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There exists a correspondence between black holes in nonlinear electrodynamics (NLED) and
gravitational collapse of homogeneous dust with semiclassical corrections in the strong curvature regime
that to our knowledge has not been noticed until now. We discuss the nature of such correspondence and
explore what insights may be gained from considering black holes in NLED in the context of semiclassical
dust collapse and vice versa.
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I. STATIC BLACK HOLES AND DUST COLLAPSE

It is well known that a radially infalling particle in the
Schwarzschild spacetime follows the same trajectory as a
particle in the gravitational collapse of a nonrotating
homogeneous dust sphere [1]. This is already true in
Newtonian gravity in fact, and the best way to illustrate
it is to express the Schwarzschild line element in Lemaitre
coordinates fρ; τg [2]. These are the coordinates measured
by an observer in free fall. For a static and spherically
symmetric space-time given in Schwarzschild coordinates
fR; Tg by

ds2 ¼ −fðRÞdT2 þ dR2

fðRÞ þ R2dΩ2; ð1Þ

they are obtained from the transformation R ¼ Rðρ; τÞ,
T ¼ Tðρ; τÞ given by

dτ ¼ dT þ gðRÞ
fðRÞ dR; ð2Þ

dρ ¼ dT þ 1

gðRÞfðRÞ dR; ð3Þ

with g ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
, so that if we take

fðRÞ ¼ 1 −
2MðRÞ

R
; ð4Þ

we get

ds2 ¼ −dτ2 þ 2MðRÞ
R

dρ2 þ Rðρ; τÞ2dΩ2: ð5Þ

For Schwarzschild we have MðRÞ ¼ M ¼ const and a
particle in free fall at ρ ¼ ρ0 follows the trajectory
B0ðτÞ ¼ Rðρ0; τÞ. From the change of coordinates we have

dρ − dτ ¼ 1

g
dR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2MðRÞ

s
dR ¼

ffiffiffiffiffiffiffi
R
2M

r
dR; ð6Þ

which for ρ ¼ ρ0 implies dρ0 ¼ 0 and gives

dB0

dτ
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðB0Þ

B0

s
¼ −

ffiffiffiffiffiffiffi
2M
B0

s
; ð7Þ

that once integrated with the initial condition B0ð0Þ ¼ ρ0
gives

B0ðτÞ ¼ ρ0

 
1 −

3

2

ffiffiffiffiffiffiffi
2M
ρ30

s
τ

!
2=3

¼ ρ0aðτÞ: ð8Þ

Equation (8) is formally identical to the equation of motion
for marginally bound homogeneous dust collapse.

II. NLED BLACK HOLES IN LEMAITRE
COORDINATES

Nonsingular extensions of black hole spacetimes have
been widely considered in the context of modifications to
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general relativity (GR), most notably loop quantum gravity
(LQG) [3] and NLED [4]. Here we focus on GR coupled to
NLED which can be described by the action

A ¼ 1

16π

Z
d4x

ffiffiffiffiffi
jgj

p
ðR − LNLEDðFÞÞ; ð9Þ

with the Lagrangian given by

LNLED ¼ 4μ

α

ðαFÞðνþ3Þ=4

½1 − ðαFÞν=4�1þμ=ν ; ð10Þ

where α is the coupling to NLED and F ¼ FκλFκλ is the
Faraday tensor of the electromagnetic field [5]. Since there
is no matter Lagrangian the energy momentum tensor in
Schwarzschild coordinates is due solely to LNLED as

Tκλ ¼
1

4π

�
∂FLNLEDFσκFλσ −

1

4
gκλLNLED

�
; ð11Þ

which gives

T0
0 ¼ T1

1 ¼ −
2M0ðRÞ

R2
; ð12Þ

T2
2 ¼ T3

3 ¼ −
M00ðRÞ

R
: ð13Þ

For a static and spherically symmetric spacetime with line
element Eq. (1) and NLED source given by a magnetic
charge q� we obtain a black hole solution with

MðRÞ ¼ MRμ

ðRν þ qν�Þμ=ν
: ð14Þ

Notice that for μ ¼ 0 we retrieve the Schwarzschild
solution while we need to impose μ ≥ 3 in order for the
solution to be regular at R ¼ 0 [6].
We can then follow the same procedure outlined for

Schwarzschild, and moving to Lemaitre coordinates we get

gðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MRμ−1

ðRν þ qν�Þμ=ν

s
: ð15Þ

The equation of motion for a free falling observer at
ρ ¼ ρ0 ¼ const becomes

dB0

dτ
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBμ−1

0

ðBν
0 þ qν�Þμ=ν

s
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
B0

�
1þ qν�

Bν
0

�
−μ=ν

s
: ð16Þ

If we consider the scaling B0ðτÞ ¼ ρ0aðτÞ and define
2M ¼ m0ρ

3
0 and q� ¼ ρ0q the above equation becomes

da
dτ

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

a

�
1þ qν

aν

�
−μ=ν

s
; ð17Þ

which looks very similar to the equation of motion of
semi-classical dust collapse models.

III. DUST COLLAPSE WITH SEMICLASSICAL
CORRECTIONS

Marginally bound homogeneous dust collapse, also
known as the Oppenheimer-Snyder-Datt (OSD) model
[1], is obtained by solving the field equations for an
homogeneous fluid sphere with vanishing pressures.
Semiclassical corrections to collapse models have been
considered mostly in the context of scalar fields [7] but the
formalism is readily extended to dust and homogeneous
perfect fluids and strong field corrections have been
developed in a variety of different settings [8]. The action
for the semiclassical dust collapse is

A ¼ 1

16π

Z
d4x

ffiffiffiffiffi
jgj

p
ðR − LDust − LcorrÞ; ð18Þ

where Lcorr is the Lagrangian density of the strong
curvature corrections to the theory, from which we obtain
the effective energy momentum tensor

Teff
κλ ¼ TDust

κλ þ Tcorr
κλ ; ð19Þ

where the dust part is given simply by Tκλ
Dust ¼ ϵuκuλ, with

uκ being the 4-velocity of the fluid, while Tcorr
κλ describes the

strong field corrections as an unphysical addition to the
energy-momentum tensor. In general we may expand Tcorr

κλ
in powers of ϵ close to ϵ ≃ 0 (i.e., for ϵ small with respect to
some critical density ϵcr) and write Teff

κλ accordingly.
Consequently the effective density can be written as

ϵeff ¼ ϵþ α1ϵ
2 þ α2ϵ

3 þ � � � ; ð20Þ

where the parameters αi are defined in terms of the expansion
of Tcorr

κλ . Notice that the effective energy-momentum tensor
is not dust anymore since, while p ¼ 0, we now have
pcorr ≠ 0. In fact it is the effective pressure that allows for
violation of the energy conditions and consequently may
halt collapse before it reaches the singularity.
The line element for spherically symmetric, marginally

bound, homogeneous collapse is simply

ds2 ¼ −dt2 þ B02dr2 þ B2dΩ2; ð21Þ

with B ¼ Bðr; tÞ and primed quantities representing partial
derivatives with respect to r, i.e., X0 ¼ ∂X=∂r. In the
classical case Tcorr

κλ ¼ 0 and the energy density ϵ of the
collapsing sphere is given by
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ϵ ¼ F0

B2B0 ; ð22Þ

with F being the mass contained within a given radius r at a
time t, namely the Misner-Sharp mass, which is defined
as Fðr; tÞ ¼ B _B2, and dotted quantities indicating partial
derivatives with respect to t, i.e., _X ¼ ∂X=∂t. For homo-
geneous dust the Misner-Sharp mass does not depend on
the proper time t as there is no inflow or outflow of particles
through any constant r surface during collapse. If we take
the boundary of the cloud r ¼ r0 ¼ const. we can see that
the 3-metric restricted to the boundary surface is identical
to the black hole metric in Lemaitre coordinates (5) with the
identification of τ ¼ t and Bðr0; tÞ ¼ B0ðtÞ ¼ B0ðτÞ and
Fðr0Þ ¼ 2M. The equation of motion for marginally bound
collapse becomes

_B ¼ −
ffiffiffiffi
F
B

r
; ð23Þ

which, when evaluated at the boundary, reduces to Eq. (7).
It is customary to express the above equations in terms of
the adimensional scale factor a and rescale the Misner-
Sharp mass as

Bðr; tÞ ¼ raðtÞ; Fðr; tÞ ¼ r3mðr; tÞ; ð24Þ

so that for homogeneous dust we have mðrÞ ¼ m0 ¼ const
and Eqs. (22) and (23) become

ϵ ¼ 3m0

a3
; ð25Þ

_a ¼ −
ffiffiffiffiffiffi
m0

a

r
; ð26Þ

and the solution of Eq. (26) is given by aðtÞ as in Eq. (8). In
order to avoid the formation of the singularity at the end of
collapse a quantum-inspired model based on LQG was
proposed in [9]. The idea, mediated from loop quantum
cosmology [10], is to add an effective correction to the
energy momentum tensor which describes the departure of
the quantum-gravity theory from classical GR in the strong
field, i.e., it becomes important at high densities. A general
form of such a correction consistent with Eq. (20) is

ϵeff ¼ ϵ

�
1 −

�
ϵ

ϵcr

�
β
�
γ

¼ 3meff

a3
; ð27Þ

where ϵcr is a critical density scale and meff is the rescaled
effective Misner-Sharp mass for which

meff ¼ a _a2: ð28Þ
The model proposed in [9] has β ¼ γ ¼ 1 but in principle
other values of β and γ can be considered. From the above
equations we can write the equation of motion as

_a ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

a

�
1 −

aνcr
aν

�
γ

s
; ð29Þ

where we have introduced the critical scale factor acr from
ϵcr ¼ 3m0=a3cr and set ν ¼ 3β. It is immediately clear that
Eq. (17) and Eq. (29) are identical with the exception of
the sign in front of acr. For the case of NLED the sign of
the charge can be positive or negative, while for collapse
acr > 0 because it related to a length scale.
The condition for the formation of trapped surfaces is

1 −
F
B
¼ 1 −

r2meff

a
¼ 1 − r2 _a2 ¼ 0; ð30Þ

which gives implicitly the radius of the apparent horizon
rahðtÞ ¼ −1= _a. Notice that rahðtÞ is defined only within the
matter cloud and therefore the apparent horizon exists only
when rahðtÞ ≤ r0. When rahðtÞ ¼ r0 the apparent horizon
“touches” the cloud’s boundary and must join with the
inner or outer horizons of the exterior geometry. Assuming
that there are no trapped surfaces at the initial time means
that rahð0Þ > r0 and the horizon forms only at a later stage
of collapse. If _a → −∞ then rah → 0 and rahðtÞ will cross
the boundary only once. Therefore we cannot have the
formation of an inner horizon at the end of collapse. This is
the case of the OSD collapse. On the other hand if _a → 0
then rah may cross the boundary twice thus producing the
outer and inner horizons (see Fig. 1). This is the case of the
Hayward regular black hole.

A. Example 1: Hayward black hole

We can consider the Hayward black hole [11] by setting
μ ¼ ν ¼ 3 in Eq. (14), which corresponds to γ ¼ −1. Then
we may look at the corresponding semiclassical dust
collapse. The equation of motion for the scale factor
becomes

_a ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

a2

a3 þ q3

s
: ð31Þ

In this case a → 0 asymptotically and the effective density
remains finite as ϵeff → 3m0=q3. The effective energy
momentum tensor can be obtained from

ϵeff ¼ ϵ

�
1 −

ϵ

ϵcr þ ϵ

�
: ð32Þ

Also since _a → 0 we see that, if trapped surfaces develop,
the apparent horizon must cross the boundary twice, thus
forming the outer and inner horizons. Finally ä → 0 shows
that the collapse does not bounce and the collapsing matter
asymptotically settles to the Hayward black hole. Similarly
collapse to the Bardeen black hole [12] can be obtained for
μ ¼ 3 and ν ¼ 2 and other NLED black holes, such as the
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ones described in [13] may also be recast in the context
of collapse.

B. Example 2: LQG-inspired collapse

Conversely we can take a model for collapse and bounce
such as the one inspired by LQG from [9] and investigate
its corresponding black hole. The LQG inspired collapse is
obtained from Eq. (29) with β ¼ γ ¼ 1, which correspond
to ν ¼ 3 and μ ¼ −3. Then the NLED Lagrangian for this
black hole is

LNLEDðFÞ ¼ −12
ffiffiffi
α

p
F3=2; ð33Þ

and fðRÞ can be obtained from Eq. (14) with q� ¼ −acr.
The black hole is singular and the Kretschmann scalar
diverges for R → 0.

K ¼ 48M2

R12
ð39q6� − 10q3�R3 þ R6Þ: ð34Þ

However, the equation for the radial infall of a particle in
this geometry shows that it must bounce at R ¼ q� and thus
cannot reach the center.

C. Example 3: Semiclassical collapse with γ = 2

From the above consideration we can easily construct a
model that settles at acr asymptotically. If we take β ¼ 1
and γ ¼ 2 we see that while a → acr we have that both
_a → 0 and ä → 0. Also in this case the corresponding black
hole is singular and K diverges at the center, but any
radially infalling particle would approach R ¼ q� in an
infinite comoving time and thus this can be seen as
the exterior geometry of an extreme compact object
of finite size. The Kretschmann scalar for this black
hole is

K¼48M2

R18
ð278q12� −412q9�R3þ180q6�R6−20q3�R9þR12Þ;

ð35Þ

while the Lagrangian density is

LNLEDðFÞ ¼ −24
ffiffiffi
α

p
F3=2½1 − ðαFÞ3=4�: ð36Þ

The scale factors for OSD collapse, the Hayward black
hole, the LQG inspired collapse and the collapse model
with γ ¼ 2 are shown in Fig. 2.
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FIG. 2. The scale factor aðtÞ for the OSD model and the three
collapse models in the examples. The solid line describes OSD
collapse. The dashed line describe collapse to a Hayward regular
black hole. The dotted line describes collapse and bounce of the
LQG inspired model. The dot-dashed line describes the collapse
model with γ ¼ 2. In the figure we have taken m0 ¼ 1
and q ¼ −acr ¼ 0.3.

FIG. 1. The Penrose diagram of gravitational collapse of dust
with semiclassical corrections that leads to the formation of the
Hayward regular black hole. The boundary of the cloud B0

collapses toward r ¼ 0. The apparent horizon rah crosses the
boundary twice producing the outer and inner horizons of the
Hayward solution (Rþ and R− respectively). The dashed line
represents the apparent horizon for the OSD collapse.
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