning on the build
platform on the dimensional accuracy of
printed part

No significant effect on the
dimensional accuracy
Recommended to build the part far
from the platform edges

Arnold et al. [10]
Park et al. [16]
Unkovskiy et al. [17]
Hada et al. [18]
Alharbi et al. [19]
McCarty et al. [20]
Rubayo et al. [21]

SLA The effect of Build angle on the
dimensional accuracy of printed part

45◦ gives better dimensional accuracy;
0◦ consumes less time but more
material, and vice versa for 90◦
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Table 1. Cont.

Source AM Method Study Focus Findings

Piedra-Cascón et al. [12]
Park et al. [16]
Favero et al. [22]
Dias Resende et al. [24]
Loflin et al. [25]
Zhang et al. [26]

SLA The effect of Layer thickness on the
dimensional accuracy of printed part

Small difference between 25, 50, and
100 µm layer thicknesses in terms of
dimensional accuracy;
100 µm was mostly recommended due
to faster printing time

Khaledi et al. [28]
Piangsuk et al. [29] SLA The dimensional accuracy of milled and

RIC parts

Compared the SLA assisted RIC
copings with milled copings. Parts
produced by using of SLA showed
dimensional stability of patterns and
cast parts over milled parts.

Cheng et al. [30]
Kumar et al. [31]
Kumar et al. [7]

FDM The dimensional accuracy of RIC parts

Post processing of FDM printed
patterns does not significantly affect the
dimensional accuracy of cast parts. 90◦

orientation in FDM is best for
dimensional accuracy of cast parts.

All these studies focused on the effect of printing parameters on the printed parts
only, but few works analyze the relationship between the SLA printing parameters and
dimensional accuracy of cast parts. In addition, application of SLA printing technology
in RIC is mostly studied for the cost effectiveness of the process [2,32]. There is a lack of
studies focusing on the dimensional and geometric accuracy of the RIC parts produced
with the use of SLA printed patterns using benchmark models. In this research, aluminum
cast parts and SLA printed wax patterns are investigated for dimensional accuracy and
geometric characteristics by varying the SLA printing parameters. In addition, the critical
parameters and optimum values for printing parameters were identified to achieve better
dimensional and geometric accuracies.

2. Materials and Methods

This section describes the methodology used, the design of the benchmark, DOE,
numerical simulations, and data analysis that were done in this study.

2.1. Methodology

This study consists of eight stages as shown in Figure 1. Firstly, the benchmark model
of pattern was designed. Then, Taguchi’s Design of Experiments (DOE) was applied to set
the parameter values for experimental run. Following this DOE, numerical simulation of
solidification was performed in SolidCast to verify the casting assembly design. Patterns
were printed and measured. Then, patterns were cast and cast parts were measured. In
the last steps, measurement results were analyzed to identify the critical parameter and
optimum set of values.

2.1.1. Benchmark Model Design

Artifacts are benchmark models to test the limitations or capabilities of certain tech-
nology. Several benchmark models [27,33–38] were developed in the past to study different
AM technologies for the ability to print various features. The benchmark model in [38]
has the necessary features to study flatness, parallelism, perpendicularity, concentricity of
cylindrical surfaces, angularity, thickness, and roundness. However, it has excess repetition
of features and the cylindrical bosses located along the diagonal lines. The new benchmark
model was developed for this study based on the previous literature eliminating the un-
necessary features like overhangs, cones, features on the base sides, too much repetition
of the features, and positioning the cylinder bosses parallel to the base sides. The latter
allows to measure positioning along the X and Y axes of the printer, since the parts will be
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positioned with sides parallel to the sides of the printing bed. The new model of artifact for
pattern was created using SolidWorks software. Pattern designs were tested for printability
and castability before performing an experimental run. The new benchmark model con-
tains extruded boss and hole features of rectangular and cylindrical shapes, small features,
spherical and ramped features, as well as diagonal line feature for angularity check; see
Figure 2. A drawing of the benchmark model is given in Appendix A, Figure A1.
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2.1.2. Taguchi’s Design of Experiments

SLA printing parameters studied in this paper are layer thickness, build orientation,
support touchpoint size and support structure density. Table 2 shows the four parameters
used by the printer and their assigned control levels. There are only two levels that were
chosen for each parameter. The reason for this is that the Form 3 printer provides only
two variations of layer thickness for Castable Wax material. To match the number of
other parameter levels, only two levels were chosen for the other parameters. In addition,



J. Manuf. Mater. Process. 2022, 6, 109 6 of 25

considering the large number of experiments associated with the printing and casting, our
study aims to focus on investigating the important findings while keeping the number of
experiments not so time consuming.

Table 2. Parameters and control levels.

Parameters Level 1 Level 2

A: Layer thickness (µm) 25 50
B: Build angle (deg) 0 45
C: Support density 0.75 1

D: Support touchpoint size (mm) 0.5 0.6

Build angle and layer thickness were one of the mostly studied and influential pa-
rameters in the reviewed literature [10,16–22,24–26]. Layer thickness values were chosen
from the available values for the Castable wax material. Build angle values were chosen
according to the literature results, stating that 0 deg and 45 deg orientations show better
results than 90 deg and above [10,16–21]. Support density and support touchpoint size
were chosen as they were the available and adjustable parameters other than the first two
provided by the PreForm software for Form 3/3+ printers. Support density and touchpoint
size values below 0.75 and 0.5, respectively, caused support breakage during trial-and-error
printing process. Considering that small changes in these values caused a problem, the
critical values (0.75 and 0.5, correspondingly) and values for one step above them were
chosen as parameter levels for the study.

To study the effect of these available parameters on the dimensional accuracy of
the artifact model, the Taguchi method of parametric design of experiment (DOE) was
used. Considering the amount of experimental work and several parameters to study, the
Taguchi method suits the investigation purpose better than other statistical approaches of
parametric study analysis, as it enables to reduce the number of experimental runs while
identifying the sensitivity and significance of the parameter [39].

Taguchi’s experimental design was developed using MiniTab 19 software. For the
given parameters (factors) and levels L8 (2ˆ4), Orthogonal Array was created with 8 rows,
as shown in Table 3. Each row has a setting for a distinct experimental run for SLA printing.
Printing of 1–4 runs with 25 µm and 5–8 runs with 50 µm layer thickness values required
around 24 h and 12 h, respectively. Each experimental run was repeated 3 times for
consistent results.

Table 3. Design of Experiments (DOE).

# A B C D

1 1 1 1 1
2 1 1 2 2
3 1 2 1 2
4 1 2 2 1
5 2 1 1 2
6 2 1 2 1
7 2 2 1 1
8 2 2 2 2

2.1.3. Numerical Simulation

Solidification simulation is an important step before proceeding to the casting process,
as it can show possible casting defects. Hot spot is one of the problems that can lead to
casting defects which can be identified using solidification simulation. Identification of the
hot spot locations can help to improve the gating system design [40,41]. Adding the gating
system feeder to the closer to hot spot locations guarantees directional solidification which
can reduce the solidification shrinkage [41]. Thus, simulation results can help to reduce the
possible dimensional inaccuracies due to failure in directional solidification. SolidCast 8.1.1
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casting simulation software was applied to study the solidification process. Materials and
boundary conditions are given in the Table 4.

Table 4. Casting and mold material characteristics used in SolidCast.

Casting Material Mold Material

Al 518 Silica Sand

Thermal conductivity, [W/m/K] 96.17 0.59
Specific heat, [J/kg/K] 962.3 1075.3

Density, [kg/m3] 2574 1521
Casting temperature, [C] 700 104

Solidification temperature, [C] 437 -

Boundary conditions: The external heat transfer coefficient was 45.44 W/m2/K and
interface heat transfer coefficient was 1000 W/m2 K [42]. Shell thickness is was mm. Air
gap during solidification was not considered.

SolidCast uses the Finite Difference Method to discretize the simulation domain and
creates structured rectangular grid (mesh) described by node size. To ensure that meshing
does not affect the simulation results, sensitivity analysis of Critical Fraction Solid (CFS)
time and Hot Spot (HS) values to the mesh size was performed in mesh verification, as
shown in Table 5. Values of these two characteristics are taken from the same spot on
the Cut Plane plots in the simulation results of each mesh size. Initial mesh size was
1 mm, which is the same as the finest feature size on the benchmark model, which then
was decreased to 0.5 mm and 0.25 mm to increase the accuracy of the simulation results.
Percentage difference of the CFS and HS values were calculated to find how the mesh size
affects the results. Percentage difference less than 5% means that further refinement of the
mesh will not affect the results significantly. Thus, 0.25 mm mesh size with 3.8% is chosen
as the final node size for the simulation. It took 14,480 timesteps and 1,568,000 nodes to
simulate the solidification of the pattern.

Table 5. Sensitivity analysis of Critical Fraction Solid (CFS) time and Hot Spot (HS).

Mesh Size CFS Time Difference HS Difference

1 mm 0.063 — 1.642 —
0.5 mm 0.068 7.9% 1.819 10.8%

0.25 mm 0.071 4.4% 1.75 3.8%

SolidCast performs transient thermal analysis to simulate the casting defects that can
occur during solidification. It is assumed that taller and more massive features are more
likely to have hot spots in the base and feature connected area.

The important casting defect investigated is the hot spot (HS), which depicts the
regions on the casting that remains liquid longer than other regions. In the SolidCast
simulations, HS is calculated by comparing either critical fraction solid time (CFS) or
solidification time. The hot spot depicted in Figure 3 is based on the CFS time. CFS is the
time when the metal reaches the CFS temperature, after which the liquid metal cannot
move. HS has values from 0 to 10 shown in the legend in Figures 3 and 4, where 0 means
the most isolated hot liquid metal which solidifies last.

Hot spot is basically located within the part in the thicker feature foundations and no
hot spot detected on the side faces, as shown in Figure 4. As there is no significant hot spot
location on the outer sides of the pattern, the feeder is added on the side flat surface closer
to the area with less HS value as shown with green circle in Figure 4.
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2.1.4. Experimental part I. SLA Printing

Form 3 Low Force Stereolithography (LFS) 3D Printer from Formlabs was used for the
Experimental part I (pattern printing) with PreForm 3.22.1 Software, and Castable wax V1
FLCWPU01 as a printing material. Specifications of the printer and the material is given in
Table 6.

Table 6. SLA printer and Castable Wax characteristics.

Form 3 LF SLA Printer Castable Wax V1 FLCWPU01

Build volume: 145 × 145 × 185 mm Tensile Modulus: 220 MPa
Laser Spot Size: 85 microns Elongation at Break: 13%

Operating temperature: 35 ◦C Ash Content (TGA): 0.0–0.1%

Laser specifications: Class 1 Laser Product
Wavelength 405 nm laser Wax content: 20%
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Castable Wax is designed to reduce the thermal expansion of the printed component
during its burnout process in RIC. Zero ash content and 20% wax content photopolymer
led to the clean burnout. Photopolymers used in the SLA printing undergo shrinkage
during post curing [43,44]. In this study, only support removal and pattern washing in IPA
to remove excess liquid resin were performed after printing as a post-process activity and
no post-curing was performed with the printed patterns, so the only shrinkage that can
occur is caused by cooling time after the end of printing [45]. To achieve consistency of
the cooling shrinkage effect on the measurements, all printed patterns had the same 1-day
cooling time between the end of printing and the measurements.

2.1.5. Experimental Part II. Casting

Experimental part II consists of conventional IC steps: the mold around the wax
casting tree is built using plaster; the mold is then burned out in the kiln according to the
castable wax burnout cycle as shown in Figure 5 [46,47]; and the metal is melted in the
furnace and then poured into the mold cavity. Casting parameters are given in Table 7.
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Table 7. Casting parameters.

Casting Parameters Parameter Values

Casting temperature 700 ◦C
Temperature of the mold prior to casting 104 ◦C

Pouring speed 2.5 cm/s
Height of the ladle above the pouring basin 2.5 cm

Time before quenching 1 h

“Nabertherm more than heat 30–30,000 ◦C K1/13” metal melting furnace is used
in the experiments, which is dedicated for melting non-ferrous metals with the limit
temperature at 1330 ◦C. Commonly used non-ferrous metals used in the investment casting
are aluminum, magnesium, and zinc with melting temperatures of 660 ◦C, 651 ◦C, and
419 ◦C, respectively [48]. Shrinkage is the casting defect that occurs during and after molten
metal solidification. The shrinkage percentage for aluminum is 6.5%, for magnesium is 4%,
and for zinc is 3% [49]. Although the melting temperature and shrinkage percentage for
Al is greater than of Mg and Zn, for this experimental study, pure Al was selected as the
casting metal due to its availability and low price. The chemical composition of Al was
99.5% Al and 0.5% Cu.
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For consistency in the casting process, the same constant casting parameters were held
for each experiment as shown in Table 6. As the temperature of the kiln reached 104 ◦C, the
flask with the mold was held there for another hour while the metal was melted in another
furnace. The thickness of the shell was the same for each part due to the constant size of the
flask. No other additions were added to support the shell. Ambient temperature was held
constant at 26 ◦C as the experiments were held in a room with controllable HVAC system.

2.1.6. Measurements

Measurements were carried out using Zeiss Duramax Coordinate Measuring Machine
(CMM) equipped with Calypso programming software. Patterns were fixed on the CMM
bed to automate the measurement process, without repeated creation of measurement
plans for each pattern and casting.

Figure 2 shows the features on the pattern and their labels. To measure the dimensional
accuracy and geometric characteristics, these features were used as shown in Table 8.
Ramp and fine features were observed visually to check the ability of the casting to cast
these features.

Table 8. Types of Features used for dimensional accuracy and geometric characteristics measurements.

Dimensional Accuracy Geometric Characteristics
Dimension Features Characteristic Features

Diameter Cyl 1-4 Flatness Top surface
Hole 1-2 Concentricity St cyl 1-2 and Hole 2
St cyl 1-2 Parallelism Sq 1-2

Sphere 1-2 Perpendicularity Sq 1-2 and Top surface
Width Sq 1-2 Roundness Sphere 1-2
Length Sq 1-2 Angularity Ang 1-2
Height Sq 1-2 Positioning Cyl 1-4

2.1.7. Analysis of Measurements

The results of measurements were gathered in Excel and calculated deviations for
dimensional accuracy and geometric characteristics of both patterns and cast parts were
then used in Minitab 19 as a response factor for further Taguchi Design analysis.

Taguchi design was analyzed using a 2-step optimization process by using two re-
sponse characteristics including Signal-to-Noise (S/N) ratio and means. In the first step,
response tables for S/N ratio were used to find the most significant factors reducing the
variability. In the S/N ratio analysis, the “Smaller is Better” metric was used to identify the
factor resulting in the lowest dimensional deviations. In the second step response tables for
Means were analyzed to find the factors with the significant effect on moving the mean to
the target value.

2.1.8. Identification of Critical Parameters and Optimum Set of Values

In the response tables in Minitab 19, the averaged response characteristics for each
factor level and delta statistics were calculated. Delta is the difference between the high-
est and the lowest response characteristic (S/N ratio and means) values for each factor
level [50]. Response tables also consist of the delta value ranking, with the highest delta
value assigned with ranking 1, and the lowest delta value assigned with the ranking num-
ber equal to the number of all factors involved in the analysis. These rankings for S/N
ratio and means for patterns and cast parts were combined in separate tables in Excel to
sum the rankings and identify the most influential parameter (factor) in achieving the
good dimensional accuracy and geometric characteristics. Optimum parameter levels for
good dimensional accuracy and geometric characteristics in both cast parts and printed
patterns were then identified based on the lowest average S/N ratio values provided in the
response tables.
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3. Results and Discussion

The experimental part I and II, and measurement analysis results are presented here.
The first section describes the printing and casting results, while second section provides
the measurement results and analysis.

3.1. Experimental Results

This section has two subsections which provide the pictures of the printed patterns, as
well as cast parts.

3.1.1. Printing Results

Twenty-four patterns were printed out according to the DOE parameter settings; one
of them is shown in Figure 6a.
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Ramp and fine features are shown in Figure 6b. All patterns printed at runs #1–2 and
#5–6 with the 0 degree build angle had the staircase effect on the ramp surface.

3.1.2. Casting Results

The results of the 24 cast parts are shown in Figure 7. Although the staircase effect
is an unwanted surface finish defect of printed parts, the ability of RIC to properly cast
those staircase effects proves that RIC is a precision casting method. The casting of patterns
printed at 0 degree build angle with the staircase effects on the ramp feature is shown in
Figure 8.
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Prior to the casting process, the flask with the mold is checked for any visible cracks
after burnout process. Mold quality after burnout process appeared to be good. During the
experiments no cracks or damage were detected on the outer surface of the molds, and no
mold breakage happened during metal pouring.

3.2. Measurement and Analysis

Measurements of printed patterns and cast parts were analyzed separately and then
compared. For both cases, analysis was performed for dimensional accuracy and the
geometric characteristics. The dimensional deviations from nominal value were used as the
response value for S/N ratio and Mean analysis in Minitab 19, and results were combined
in Excel.

3.2.1. Printed Patterns
Dimensional Accuracy

All printed 24 patterns (with three repeated printings of each eight runs) were mea-
sured for dimensional accuracy. Features were grouped according to the measurement
dimension, like diameter, length, width, and height. Features are named as “D.4_Cyl 1-4”,
where D means for which dimension the given feature was measured, 4 means the nominal
dimension, Cyl represents the feature label showed in Figure 2, 1–4 means Cyl 1, Cyl 2, Cyl
3, and Cyl 4. The other features are labeled in the same manner. Dimensional deviations,
maximum and minimum ranges of measured values, and average dimensional values of
all features are presented in Table 9.

Table 9. Printed patterns measurement results for dimensional accuracy, in mm.

Dimension Features Nominal Value Average Measured
Value

Range Average
DeviationMax Min

Diameter

D.4_Cyl 1-4 4 3.9921 4.0713 3.9357 0.0079
D.4_Hole 1-2 4 3.9257 4.0361 3.7726 0.0743
D.6_Sph 1-2 6 5.9566 6.0345 5.8824 0.0434

D.8_Step Cyl 1 8 7.9705 8.0045 7.9177 0.0295
D.12_Step Cyl 2 12 11.9302 11.9765 11.8688 0.0698

Length L.6.5_Sq 1-2 6.5 6.5698 6.6548 6.4771 −0.0623
Width W.4_Sq 1-2 4 4.0606 4.2667 4.0049 −0.0606

Height H.2.5_Sq 1-2 2.5 2.5194 2.6772 2.4763 −0.0194
H.5_Sq 1-2 5 5.0353 5.1989 4.9628 −0.0353

The effect of SLA printing parameters’ variations on the dimensional accuracy of
printed patterns is represented by dimensional deviations in Table 9. Overall, magnitude of
deviations was less than 0.1 mm, which agrees with the SLA printed denture measurements
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in [17]. Furthermore, it shows that the SLA printer is more accurate than FDM printer which
had deviations around 0.25 mm [51]. Among cylindrical features, it has been observed
that dimensional deviation increased with the increased diameters, and among the same
sized cylindrical features holes had larger deviations than extruded ones. Deviations from
nominal dimensions were greater for circular features compared to the rectangular features.
Circular features were undersized, which can be the result of Castable Wax shrinkage.
However, rectangular features were oversized which agrees with the study in [14]. Length,
width, and height measurement results present that accuracy along Z direction was greater
than along X and Y directions. This agrees with the study [14], which reveals that SLA
printer is more accurate in Z direction than X-Y plane dimensions.

Table 10 represents the S/N ratio analysis result in terms of the delta value rankings.
Four parameters were ranked from 1 to 4 according to the delta values calculated for each
feature measurement. Rank 1 means the most significant and 4 means the least significant
parameter. Then, all rankings of each parameter were summed together and again ranked
based on the same pattern, and the least value is the most significant and the most value
is the least significant. The mean ranking of parameters for dimensional accuracy of the
pattern is given in Table A1 in Appendix A.

Table 10. S/N ratio ranking of parameters for dimensional accuracy of patterns.

Feature A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

D.4_Cyl 1-4 1 2 4 3
D.4_Hole 1-2 1 2 4 3
D.6_Sph 1-2 4 1 3 2

D.8_Step Cyl 1 4 3 1 2
D.12_Step Cyl 2 3 1 2 4

L.6.5_Sq 1-2 2 1 4 3
W.4_Sq 1-2 3 1 2 4

H.2.5_Sq 1-2 3 1 4 2
H.5_Sq 1-2 2 3 1 4

Sum 23 15 25 27
Ranking of sums 2 1 3 4

Response for S/N ratio ranking in Table 10 shows that the most significant factor was
the (B) build angle being the most influential parameter, followed by (A) layer thickness, (C)
support density, and (D) touchpoint size. This order of significance of parameters shows
their effect on dimensional accuracy of printed patterns.

Based on the S/N ratio analysis and Mean response analysis the optimum level for
each parameter at each feature measurement was identified according to the “Smaller is
Better” metrics, meaning the smallest dimensional deviation, as shown in the Table 11. The
number of occurring frequencies of each level for each parameter was summed, and the
most occurring frequency was chosen as the optimum level of parameter to achieve a good
dimensional accuracy of printed patterns.

Geometric Characteristics

The average measured values, measurement ranges, and the deviations for geometric
characteristics of features across all 24 printed patterns is presented in Table 12. Flatness,
concentricity, roundness, parallelism, and perpendicularity features were measured having
a nominal value of 0. For flatness the Top surface of the pattern was taken as a 0 reference.
Concentricity of stepped cylinders had the coordinates of the Hole 2 as the reference 0
position. Parallelism and perpendicularity had 0◦ and 45◦ difference between the measured
planes as the 0 reference, respectively. Roundness is measured by taking the Spheres radius
as the reference.
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Table 11. Optimum levels of parameters for dimensional accuracy of patterns.

Feature A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

D.4_Cyl 1-4 1 1 2 1
D.4_Hole 1-2 1 2 2 2
D.6_Sph 1-2 1 1 1 1

D.8_Step Cyl 1 1 2 2 1
D.12_Step Cyl 2 1 1 2 2

L.6.5_Sq 1-2 2 2 1 1
W.4_Sq 1-2 1 2 2 1

H.2.5_Sq 1-2 1 1 1 2
H.5_Sq 1-2 2 1 2 1

Level 1 7 5 3 6
Level 2 2 4 6 3

Optimum level 1 1 2 1

Table 12. Printed patterns measurement results for geometric characteristics, in mm.

Characteristics Features Nominal Value Average Measured
Value

Range Average
DeviationMax Min

Flatness Top surface 0 0.2277 5.0597 0.0050 −0.2277
Concentricity Conc_Step cyl 1-2 0 0.0486 0.1350 0.0117 −0.0486

Roundness Round_Sphere 1-2 0 0.0106 0.0630 0.0003 −0.0106
Angularity Angle 45 44.7374 46.2236 43.4469 0.2626
Parallelism Parall_Sq 1-2 0 0.0720 0.2747 0.0264 −0.0720

Perpendicularity Perpend_Sq 1-2 0 0.0385 0.1489 0.0109 −0.0385

Position

Y.36_Cyl 1 36 35.9170 36.0424 35.7923 0.0830
Y.28_Cyl 2 28 27.9317 28.0421 27.8041 0.0683
X.28_Cyl 3 28 27.9442 27.9953 27.8437 0.0558
X.36_Cyl 5 36 35.9183 35.9851 35.8161 0.0817

It can be seen from Table 12 that the most deviations occur in printing the angular
feature and flat surface with the 0.2626 mm and −0.2277 mm deviation from nominal
value, respectively. Other geometric characteristics of the printed features had dimensional
deviations less than 0.08 mm. positioning in X direction is slightly better than in Y direction.

S/N ratio response ranking of the geometric characteristic measurements is shown
in Table 13. The ranking is performed similarly to the previous S/N ratio rankings of
dimensional accuracy measurements. The mean ranking of parameters for geometric
accuracy of the pattern is given in Table A2 in Appendix A.

Table 13. S/N ratio ranking of parameters for geometric characteristic of patterns.

Characteristics A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

Flatness 1 4 2 3
Conc_Step cyl 1-2 1 2 3 4
Round_Sphere 1-2 3 2 1 4

Angle 2 1 4 3
Parall_Sq 1-2 4 1 3 2

Perpend_Sq 1-2 3 1 2 4
Y.36_Cyl 1 4 2 1 3
Y.28_Cyl 2 4 3 1 2
X.28_Cyl 3 1 2 3 4
X.36_Cyl 5 1 3 2 4

Sum 24 21 22 33
Ranking of sums 3 1 2 4
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It can be seen from Table 13 that (B) build angle was the most sensitive parameter in
achieving a good geometric characteristic with minimal deviations from nominal value.
The least important parameters for this purpose were the (D) touchpoint size.

Based on the S/N ratio response tables and Mean response analysis, the optimum
levels of parameters for achieving good geometric characteristics were identified in Table 14.
The most frequently occurring level was chosen as the optimum level for each parameter.

Table 14. Optimum levels of parameters for geometric characteristic of patterns.

Characteristics A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

Flatness_ 2 1 2 1
Conc_Step cyl 1-2 1 1 1 2
Round_Sphere 1-2 1 2 1 2

Angle 2 1 1 1
Parall_Sq 1-2 1 2 2 1

Perpend_Sq 1-2 1 2 1 1
Y.36_Cyl 1 2 1 1 2
Y.28_Cyl 2 2 1 1 2
X.28_Cyl 3 1 1 1 2
X.36_Cyl 5 1 1 1 2

Level 1 6 7 8 4
Level 2 4 3 2 6

Optimum level 1 1 1 2

To achieve minimal deviations from nominal values in dimensional accuracy and
geometric characteristics, the following parameters sets with optimum values are identified
from the analysis made. Table 15 summarizes the analysis findings and shows the optimum
parameters for both purposes.

Table 15. Optimum values of parameters for dimensional accuracy and geometric characteristic
of patterns.

Parameters
Dimensional Accuracy Geometric Accuracy

Level Value Level Value

A: Layer thickness, (µm) 1 25 1 25
B: Build angle, (deg) 1 0 1 0
C: Support density 2 1 1 0.75
D: Touchpoint size 1 0.5 2 0.6

3.2.2. Casting

The measurement of geometrical features and the geometric characteristics of the cast
are discussed in the section.

Dimensional Accuracy

The patterns measured above were then used in the casting process as patterns for the
casting mold creation. The cast Al parts were then measured with the same CMM machine
for the dimensional accuracy and geometrical characteristics. Measurement results were
analyzed in the similar way as discussed in pattern measurement sections above, as shown
in Table 16.
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Table 16. Casting measurement results for dimensional accuracy, in mm.

Dimension Features Nominal Value Average Measured
Value

Range Average
DeviationMax Min

Diameter

D.4_Cyl 1-4 4 4.0257 4.0909 3.9767 −0.0257
D.4_Hole 1-2 4 3.8405 3.9346 3.5713 0.1595
D.6_Sph 1-2 6 6.0191 6.1160 5.9109 −0.0191

D.8_Step Cyl 1 8 8.0027 8.0337 8.0242 −0.0027
D.12_Step Cyl 2 12 11.9557 11.9967 11.8967 0.0443

Length L.6.5_Sq 1-2 6.5 6.6315 6.7482 6.6723 −0.1315
Width W.4_Sq 1-2 4 4.0868 4.2519 4.0146 −0.0868

Height H.2.5_Sq 1-2 2.5 2.4964 2.5752 2.4288 0.0036
H.5_Sq 1-2 5 5.0057 5.1148 5.0060 −0.0057

Figure 9 represents the comparison between dimensional deviation of printed patterns
and cast parts.
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Figure 9. Comparison of dimensional deviations from the nominal value for patterns and castings.

Comparing the dimensional deviation from nominal value between patterns and
cast parts shown in Figure 9, the largest difference was observed in hole dimension with
0.0852 mm, and dimensional deviations of other features fluctuate between 0.229 mm
and 0.0692 mm. It can be observed from Tables 9 and 16 and Figure 9 that the features
which had positive deviations in printed patterns, had smaller positive or even negative
deviations in cast parts, and the features that had negative deviations in printed patterns,
had greater negative deviations in cast parts. This resulted in the oversized features in
cast parts compared to the same features in printed patterns. Considering that deviations
are calculated as the measured value subtracted from the nominal value, the negative
dimensional deviation means oversized and positive deviation value means undersized
feature. For the circular features, the cylinders and spheres in the printed patterns were
undersized, and in the cast parts were oversized. This can be caused by the expansion of
the Castable Wax pattern during the burnout process due to its high thermal expansion. In
fact, some cast parts had metal penetration defect on the edges of the base and features.
This shows that during thermal expansion of the pattern, small cracks were created in the
shell on the edges of the base and features. These created gaps in the shell were penetrated
by molten metal. Cracks were small and did not reach the outer surface of the mold. Metal
penetration observed in some cast parts are shown in the Appendix A, Figure A2. This
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results in the expansion of boss extruded features and shrinkage of the holes in the mold
cavity, so that the mold dimensions are slightly greater than the nominal dimensions for
boss extruded features and smaller for holes. This explains the smaller diameter of the holes
in the cast parts than in the printed patterns. Overall, this trend is consistent throughout all
the features except for the last two features representing the height measurements. The cast
parts showed greater deviation than in patterns for height measurements, resulting in the
reduction of height of the stepped rectangular features in the cast parts compared to the
same features in the printed patterns. This can be caused by the Castable Wax expansion in
X-Y directions and shrinkage in Z direction during burnout process, as well as significant
shrinkage of Al in Z direction during solidification.

It can be found from Table 17 that the most significant factor that affects the dimen-
sional accuracy of cast parts is (B) build angle followed by (A) layer thickness, and the least
significant factor is (D) touchpoint size. The same was obtained for the printed patterns.
The mean ranking of parameters for dimensional accuracy of the cast parts is given in
Table A3 in Appendix A.

Table 17. S/N ratio ranking of parameters for dimensional accuracy of cast parts.

Feature A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

D.4_Cyl 1-4 4 1 2 3
D.4_Hole 1-2 1 2 3 4
D.6_Sph 1-2 2 1 4 3

D.8_Step Cyl 1 1 3 2 4
D.12_Step Cyl 2 2 1 3 4

L.6.5_Sq 1-2 4 1 3 2
W.4_Sq 1-2 4 1 2 3

H.2.5_Sq 1-2 1 4 3 2
H.5_Sq 1-2 2 1 4 3

Sum 21 15 26 28
Ranking of sums 2 1 3 4

Table 18 presents the optimum levels for each parameter identified according to the
S/N ratio and Mean response analysis, with the Smaller is Better S/N ratio metric.

Table 18. Optimum levels of parameters for dimensional accuracy of cast parts.

Feature A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

D.4_Cyl 1-4 2 2 1 2
D.4_Hole 1-2 1 1 1 1
D.6_Sph 1-2 1 2 2 2

D.8_Step Cyl 1 1 1 1 2
D.12_Step Cyl 2 1 1 2 2

L.6.5_Sq 1-2 2 2 2 1
W.4_Sq 1-2 1 2 2 1

H.2.5_Sq 1-2 1 1 2 2
H.5_Sq 1-2 2 1 2 1

Level 1 6 5 3 4
Level 2 3 4 6 5

Optimum level 1 1 2 2

Geometric Characteristics

Geometric characteristics of the cast parts were measured as was measured in patterns
using the same CMM equipment and measurement plan. Table 19 shows the averaged
measurement results, range, and deviations from nominal value. Nominal values for the
flatness, concentricity, roundness, parallelism, and perpendicularity were explained in the
Geometric Characteristics section.
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Table 19. Casting measurement results for geometric characteristics, in mm.

Characteristics Features Nominal Value Average Measured
Value

Range
Deviation

Max Min

Flatness Top surface 0 0.0331 0.0903 0.0167 −0.0331
Concentricity Conc_Step cyl 1-2 0 0.0667 0.2579 0.0090 −0.0667

Roundness Round_Sphere 1-2 0 0.0155 0.0450 0.0002 −0.0155
Angularity Angle 45 45.4182 46.9586 44.1689 −0.4182
Parallelism Parall_Sq 1-2 0 0.0888 0.2271 0.0241 −0.0888

Perpendicularity Perpend_Sq 1-2 0 0.0501 0.1041 0.0188 −0.0501

Position

Y.36_Cyl 1 36 35.8697 36.0996 35.6304 0.1303
Y.28_Cyl 2 28 27.9194 28.1344 27.6950 0.0806
X.28_Cyl 3 28 27.9983 28.1442 27.8335 0.0017
X.36_Cyl 5 36 35.9477 36.0956 35.7895 0.0523

Figure 10 shows the comparison between geometric deviations of printed and cast
part from the nominal value.
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Figure 10. Comparison of Geometric characteristics deviations from the nominal value for patterns
and castings.

It can be seen from Figure 10 that the cast parts have smaller positive deviations and
greater negative deviations compared to the patterns.

This can be the result of thermal expansion of the Castable Wax patterns during the
burnout process. As a result, the mold cavity for boss features expands and the holes shrink.
The positive Y.36 and Y.28 height characteristics show that both patterns and cast parts
shrink in Z direction. Cast parts have greater deviations in height than patterns, which
represents the significant shrinkage of Al in Z direction compared to Castable Wax. The
same was concluded in the dimensional accuracy section for casting measurements.

Table 20 presents the S/N ration response ranking based on the delta values, with the
smallest ranking showing the most significant factor, and the greatest ranking showing the
least significant factor. The mean ranking of parameters for geometric accuracy of the cast
parts is given in Table A4 in Appendix A.
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Table 20. S/N ratio ranking of parameters for geometric characteristic of cast parts.

Characteristics A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

Flatness_ 1 3 2 4
Conc_Step cyl 1-2 2 4 3 1
Round_Sphere 1-2 3 2 4 1

Angle 3 1 2 4
Parall_Sq 1-2 4 1 3 2

Perpend_Sq 1-2 3 1 4 2
Y.36_Cyl 1 3 1 4 2
Y.28_Cyl 2 2 3 4 1
X.28_Cyl 3 4 1 3 2
X.36_Cyl 5 1 4 3 2

Sum 26 21 32 21
Ranking of sums 2 1 3 1

As can be seen from Table 20, the (B) build angle and (D) touchpoint size were the
most significant factors affecting the S/N ratio, and the (C) Support density was the least
significant factor. Similar rankings were done with the responses for means, shown in
Table A4.

Optimum levels for parameters were chosen based on the S/N ratio and Mean re-
sponse analysis, as shown in Table 21.

Table 21. Optimum levels of parameters for geometric characteristic of cast parts.

Characteristics A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

Flatness 2 2 1 2
Conc_Step cyl 1-2 2 1 1 1
Round_Sphere 1-2 2 2 1 2

Angle 1 2 1 2
Parall_Sq 1-2 1 1 2 1

Perpend_Sq 1-2 2 1 2 2
Y.36_Cyl 1 1 1 1 1
Y.28_Cyl 2 1 1 1 1
X.28_Cyl 3 1 2 2 2
X.36_Cyl 5 1 2 2 2

Level 1 6 5 6 4
Level 2 4 5 4 6

Optimum level 1 1 or 2 1 2

Dimensional accuracy and good geometric characteristics of the cast parts can be
obtained using the optimum parameters shown in Table 22.

Table 22. Optimum values of parameters for dimensional accuracy and geometric characteristic of
cast parts.

Parameters
Dimensional Accuracy Geometric Accuracy

Level Value Level Value

A: Layer thickness, (µm) 1 25 1 25
B: Build angle, (deg) 1 0 1 0
C: Support density 2 1 1 0.75
D: Touchpoint size 2 0.6 2 0.6

Overall, for SLA printed patterns Build angle was the most influential parameter
followed by Layer thickness affecting both the dimensional accuracy and geometric charac-
teristics, and the least influential was Touchpoint size parameter. The same is true for cast
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parts, with the exception of Support density identified as the least influential parameter
affecting the geometric characteristics of cast parts. Considering that Build angle and Layer
thickness are the significant parameters for both printed patterns and cast parts, it can be
concluded that optimum levels for these parameters must be similar, which was shown in
Tables 15 and 22.

In the pattern measurement analysis, Castable Wax solidification shrinkage was the
uncontrollable noise factor and printing parameters were controllable factors. For the
casting, Castable Wax expansion and the metal shrinkage during solidification were the
uncontrollable noise factors and casting parameters were the controllable factors. To
achieve consistent results and reduce the effect of noise factors, patterns were held for
the same amount of time before measurements and the mold making process. This could
help to achieve the similar photopolymer shrinkage in the patterns. Casting parameters
were held constant throughout the experiments and the time before quenching was also
constant, which leads to the same conditions for metal solidification. Although these
precautions were made, metal shrinkage and photopolymer expansion effect cannot be
eliminated completely.

The same cylindrical features were undersized in the patterns, while oversized in the
cast parts. Rectangular features were oversized in both patterns and cast parts. Positioning
in the Y axis was less accurate than in X axis, which can be seen by larger deviations along Y
coordinates in both patterns and cast parts. Overall, dimensional, and geometric deviations
had the similar tendency with the same oversized features having more deviation in cast
parts than patterns, and undersized features having smaller deviations in cast parts than
in patterns. Figure 11 shows this main tendency in dimensional deviations of cast and
printed parts.
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4. Conclusions

This study investigated the evaluation of the effect of SLA printing parameters on
the dimensional accuracy and geometric characteristics of RIC parts. In this study, four
available control parameters were used in the investigation, including layer thickness,
build angle, support density and support touchpoint size for SLA. The benchmark model
design for the patterns was developed to study the effect of these parameters. Solidification
simulation was performed in SolidCast to verify the casting tree design and find the feeder
location to achieve directional solidification. Twenty-four patterns were printed using
Taguchi DOE and measured using CMM. Patterns then were cast and cast parts were
measured. Taguchi 2 step optimization method was used to analyze the measurement
results and significant parameter and optimum levels for parameters were established. The
following concluding remarks can be drawn from this study.

• The most impactful critical factor affecting the dimensional accuracy and geometric
characteristics of both the Castable Wax printed patterns and Al cast parts was the
Build angle, and the second most impactful factor was the Layer thickness according
to the S/N ratio ranking of parameters based on the “Smaller-the-better” scheme.
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The optimum values for these critical parameters to achieve good dimensional and
geometric accuracies in printed and cast parts were the same, 0 deg build angle and
0.25 µm layer thickness. These values were found using Castable Wax, and differ from
what is reported in the literature, where it is stated that 45 deg angle gives the best
accuracy for other photopolymers.

• The measurement results of both printed patterns and cast parts revealed that dimen-
sional deviations increase with increased diameter in cylindrical features. Holes had
larger dimensional deviations than boss cylinders and were undersized by 1.9% and
4% in printed and cast parts, respectively.

• Accuracy in height (Z direction) of the rectangular features were better than the
accuracy in X-Y directions. In Z direction deviations were 0.7% and 0.1% in printed
and cast parts, respectively, while in X-Y directions average deviations were 1.25%
and 2.1% in printed and cast parts, respectively. Circular features had deviations
1.3% more than rectangular features in patterns, and had deviations 13% less than
rectangular features in cast parts.

• Staircase effects on printed patterns were replicated in the cast parts showing the
ability of the casting process to cast the small deviations on the surface. Fine features
with diameters and width less than 2 mm were not cast properly.

• On average, the geometric characteristics had twice as many deviations as the di-
mensional characteristics. The most accurate geometric characteristic was the sphere
roundness both in printed and cast parts, showing 0.011 mm and 0.016 mm deviations
in average, respectively. The angularity was the least accurate geometric characteristic,
showing 0.23 mm and 0.42 mm deviations in printed and cast parts, correspondingly.

• Form 3 LF SLA printer had 0.1 mm dimensional accuracy in average for printed
Castable Wax parts.

The dimensional deviations and the geometric deviations affect the ability of the
product to perfectly fit the other parts during assembly. These characteristics are important
not only in industries like aerospace, automotive, etc., but are essential in implant pro-
ductions. This study considered both characteristics and identified the critical parameter
affecting them and optimum parameter settings to achieve good dimensional accuracy and
geometric characteristics of printed and cast parts in RIC.

This study provides the optimized parameters settings for dimensional accuracy and
geometric characteristics of the printed patterns and the cast parts which can be developed
further by complicating the benchmark models with thin and curved features, as well as
lateral features to study the repeatability in the Z direction. Another development can be
related to the casting material. The current study was limited with the furnace ability to
melt only low melting temperature nonferrous metals. Further investigation can be made
using other non-ferrous metals or commonly used ferrous metals.
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Table A1. Mean ranking of parameters for dimensional accuracy of patterns.

Feature A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

D.4_Cyl 1-4 2 1 3 4
D.4_Hole 1-2 1 2 3 4
D.6_Sph 1-2 4 1 2 3

D.8_Step Cyl 1 4 2 1 3
D.12_Step Cyl 2 3 1 2 4

L.6.5_Sq 1-2 4 1 2 3
W.4_Sq 1-2 4 1 2 3

H.2.5_Sq 1-2 3 1 4 2
H.5_Sq 1-2 4 1 2 3

Sum 29 11 21 29
Ranking of sums 3 1 2 3

Table A2. Mean ranking of parameters for geometric characteristic of patterns.

Characteristics A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

Flatness 1 2 4 3
Conc_Step cyl 1-2 1 2 3 4
Round_Sphere 1-2 3 2 1 4

Angle 3 1 2 4
Parall_Sq 1-2 4 1 3 2

Perpend_Sq 1-2 4 1 2 3
Y.36_Cyl 1 3 2 1 4
Y.28_Cyl 2 4 3 1 2
X.28_Cyl 3 1 2 4 3
X.36_Cyl 5 1 2 3 4

Sum 25 18 24 33
Ranking of sums 3 1 2 4

Table A3. Mean ranking of parameters for dimensional accuracy of cast parts.

Feature A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

D.4_Cyl 1-4 4 1 3 2
D.4_Hole 1-2 1 2 3 4
D.6_Sph 1-2 3 1 2 4

D.8_Step Cyl 1 3 1 4 2
D.12_Step Cyl 2 2 1 3 4

L.6.5_Sq 1-2 3 1 2 4
W.4_Sq 1-2 4 1 2 3

H.2.5_Sq 1-2 1 3 2 4
H.5_Sq 1-2 2 1 4 3

Sum 23 12 25 30
Ranking of sums 2 1 3 4

Table A4. Mean ranking of parameters for geometric characteristic of cast parts.

Characteristics A: Layer Thickness B: Build Angle C: Support Density D: Touchpoint Size

Flatness_ 1 3 2 4
Conc_Step cyl 1-2 1 4 2 3
Round_Sphere 1-2 3 2 4 1

Angle 4 1 2 3
Parall_Sq 1-2 4 1 2 3

Perpend_Sq 1-2 4 1 3 2
Y.36_Cyl 1 3 1 4 2
Y.28_Cyl 2 2 3 4 1
X.28_Cyl 3 4 3 2 1
X.36_Cyl 5 1 4 3 2

Sum 27 23 28 22
Ranking of sums 3 2 4 1
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