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A B S T R A C T 

We explore the dynamics of stellar discs in the close vicinity of a supermassive black hole (SMBH) by means of direct N -body 

simulations. We show that an isolated nuclear stellar disc exhibits anisotropic mass segregation meaning that massive stars 
settle to lower orbital inclinations and more circular orbits than the light stars. Ho we ver, in systems in which the stellar disc 
is embedded in a much more massive isotropic stellar cluster, anisotropic mass se gre gation tends to be suppressed. In both 

cases, an initially thin stellar disc becomes thicker, especially in the inner parts due to the fluctuating anisotropy in the spherical 
component. We find that vector resonant relaxation is quenched in the disc by nodal precession, but it is still the most efficient 
relaxation process around SMBHs of mass 10 

6 M � and abo v e. Two-body relaxation may dominate for less massive SMBHs 
found in dwarf galaxies. Stellar discs embedded in massive isotropic stellar clusters ultimately tend to become isotropic on the 
local two-body relaxation time-scale. Our simulations show that the dynamics of young stars at the centre of the Milky Way is 
mostly driven by vector resonant relaxation leading to an anticorrelation between the scatter of orbital inclinations and distance 
from the SMBH. If the S -stars formed in a disc less than 10 Myr ago, they may coexist with a cusp of stellar mass black holes 
or an intermediate mass black hole with mass up to 1000 M � to reproduce the observed scatter of angular momenta. 

Key words: methods: numerical – stars: kinematics and dynamics – Galaxy: centre – galaxies: nuclei. 
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 I N T RO D U C T I O N  

ore than two decades of repeated monitoring of stellar orbits in 
he Galactic centre revealed the presence of a compact massive 
bject that coincides with the radio source SgrA ∗ (Ghez et al. 2000 ;
illessen et al. 2009 ; Genzel, Eisenhauer & Gillessen 2010 ; Gillessen 

t al. 2017 ). The high mass ( M � 4 × 10 6 M �) and compact size
 R < 10 −6 pc ) suggest that the object is a supermassive black hole
SMBH; see Eckart et al. 2017 for a discussion). The SMBH is
urrounded by a dense cluster of stars, most of which are old ( > 5 Gyr
ld), but some stars are very young ( < 10 Myr old). The majority
f young and massive stars are distributed in a disc-like structure
s seen from their angular momentum vector directions (Levin & 

eloborodo v 2003 ; P aumard et al. 2006 ; Bartko et al. 2009 ; Yelda
t al. 2014 ; von Fellenberg et al. 2022 ). This kinematic structure
s called the clockwise stellar disc and is located between 0.04 and
.5 pc (Levin & Beloborodov 2003 ). Another distinct kinematic 
tructure is the S -star cluster: a cluster of young massive stars located
ithin the inner arcsecond (0.04 pc) from the SMBH. Detailed 

pectroscopic studies of the S -stars indicate their ages are comparable 
ith those of the clockwise stellar disc suggesting the same origin 

or both systems (Habibi et al. 2017 ). Recent observations suggest
hat the S -star cluster is likely to be arranged in two orthogonal discs
Ali et al. 2020 ; Peißker et al. 2020 ) which may be identified from
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h 2
he distributions of the position angles of the semimajor axes of the
ky-projected orbits (Ali et al. 2020 ). 1 

The Milky Way galaxy is not the only galaxy that features a stellar
isc. At the centre of the Andromeda galaxy, two distinct brightness
eaks are observed (Lauer et al. 1993 ) which may be explained by
he so-called eccentric nuclear disc (Tremaine 1995 ) where orbits of
tars have aligned arguments of periapsides. Observations of nuclear 
tar clusters in nearby edge-on galaxies suggest that some of them
ost stellar discs associated with multiple stellar populations (Seth 
t al. 2006 , 2008 ). Therefore, the coexistence of the nuclear star
lusters with SMBHs and stellar discs appears to be common in the
ni verse moti v ating studies of these systems. The main focus of this
aper is the nuclear stellar disc of the Milky Way, but we also discuss
tellar discs in nuclei of dwarf galaxies. 

The interaction between a young stellar disc and the old spherical
luster may be described by secular processes that take place on
ime-scales significantly shorter than two-body relaxation. Due to the 
nite number of stars even a spherical cluster exhibits a fluctuating
tochastic anisotropy that generates a strong net gravitational torque 
n stellar orbits, giving rise to rapid diffusion of orbital angular
omenta in a process called resonant relaxation (Rauch & Tremaine 

996 ; Hopman & Alexander 2006 ; Eilon, Kupi & Alexander 2009 ;
ocsis & Tremaine 2011 , 2015 ; Giral Mart ́ınez, Fouvry & Pichon
020 ). In near-Kepler potentials in which the orbital time is much
horter than the apsidal precession time, the dynamics of stars can
 Note that the existence of two orthogonal discs in S -stars is debated (von 
ellenberg et al. 2022 ). 
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e represented as the interaction of quasi-stationary elliptical wires
 x erting mutual gravitational torques. In this case, the individual
rbital energies are approximately conserved, but the torques change
oth the magnitudes and the directions of the angular momentum
ectors due to scalar resonant relaxation (SRR). In non-Keplerian
pherical mean-field potential, which arises in the Galactic centre due
o the extended stellar mass distribution and/or general relativistic
recession, the elliptical orbits are not closed, but experience rapid
psidal precession. For these systems, the dynamical relaxation of
rbital parameters is further accelerated by the coherent torques
etween N rings or annuli co v ered by the individual stellar orbits.
his reorients the angular momentum vector directions even more

apidly in a process called vector resonant relaxation (VRR) while
oth orbital energy and angular momentum magnitude are nearly
onserved (Rauch & Tremaine 1996 ). 

Theoretical studies of VRR benefit from the Hamiltonian formal-
sm where the Hamiltonian represents the gravitational energy from
he stellar potential excluding the Keplerian orbital energy around
he SMBH (Kocsis & Tremaine 2015 ). This may be achieved by
rbit-av eraging o v er the precession time-scale. The final equilibrium
tate may be found by means of mean field theory, the Markov
hain Monte Carlo (MCMC) method, kinetic theory, or by integrating
amilton’s equations of motion in time using orbit-averaged N -ring
r direct N -body simulations. First, using the mean field approach,
he distribution function of the angular momentum vector directions
an be found by maximizing the entropy of the system using
alculus of variations (Roupas, Kocsis & Tremaine 2017 ; Tak ́acs &
ocsis 2018 ; Magnan et al. 2021 ). The equations have been solved
nalytically in the idealized case where all stars have identical
asses, semimajor axes, and eccentricities. Roupas et al. ( 2017 ) and
ak ́acs & Kocsis ( 2018 ) found that the stellar discs may represent
tatistical equilibrium structures. Moreo v er, depending on the total
nergy and angular momentum the system exhibits a phase transition
etween disc and spherical phases showing an analogy with liquid
rystals. Recently, these models were generalized by Magnan et al.
 2021 ) to include the mass spectrum of stars showing that massive
tars tend to arrange in thinner discs than light stars in a process called
ertical mass segregation. This confirms the original expectation of
auch & Tremaine ( 1996 ). 
A similar conclusion was reached earlier using the MCMC
ethod. Sz ̈olgy ́en & Kocsis ( 2018 ) showed that for a particular

nisotropic initial condition the massive stars in the cluster form
 disc. The study was recently extended by M ́ath ́e, Sz ̈olgy ́en &
ocsis ( 2022 ) where the authors explored the VRR equilibrium for a

ange of initial configurations in energy – angular momentum space.
oth of these studies included orbit-averaged interactions but did
ot consider the diffusion arising from two-body encounters. They
ound that massive objects form discs even in cases where the initial
evel of anisotropy is only a few per cent. 

Mass se gre gation may also occur in the eccentricity distribution,
ut in this case driven by SRR. SRR is the dominant process to
andomize the eccentricities of the S -stars in the Galactic centre
Perets et al. 2009 ). Fouvry, Pichon & Chavanis ( 2018 ) showed that
assive stars tend to become more circular than light stars in dis-

rete quasi-Keplerian axisymmetric discs. In spherically symmetric
ystems, mass se gre gation in eccentricity may take place in both
irections: the orbits of massive stars become more circular and light
tars become more eccentric or vice versa depending on the total
nergy of the system (Gruzinov, Levin & Zhu 2020 ). 

The time-evolution of the system towards VRR equilibrium may
e described by kinetic theory solving the Boltzmann equation. This
pproach has been used to elucidate SRR (Bar-Or & Fouvry 2018 )
nd VRR processes (Fouvry, Bar-Or & Chavanis 2019b ). 
NRAS 517, 6205–6224 (2022) 
The time-evolution leading to mass-dependent anisotropy was
emonstrated in a set of direct N -body and N -ring simulations
eaturing a stellar disc, an intermediate mass black hole (IMBH)
nd a spherically symmetric cluster of stars (implemented as an
xternal potential) with an SMBH. Sz ̈olgy ́en, M ́ath ́e & Kocsis ( 2021 )
howed that the orbit of the IMBH aligns rapidly with the disc of
tars within 3–10 Myr (depending on the IMBH mass and the initial
nclination angle) and the IMBH eccentricity decreases rapidly due to
RR and SRR by the effect called resonant dynamical friction. This
ork featured direct integration of two-body encounters between the
MBH, IMBH, and the stars in the disc, but neglected the two-body

nteractions between stars in the disc and in the spherical cluster and
eviations from spherical symmetry. 
Mass se gre gation effects in the vicinity of a massive black hole

ere originally described in the context of two-body relaxation in
sotropic spherically symmetric stellar systems (Bahcall & Wolf
977 ) which were later confirmed by direct N -body simulations
Preto & Amaro-Seoane 2010 ; Panamarev et al. 2019 ). For an
sotropic system two-body relaxation is much slower than VRR
y the ratio of the central mass to the individual stellar mass
imes N 

1/2 , i.e. M SMBH /( N 

1/2 m ), where N is the number of stars.
t drives mass segregation slowly both in semimajor axes and, as
ho wn by Mikhalof f & Perets ( 2017 ), it leads to mass se gre gation
n orbital inclinations and eccentricities in isolated stellar discs.
ecently, N -body modelling of F oote, Generozo v & Madigan ( 2020 )
emonstrated vertical and eccentric mass segregation in eccentric
uclear discs. It was not clear from this study whether these effects
ere caused by two-body or resonant relaxation or both. Anisotropic
ass se gre gation was also observ ed in direct N -body simulations of

otating globular clusters (Sz ̈olgy ́en, Meiron & Kocsis 2019 ), where
RR dominates o v er two-body relaxation for N � 10 4 (Meiron &
ocsis 2019 ). 
Perets et al. ( 2018 ) showed that the collecti ve ef fect of stars in

 spherical distribution (in their case a cusp of stellar black holes)
ay lead to the formation of clumps, warps, and spiral arms in the

tellar disc. They compared results from direct N -body simulations
f isolated stellar discs, stellar discs embedded in a smooth potential,
 hybrid self-consistent field modelling of disc – sphere interactions
Meiron et al. 2014 ) and direct N -body integration of the whole sys-
em. While isolated discs and discs embedded in a smooth potential
howed steady increase in disc thickness, both hybrid and direct
 -body models led to the formation of clumps, warps, and spiral
rms. The qualitative agreement between hybrid and direct models
uggests that these effects may be caused by resonant relaxation. 

Mastrobuono-Battisti et al. ( 2019 ) used direct N -body simulations
o study the co-evolution of multiple stellar discs embedded in an
nalytical stellar cusp and a discrete population of stellar black holes.
y introducing a new disc every 100 Myr, they found that the discs
 volve to wards a uniform distrib ution in orbital inclinations, b ut at
he end of their simulations (500 Myr) each of the discs showed
ifferent morphologies and kinematics. 
Kocsis & Tremaine ( 2015 ) and Giral Mart ́ınez et al. ( 2020 )

howed that the fluctuating anisotropy of a spherical distribution
eads to diffusion in angular momentum direction space in a nearly
pherical system due to VRR. Thus, as long as the gravitational
nteraction between disc particles may be neglected, a spherical
istribution drives the disruption of a stellar disc. Furthermore,
wo-body relaxation may further accelerate rapid diffusion, rapidly
ncreasing the thickness of an initially very thin disc (Cuadra,
rmitage & Alexander 2008 ). In the opposite limit of a strongly

elf-interacting thin stellar disc with no two-body relaxation, the disc
cts as a coupled system of harmonic oscillators, counteracting the
xternal torques such that the disc remains intact and exhibits normal
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ode oscillations (Kocsis & Tremaine 2011 ). In this paper, we aim to
tudy the interaction of a nuclear stellar disc with a spherical nuclear
tar cluster around a central massive black hole self-consistently by 
eans of direct N -body simulations. We impro v e the physical realism

nd particle number resolution o v er previous direct N -body models
o understand if stellar discs or black hole discs may be long lived in
uclear star clusters. 
The paper is organized as follows. In Section 2 , we re vie w the

alactic centre time-scales. In Section 3 , we describe the initial 
etup for our numerical models. Section 4 is devoted to the analysis
f isolated stellar discs without a spherical stellar population, and 
ection 5 to the effects caused by the dynamical interaction with 

he sphere. In Section 6 , we apply our findings to compare with the
bserved population of S -stars and, finally, we summarize the paper 
n Section 7 . 

 T H E  TIME-SCALES  

n this section, we re vie w the relaxation processes in galactic nuclei
nd the associated time-scales similar to Kocsis & Tremaine ( 2011 )
nd Rauch & Tremaine ( 1996 ). 

.1 Two-body relaxation 

wo-body relaxation arises from the fluctuating force acting on a 
ubject star o v er the orbital period. As the total impulses received
y a star o v er the orbital period are uncorrelated, the relaxation rate
ccurs in a random-walk fashion and is often called non-coherent 
elaxation. The two-body relaxation changes both the energy and 
he corresponding angular momentum at the rate (see e.g. Rauch & 

remaine 1996 or Binney & Tremaine 2008 ): 

�E 

E 

= α
m 2 N 

1 / 2 

M bh 

(
t 

t orb 

)1 / 2 

, 
�L 

L 

= β
m 2 N 

1 / 2 

M bh 

(
t 

t orb 

)1 / 2 

, (1) 

here N is the total number of stars, M bh is the mass of the central
assive black hole, E ∼ 2 GM bh / R is the Keplerian energy, m 2 =

 m 

2 〉 / 〈 m 〉 is the ef fecti ve mass and α ∼ β ∼ (ln � ) 1/2 within factors
f order unity where ln � � ln ( M bh / m ) is the Coulomb logarithm, m
s the stellar mass, and t orb is the orbital period. 

The two-body relaxation time-scale for a spherical stellar system 

ith a central massive black hole can be computed by (Binney &
remaine 2008 ): 

 relax = 0 . 34 
σ 3 ( r) 

G 

2 ρ( r) m 2 ln � 

= 

M 

2 
bh 

β2 m 

2 
2 N 

t orb , (2) 

here σ is the 1D velocity dispersion, ρ is the stellar density. 

.2 Scalar resonant relaxation 

ontrary to two-body relaxation, SRR occurs in a coherent way o v er
he apsidal precession time-scale. In near-Kepler potentials, the orbit- 
veraged interaction may be approximated as elliptic wires e x erting 
utual torques. In this case, the Keplerian energy is conserved, but 

oth the magnitude and the direction of angular momentum vectors 
 are changed at the following rate: 

�L 

L c 
= ηs 

m 2 N 

1 / 2 

M bh 

(
t prec t 

t 2 orb 

)1 / 2 

, (3) 

here L c = L/ 
√ 

1 − e 2 , ηs is a dimensionless coefficient of order 
nity and t prec is the apsidal precession time. The total relaxation rate
ccurs in a random walk fashion with the apsidal precession time 
eing the step size (duration of the coherent phase). The long duration 
f the step size compared to the orbital period makes this process
ore efficient than two-body relaxation in near-Kepler potentials 
here t prec � t orb . 
The SRR time in a spherical stellar system can be found by: 

 rr, s = 

4 π | ω| 
β2 

s �
2 

M 

2 
bh 

M ( r ) m 2 
, (4) 

here ω = 2 π / t prec is the apsidal precession rate (sum of Newtonian
nd relativistic), � = 2 π / t orb is the orbital frequency, and βs is
 dimensionless coefficient estimated by Eilon et al. ( 2009 ) to be
.05 ± 0.02. 

.3 Vector resonant relaxation 

n spherical potentials where the precession time is short, the stellar
rbits may be approximated as annuli that e x ert mutual torques.
n this case, the torques change the direction of orbital angular
omentum vectors at the rate: 

 L /L c = ην

m 2 N 

1 / 2 

M bh 

(
t 

t orb 

)1 / 2 

+ βν

m 2 N 

1 / 2 

M bh 

t 

t orb 
, (5) 

here ην is a dimensionless coefficient that corresponds to the 
ontribution of two-body relaxation and SRR, and the term with 
ν = 1.83 ± 0.03 represents the contribution from the coherent phase 
f VRR (linear with t / t orb ) (Eilon et al. 2009 ). Kocsis & Tremaine
 2015 ) found that VRR is slower by a factor 3 due to rapid apsidal
recession consistent with earlier work (Rauch & Tremaine 1996 ). 
t is expected that VRR may be the most efficient way to randomize
he stellar orbital inclinations as the step size of the coherent phase
s the largest among all relaxation processes. 

For a spherical stellar system, the VRR time is (Eilon et al. 2009 ): 

 rr, v = 

M bh √ 

M ( r ) m 2 

t orb 

β2 
ν

. (6) 

 ocsis & T remaine ( 2015 ) found that m 2 is replaced by the RMS
ass for VRR. 

.4 Two-body relaxation in a stellar disc 

wo-body relaxation time-scale for a stellar disc can be computed 
y (Stewart & Ida 2000 ): 

 rx , disc = 

〈
e 2 
〉2 

4 . 5 �

M 

2 
bh 

m 2 �r 2 ln � 

, (7) 

here � is the surface density of the disc, � � < e 2 > 

3/2 M bh / m . The
ormula assumes < i 2 > 

1/2 � 0.5 < e 2 > 

1/2 . 

.5 Vector resonant relaxation in a stellar disc 

RR may also occur in stellar discs. Since stars e x ert torques from
he disc plane leading to precession in the line of nodes at the rate
Kocsis & Tremaine 2011 ): 

� 

�〈
i 2 
〉1 / 2 

M disc 

M bh 
, (8) 

he nodal precession will limit the step size for the coherent phase
f VRR. To compute VRR in a stellar disc, we replace the apsidal
recession rate in equation ( 4 ) by the nodal precession rate and M disc 

y M ( r ): 

 vrr, disc � 

4 π

�
〈
i 2 
〉1 / 2 

M bh 

m 2 
. (9) 
MNRAS 517, 6205–6224 (2022) 
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M

Figure 1. The time-scales of dynamical processes as a function of distance from the SMBH in our simulations of the Galactic centre. Computed from analytical 
expressions presented in Section 2 using the data from the initial conditions of the models described in Section 3 . All thick lines show the time-scales related to 
the interaction of the stellar disc with a spherical component with a 3D density distribution ρ ∝ r −1.75 . All thin lines show the relaxation time-scales within the 
disc neglecting contribution from a spherical component. Black lines illustrate two-body relaxation within the discs, purple lines show VRR within the discs. 
Different line styles correspond to density distributions of the stellar discs with corresponding power-law density slope according to the legend. 

T  

w  

p  

K  

m  

C  

t  

s
 

d
 

r  

t

t

w  

d  

s  

p
 

G  

s  

c  

o  

a  

s  

w  

r  

s  

i  

t  

3  

o  

p  

 

a  

f  

(  

d  

b  

t  

a

L

w  

L

H  

s  

d  

d  

a  

d  

2  

f  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/4/6205/6772454 by Autonom
ous O

rganization of Education “N
azarbayev U

niversity” user on 29 M
arch 2023
his expression shows relaxation of the angular momentum vectors
hich in this case is dominated by relaxation in azimuthal com-
onents driven by the nodal precession (as shown in section 2 of
ocsis & Tremaine 2011 ). Note that VRR in the vertical direction
ay be much slower due to kinetic blocking (Fouvry, Bar-Or &
havanis 2019a ). Furthermore, t vrr,disc estimates the time-scale for

he relaxation of a disc by neglecting the fluctuating torques from the
pherical component of the stellar distribution. 

We refer to Tremaine ( 1998 ) and Fouvry et al. ( 2018 ) for the
iscussion and analysis of SRR in discs. 
For the relaxation processes that occur much faster than two-body

elaxation, it is often useful to compare the time-scales with respect
o the secular time, defined as: 

 sec = 

M bh 

M tot 
P inner , (10) 

here P inner is the orbital period of the innermost star (in our models
etermined by the inner edge of the stellar disc) and M tot is the total
tellar mass of the system. This time-scale sets the shortest apsidal
recession time. 
Fig. 1 shows the time-scales described abo v e applied to the

alactic centre using data from our simulations (see Section 3 ). The
pherical component corresponds to the Bahcall–Wolf cusp (Bah-
all & Wolf 1976 ) while stellar discs feature various distributions
f 3D densities and orbital parameters adopted in our simulations
s described in the following section. The figure compares the time-
cales of dynamical processes within the sphere (thick lines) and
ithin the discs (thin lines). As we see, VRR within the sphere (thick

ed line) is the fastest process followed by VRR in discs (although for
ome disc models two-body relaxation within the disc is comparable
NRAS 517, 6205–6224 (2022) 
n some regions; see purple and black lines). On the other hand, if
he total mass of the whole stellar system is increased by a factor of
0 (labelled as 30X in the legend), while keeping the same number
f particles, two-body relaxation within the disc becomes the fastest
rocess (see the section below for a moti v ation on the 30X models).
Note that the time-scales presented in Fig. 1 (and the equi v alent

nalytical expressions) are derived either neglecting the contribution
rom the disc (time-scales within the sphere) or from the sphere
time-scales within the discs), but in reality the dynamics of a stellar
isc embedded in a sphere may be shaped by the contribution from
oth the disc and the sphere. The torque acting on a test particle in
he presence of an isotropic cluster due to the fluctuating stochastic
nisotropy is of the order of (Kocsis & Tremaine 2015 ) 

˙
 sphere ∼ βν

N 

1 / 2 
sphere m rms , sphere 

M bh 

L c 

t orb 
, (11) 

hile a stellar disc drives nodal precession at the rate of the order of

˙
 disc ∼ N disc m av , disc 

M bh 

L c 

t orb 
. (12) 

ere, m rms,sphere = 〈 m 

2 〉 1/2 and m av,disc = 〈 m 〉 for objects in the
pherical cluster and the disc, respectively. Thus, the effect of the disc
ominates o v er the sphere if N disc m av , disc � N 

1 / 2 
sphere m rms , sphere and the

isc exhibits normal mode oscillations (Kocsis & Tremaine 2011 ),
nd in the opposite limit the disc dissolves on the t rr,v VRR time-scale
ue to the sphere (Kocsis & Tremaine 2015 ; Giral Mart ́ınez et al.
020 ). To explore the dynamics and the dominant relaxation process
or different systems, we perform direct N -body simulations of stellar
iscs embedded in a spherical cusp of stars in the intermediate

art/stac3050_f1.eps


Stellar discs in galactic nuclei 6209 

r
w

3

W

G

w  

a  

a  

W  

M  

a

3

W  

t
M  

m
n  

M  

g
a  

t  

S

w  

r
T  

e  

p  

t  

b  

r

o
t  

t  

A  

a  

s  

a
t  

(

f  

0
T  

t
r  

t  

t  

o  

1  

t  

t  

t  

R  

t

3

W  

c  

s

s
m  

1  

b
c  

0  

f
w  

e
e  

C

s
b  

d  

o  

m
p  

m  

 

t

T  

i  

s
e  

c  

u  

d
t  

t
 

k  

m

α

r  

m  

t  

a  

t

2 Note that these estimates do not include stellar remnants meaning that the 
actual enclosed mass within the regions may be higher. 
3 Galactic centre observations suggest an even more top-heavy profile 
d N /d m ∝ m 

−0.45 ± 0.3 (Bartko et al. 2010 ). 
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egime where N disc m av,disc and N 

1 / 2 
sphere m rms , sphere are comparable as 

e describe in the following section. 

 SIMULATIONS  

e adopt the following system of units for all the models: 

 = M bh = R out = 1 , (13) 

here G is the gravitational constant, M bh is the initial SMBH mass,
nd R out is the initial outer radius of the stellar system which is defined
s the orbital semimajor axis of the outermost star in the system.
hen converting to physical units we typically assume R out = 0.5 pc,
 bh = 4 × 10 6 M � unless indicated otherwise, and in some cases we

dopt R out = 1 pc, M bh = 1 . 3 × 10 5 M �. 

.1 The code 

e use a modified direct N -body code PHI-GRAPE (Harfst et al. 2007 )
hat uses fourth-order Hermite integration method (Makino 1991 ; 

akino & Aarseth 1992 ; Aarseth 2003 ) to solve the equation of
otion. The code was originally designed for the GRAPE cards and 

ow utilizes an emulation library to run on modern GPUs (Nitadori &
akino 2008 ). The modified version of the original code includes the

ravitational interaction with the massive central object implemented 
s a fixed external point-mass potential and the accretion of stars on
o the central object (Just et al. 2012 ; Li et al. 2012 ; Zhong, Berczik &
purzem 2014 ). The equation of motion is 

r̈ i = −
∑ 

i �= j 

Gm j r ij 
( r 2 ij + ε2 

ss ) 3 / 2 
− GM bh r i 

r 3 i 

, (14) 

here r ij = r i − r j with r i , r j the positions of stars i and j ,
espectively, εss = 1.0 × 10 −4 is the stellar softening parameter. 
he value for the softening between stars is chosen to be small
nough to resolve rele v ant close encounters but large enough to
revent formation of the compact binary systems. Lo wer v alue for
he softening may result in a larger number of very close encounters
etween stars, but they are rare and are not rele v ant on the resonant
elaxation time-scales which are the main focus of this work. 

The central massive black hole can grow in mass by consumption 
f stars. The criterion for the accretion is the instantaneous distance 
o the star is less than the accretion radius which was set to be equal to
he tidal disruption radius of a 2 R � star by a 4 × 10 6 M � black hole.
fter the accretion event the total mass of the star is instantaneously

dded to the mass of the SMBH and the star is remo v ed from the
imulation (Just et al. 2012 ; Li et al. 2012 ; Zhong et al. 2014 ). The
ccretion radius sets the innermost resolution of the simulations and, 
hus, allows not to soften the interaction between stars and the SMBH
Khan et al. 2018 ). 

The accuracy of the simulations is controlled by the time-step 
actor η (Aarseth 1985 ; Makino & Aarseth 1992 ). We choose η =
.01 as a compromise between the accuracy and the computing time. 
o ensure that η = 0.01 is the optimal choice, one can measure

he total energy exchange between particles caused by two-body 
elaxation o v er the apsidal precession time and compare it to the
otal absolute energy error of the system o v er the same period of
ime. For all of our models, the ratio of the absolute energy error
 v er the total energy exchange between particles does not exceed
0 −5 o v er the apsidal precession time for a given particle ensuring
hat η = 0.01 is the optimal choice. The total relative energy error at
he end of the simulations is of the order of �E = 

E−E 0 
E 0 

≈ 10 −4 , the

otal angular momentum error is of the order of � L = 

| L−L 0 | 
| L 0 | ≈ 10 −3 .
educing the value for η impro v es the error tolerance, but slows down
he computations and qualitatively shows the same results. 

.2 Initial conditions 

e study the gravitational interaction of a galactic nucleus with three
omponents: a central massive black hole, a spherical cluster of old
tars, and a population of stars resembling a disc. 

We run one-to-one simulations meaning that one particle in the 
imulation represents one realistic star. This can be achieved by 
odelling a system of 10 5 particles with an average particle mass of

0 −6 M bh . Using a top-heavy initial mass function (IMF, equation 15
elow) and applying the parameters to the Milky Way Galaxy 
entre gives the total stellar mass M tot � 2 × 10 5 M � for the inner
.5 pc. This value is comparable to the total stellar mass inferred
rom observations: Sch ̈odel et al. ( 2018 ) find M � 1 . 3 × 10 4 M �
ithin 0.1 pc and M � 1 . 0 × 10 6 M � within 1 pc. 2 The most recent

stimates based on interferometric astrometry indicate that the total 
xtended mass within 0.1 pc does not exceed M � 10 5 M � (Gravity
ollaboration 2022 ). 
We generate the initial positions and velocities for the spherical 

tellar system to follow Keplerian orbits with spatial density distri- 
ution resembling a Bahcall–Wolf cusp with ρ ∝ r −7/4 where r is the
istance from the SMBH (Bahcall & Wolf 1976 ). The distribution
f orbital parameters for the spherical cluster is the same in all our
odels while we vary the spatial density distribution and orbital 

arameters for the disc stars as described in Section 3.2 . In all the
odels, we keep the stellar disc embedded in a spherical component.
To model the mass spectrum of stars, we adopt the Kroupa ( 2001 )

op-heavy IMF for the sphere: 

d N 

d m 

∝ m 

−α, αsphere = 

⎧ ⎨ 

⎩ 

1 . 3 , if 0 . 08 M � ≤ m < 0 . 5 M �
2 . 3 , if 0 . 5 M � ≤ m < 1 . 0 M �
1 . 5 , if m ≥ 1 . 0 M �

. (15) 

he top-heavy IMF is moti v ated by the expected mass segregation
n galactic nuclei (see e.g. Panamarev et al. 2019 ), and the observed
tellar mass function in the Galactic centre following m 

−1.7 ± 0.2 (Lu 
t al. 2013 ). After the IMF is generated we use the stellar evolution
ode (SSE; Hurley, Pols & Tout 2000 ) to evolve the whole system
p to 1 Gyr and use stellar masses at 1 Gyr as the initial mass
istribution for both disc and spherical components. This allows us 
o ignore the mass-loss due to the stellar evolution in the code during
he dynamical evolution. 

We use a slightly shallower slope for the heavier masses but
eep the same break points to generate the IMF for the stellar disc
oti v ated by observations (Bartko et al. 2010 ) 3 : 

disc = 

⎧ ⎨ 

⎩ 

1 . 3 , if 0 . 08 M � ≤ m < 0 . 5 M �
2 . 3 , if 0 . 5 M � ≤ m < 1 . 0 M �
1 . 3 , if m ≥ 1 . 0 M �

. (16) 

We explore several models for the distribution of orbital pa- 
ameters in the disc as summarized in T able 1 . W e consider two
ain scenarios for the origin of the stellar disc. The first one is

he formation of the disc due to the star – disc interactions in an
ctive galactic nucleus (AGN). Panamarev et al. ( 2018 ) showed that
he gaseous accretion disc may capture stars from the surrounding 
MNRAS 517, 6205–6224 (2022) 
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Table 1. List of simulations with a nuclear stellar disc and sphere. 

Fiducial models: 
Mass factor Initial orbital Disc 3D density 

parameters 

1; 10; 30 stardisc 1.75 
2.4 
3.3 

1; 10; 30 stardisc-random 2.4 

1; 10; 30 thermal 2.4 

Additional 
models: 

N d N s M d / M s 

10 4 10 5 0.14 
10 3 10 5 0.04 (massive disc) 
5 × 10 4 5 × 10 4 1.0 
9 × 10 4 10 4 8.8 

Note. List of models with different initial conditions for stellar discs. The 
default number of stars in the disc and the sphere are N d = 10 3 and N s = 10 5 , 
respectively; the radial number density profile exponent of the sphere and 
the disc are −1.75 and γ = −2.4. For the stardisc initial conditions we also 
adopted two additional γ values as shown. For each of these main models, 
we adopted three different mass factors to scale the stellar mass distribution 
as shown to accelerate the code (see text). In total, for the main models we 
have 9 stardisc models, 3 stardisc-random , and 3 thermal models. For the 
additional models, the mass factor is 30, the disc radial density profile slope 
is γ = 2.4 and initial orbital parameters are thermal . 
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tar cluster with the captured stars following the disc-like shape
esembling the shape of the underlying gaseous accretion disc (see
lso Bartos et al. 2017 ). The formed stellar disc is in steady state
alanced by the accretion of stars on to the SMBH and capturing
ew stars by the accretion disc. To generate the initial positions and
elocities, we take data from Panamarev et al. ( 2018 ) at 1 relaxation
ime (enough to form the steady state disc) and make statistical
ootstrapping to increase the number of stars (in Panamarev et al.
018 the authors had to use the superparticle approach where 1
article represented a group of stars). First, we convert positions
nd velocities to 6 Keplerian orbital parameters (this is a good
pproximation for orbits deep inside the influence radius of the
MBH), then generate a larger number of objects corresponding
NRAS 517, 6205–6224 (2022) 

igure 2. Left-hand panel: Initial distribution of eccentricities for the stellar disc
imulations (Panamarev et al. 2018 ) of AGNs while the orange histogram represent
f inclination angles for the stellar disc. Blue shows the stardisc initial conditions
os(i) corresponding to angles between 0 and 10 ◦. 
o the distribution function of orbital parameters, and finally, we
onvert the orbital parameters back to positions and velocities. This
ay we generate 1000 particles for our models from the original
100 particles taken from Panamarev et al. ( 2018 ). We refer to the

nitial orbital parameters of the disc stars derived this way as the
tardisc initial conditions. Fig. 2 (blue lines in both panels) shows
otable features: nearly circular orbits for most of the stars and
ow orbital inclinations. There is also a linear dependence of the
rbital inclination, eccentricity and semimajor axis that resembles
he outer warp of the stellar disc (see the left-hand panel of Fig. 3
hat shows the correlation between the inclination angles and 
ccentricities). 

As this type of initial conditions may seem specific to the
nderlying accretion disc model used in Panamarev et al. ( 2018 ), we
xplored another family of the stardisc initial conditions where we
ept the same distributions of the orbital parameters as in Fig. 2 , but
andomized the inclination – eccentricity – semimajor axis relation
s shown in the middle panel of Fig. 3 . We refer to these initial
onditions as the stardisc-random initial conditions. In the stardisc
nitial condition models, we vary the 3D density power-law slope for
emimajor axes as described in Section 3.2 . 

In addition to the stardisc and stardisc-random initial conditions,
e also explore the case where the stellar disc follows a thermal

ccentricity distribution, uniformly distributed orbital inclinations
etween cos 10 ◦ and cos 0 ◦, and a 3D power-law density slope for the
emimajor axes ρ ∝ r −2.4 implying that d N /d a = a −0.4 . Orange lines
n both panels of Fig. 2 and the right-hand panel of Fig. 3 highlight the
ifferences between the models. We refer to these initial conditions as
hermal initial conditions. The remaining Keplerian orbital elements,
amely longitudes of the ascending nodes, arguments of periapsis
nd mean anomalies are drawn from a uniform distribution within
he whole range of their allowed values. 

We perform a set of simulations with N s = 10 5 total number of
tars in the sphere, N d = 10 3 total number of stars in the disc and
verage mass ratio of m ∗/ M bh = 5 × 10 −7 . Given the slightly different
ass functions for the disc and for the sphere the total mass fraction

f the disc is M d / M s � 0.015. To explore the effects of the initial
rbital parameters distribution we use three sets of models: stardisc ,
tardisc-random , and thermal , as described abo v e. F or the stardisc
odel, we vary the power-law slope for the 3D density distribution
∝ r −γ with γ = 1.75 to represent the standard Bahcall–Wolf

usp (Bahcall & Wolf 1976 ), γ = 2.4 to match the observed density
. Blue histogram shows the initial conditions originating from the stardisc 
s thermal eccentricity distribution. Right-hand panel: Distribution of cosines 
 and orange line corresponds to the thermal model: uniform distribution in 
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Figure 3. Scatter plot of stellar disc eccentricities and inclination angles for the three types of initial conditions adopted. Left-hand panel, labelled stardisc , 
shows the relation between eccentricity and inclination angle arising from previous stardisc simulations in AGNs (Panamarev et al. 2018 ). Middle panel, labelled 
stardisc-random , shows the model in which the correlation is removed by independently assigning inclinations and eccentricities from the stardisc model, and 
the right-hand panel shows the thermal model (see text). 
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4 This choice is somewhat arbitrary, but as we see from the right-hand panel 
of Fig. 4 the value m = 10 M � is in the mass-gap produced by the stellar 
evolution and all objects with higher masses in the simulation are stellar mass 
black holes. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/4/6205/6772454 by Autonom
ous O

rganization of Education “N
azarbayev U

niversity” user on 29 M
arch 2023
istribution of the clockwise stellar disc in the Galactic centre (Yelda 
t al. 2014 ) and γ = 3.3 – the steepest density profile in our models
hich originates from the star – disc simulations of Panamarev et al. 

 2018 ), for other models we fix γ = 2.4. This gives us five different
odels which are referred as 1 X models. Due to the high numerical

ost, these types of simulations can be advanced up to 5–10 Myr
hen applied to the Galactic centre corresponding to the observed 

ge of the nuclear stellar disc and S -stars (Habibi et al. 2017 ). 
To study long-term evolution of the system, we increase the total 

tellar mass of the system by factors of 10 and 30, respectively, while
eeping the same number of particles. This gives 10 more models. We 
efer to these models as 10X and 30X models. As we saw in Section 2 ,
he dynamical time-scales are reduced for a larger total stellar mass.
ue to the fact that the scaling with mass is different for the resonant

elaxation and for the two-body relaxation (see equations 2 and 6 ),
e can study the contribution from these relaxation processes by 

omparing the 1X, 10X, and 30X models. Table 1 lists all the models
nd their parameters. 

The bottom part of Table 1 lists several additional models that we
imulated with the thermal initial conditions and γ = 2.4 disc density 
xponent. First we include additional variants of the 30X models, 
hich are numerically the least e xpensiv e and allow us to explore the
arameter space of the system. In particular, we run additional models 
ith (i) a larger number of stars in the disc N d = 10 4 ; and (ii) with the

ame number of stars in the disc but increased total mass of the disc.
urthermore, we examine two additional models where the number 
f stars in the disc was equal to the number of stars in the sphere and
here the number of stars in the disc was 90 per cent of the total num-
er of particles with the total number of particles N = 10 5 in both runs.
n addition, in order to study the effect of the sphere on the dynamics
f stars within the disc, we run the fiducial 1X, 10X, and 30X models
ithout the sphere, with only a stellar disc of N d = 10 3 stars around

he SMBH. We refer to these models as the isolated disc models. 

 DY NA MIC S  O F  T H E  ISOLATED  STELLAR  

ISCS  

n this section, we describe the evolution of isolated stellar discs
otating around an SMBH with 100 per cent of stars initially on
rograde orbits and no spherical stellar component. As reference 
odels, we choose the thermal models with the power-law density 
lope of the disc γ = 2.4 and the mass factors 1, 10, and 30. We
xamine how the total stellar mass (with fixed number of particles)
ffects the dynamics of the relaxation processes. 

The dynamical relaxation processes are expected to change the 
istribution of orbital inclination angles by warping, twisting, and 
ffecting the thickness of the disc. The left-hand panel of Fig. 4 shows
he 10 per cent , 50 per cent , and 90 per cent cumulative distribution 
evels of orbital inclination angles as a function of semimajor 
xis. The innermost stars tend to have higher orbital inclinations, 
hich is explained by the shorter relaxation time-scales at smaller 
istances from the SMBH (see Section 2 ). The right-hand panel of
he figure shows the average inclination angle as a function of mass
ndicating that the high-mass stars (black holes) have systematically 
ower inclinations forming a thin disc. This effect develops in all

odels with an isolated stellar disc. The time instances corresponding 
o the 1X, 10X, and 30X models in Fig. 4 are chosen to have the same
verage inclination angle for the light stars ( m ≤ 10 M �), 4 implying
hat the curves in the right-hand panel of Fig. 4 o v erlap for light stars
y construction. The inclination versus semimajor axis shows very 
imilar trends in the left-hand panel of the figure implying that all
odels are at the same level of relaxation. 
In the top panels of Fig. 5 , we compare the distribution of

osines of the orbital inclinations for massive ( m ≥ 10 M �) and light
 m ≤ 10 M �) stellar objects. Each panel corresponds to the model
ith different mass factors (1X, 10X, and 30X) at the same time

s in Fig. 4 . While the distribution of low-mass stars is identical
y construction, the 1X model clearly shows the strongest effect in
 ertical mass se gre gation compared to 10X and 30X models. Bottom
anels of the same figure demonstrate that the isolated stellar discs
lso feature mass se gre gation in the eccentricity distribution as seen
rom the normalized distribution of orbital eccentricities for light and 
assive stars. But in this case the higher-mass models show stronger
ass se gre gation than the 1X model. 
To examine the time dependence of mass segregation in inclination 

nd eccentricity and its dependence on the 1X, 10X, 30X models, we
rack the time evolution of the root-mean-square (rms) inclination 
MNRAS 517, 6205–6224 (2022) 

art/stac3050_f3.eps


6212 T. Panamarev and B. Kocsis 

M

Figure 4. Left-hand panel: Moving average of inclination angles in semimajor axes for the thermal isolated disc models (see Table 1 ) with mass factors 
according to the legend. Right-hand panel: Moving average of inclination angles in mass for the same models. Both panels correspond to the same time snapshot. 
Blue, red, and green colours indicate 1X, 10X, and 30X thermal isolated disc models, respectiv ely. F aded lines (points) of the same colour show 90 and 
10 per cent quantiles. The time snapshots for each model are chosen such that average orbital inclinations match for the low-mass stars (this corresponds to 56, 
5, and 0.9 Myr for 1X, 10X, and 30X models, respectively; see dotted lines in Fig. 6 ). For the 10X and 30X models (red and green lines in the right-hand panel), 
we show m/10 and m/30, respectively, so that the mass ranges overlap. The window for the moving averages was chosen to be 100 data points. 

Figure 5. Normalized histograms of orbital inclinations and eccentricities for light and massive particles. Top panels show the cosines of orbital inclinations for 
1X, 10X, and 30X models. Bottom panels show eccentricities for the same models. Solid and dashed lines indicate massive ( m ≥ 10 M �) and light ( m < 10 M �) 
particles, respectively. The histograms correspond to the same time snapshots as in Fig. 4 . The shaded histogram in the bottom right panel shows the initial 
eccentricity distribution for all of these models. 
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Figure 6. Evolution of rms inclination angles and eccentricities for the same thermal isolated disc models as in Figs 4 and 5 a function of secular time (defined 
in equation 10 ). Solid and dashed lines indicate massive and light particles, respectively. Dotted vertical lines show the time at corresponding to the snapshots 
of Figs 4 and 5 . 
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Figure 7. Long-term evolution of the rms inclination angles and eccentrici- 
ties for the 30X model. Top lines in each panel show light particles. 
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ngles and eccentricities for all the models as a function of secular
ime. Fig. 6 confirms the expectation that vertical mass se gre gation
s strongest for the 1X models and the weakest for the 30X models
hile mass dependence in eccentricities is the opposite. 
To explore the long-term evolution of isolated stellar discs, we 

ocus on the 30X model which is numerically the least e xpensiv e.
ig. 7 shows that massive and light stars develop a different rms

nclination and eccentricity during the first stages of the evolution 
nd continue with the same pace after a few thousand secular times.
s a result, mass se gre gation effects are expected to be present in

uch systems (see Fig. 8 ). 
Vertical mass se gre gation in galactic nuclei may be caused by VRR

s shown first by Sz ̈olgy ́en & Kocsis ( 2018 ) and later confirmed
y other studies (Fouvry et al. 2020 ; Magnan et al. 2021 ; M ́ath ́e
t al. 2022 ). On the other hand, angular momentum conservation 
uring pairwise interactions implies that two-body relaxation may 
lso cause vertical mass se gre gation in the long-run especially in
ighly anisotropic systems (Ernst et al. 2007 ; Tiongco, Collier & 

arri 2021 ). The mass se gre gation in eccentricities may be caused
y both SRR (Fouvry et al. 2018 ; Gruzinov et al. 2020 ) and two-
ody relaxation. As shown by Ale xander, Be gelman & Armitage 
 2007 ), the rms eccentricity of a stellar disc is related to its velocity
ispersion as: 

 rms = 

√ 

2 
σ

v K 
, (17) 

here v K is the Keplerian orbital speed. Following this logic, 
ikhaloff & Perets ( 2017 ) showed that the evolution of rms eccen-

ricities is different for light and heavy stars as a result of two-body
nteractions. 

To explore which relaxation process drives anisotropic mass 
e gre gation predominantly in our models of isolated stellar discs with
o spherical component, we perform the correlation curve analysis 
Rauch & Tremaine 1996 ; Eilon et al. 2009 ; Kocsis & Tremaine
MNRAS 517, 6205–6224 (2022) 
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Figure 8. Normalized histograms of the cosines of orbital inclinations and 
eccentricities for light and massive particles. For the 30X models at the 
moment of 28 000 t sec . 
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015 ). We measure changes in energies and angular momenta for
ach particle to compute the rate of diffusion in energy – angular
omentum for the whole system (see Appendix A for details).
ig. 9 shows the rms change in Keplerian energy (to track two-body
elaxation), angular momentum magnitude (to track SRR), angular
omentum vector direction (to track VRR), and the Z -component of

he angular momentum vector (VRR in vertical direction) relative to
he initial state. Clearly, VRR strongly dominates in the 1X models:
he relative change in angular momentum vector direction occurs
aster than the change in other quantities (the red line is al w ays
bo v e). Ho we ver, due to the strong nodal precession, the change
s predominantly along the azimuthal component of the angular
omentum vector, while the orbital inclination is nearly constant.
he mixing of orbital inclination angles is represented by the change

n the Z -component of the angular momentum vectors (shown as
 black line in Fig. 9 ). This is suppressed initially compared to
he change in the energy, but becomes more prominent after 10 2 

rbital periods. For 10X and 30X models two-body relaxation is the
ost efficient relaxation process, at least during the first 10 3 periods.
ig. 9 also shows the comparison of the efficiency of the relaxation
rocesses for massive (dashed lines of the same colour) and light
dotted lines of the same colour) stars. As light stars represent the
ajority of the system, they are almost indistinguishable from the
 v erall cluster properties. On the other hand, the difference between
he change in energy and angular momentum for massive stars
ndicates that the diffusion in energy and angular momentum for the

assive stars is less efficient. Since relaxation is driven by VRR in
he 1X model, this explains the strongest vertical mass segregation
ompared to 10X and 30X models discussed abo v e (see Fig. 6 ).
NRAS 517, 6205–6224 (2022) 
n the other hand, energy and angular momentum changes in the
0X and 30X models are mostly driven by two-body relaxation.
his explains the more prominent mass se gre gation effect in the
ccentricities in 10X and 30X models compared to the 1X model.
ince the contribution from SRR is the least significant for the studied
odels (especially the 10X and 30X models, see green lines in
ig. 9 ), we conclude that the anisotropic mass se gre gation effects

n thermal isolated discs are caused by both VRR and two-body
elaxation. 

 I NTERAC TI ON  O F  A  N U C L E A R  STELLAR  

ISC  WI TH  A  SPHERI CAL  CUSP  O F  STARS  

e analyse the shape and thickness of the stellar disc using the
uadrupole moment matrix (see e.g. Roupas et al. 2017 , Sz ̈olgy ́en
t al. 2021 ) defined as follows: 

 αβ = 

∑ N 

i= 1 L iαL iβ∑ N 

i= 1 | L i | 2 
, (18) 

here L i is the angular momentum vector of the i -th star, α and β
re the corresponding Cartesian components. 

The largest eigenvalue of the matrix corresponds to the shape of
he disc while the corresponding principal eigenvector describes the
rientation of the system 

 αβν = λν. (19) 

n this normalization, the trace of the matrix satisfies Tr Q = 1
eaning that equal eigenvalues λ1 = λ2 = λ3 = 

1 
3 represent a sphere

ith zero angular momentum, and a razor-thin disc has ( λ1 , λ2 , λ3 ) =
1, 0, 0). Thus, the largest eigenvalue which takes the values 1/3 ≤ λ

1 quantifies the thickness of the stellar disc. 
In this section, the inclination angles of the disc stars refer to the
ean inclinations with respect to the principal eigenvector of the

isc. This way, the orbital inclinations are always computed relative
o the instantaneous mid-plane of the disc in angular momentum
pace even if the disc as a whole is tilted with respect to its initial
osition. 

.1 Secular evolution of the embedded nuclear stellar discs 

e follow the same steps as in Section 4 to study the dynamics
f discs embedded in a spherical cusp of stars on secular time-
cales. But in this subsection we use the stardisc models with the
ower-law slope γ = 3.3 and compare the isolated disc, the disc
mbedded in a sphere, and the 30X model of the same disc embedded
n a sphere. The semimajor axes – inclination dependence (left-hand
anel of Fig. 10 ) is qualitatively similar for all three models, but the
odels with a spherical component extend to higher inclinations in

he innermost part. 
The right-hand panel of Fig. 10 shows a striking difference in

he average inclinations as a function of mass for high-mass stars:
hile the isolated disc model shows lower inclination angles with

ncreasing mass, there is almost no correlation between stellar
ass and orbital inclinations for models with an isotropic spherical

omponent. Similar to Fig. 4 , the time instances shown in Fig. 10
ave the same average inclination angle for the low-mass stars
 m ≤ 10 M �) by construction. While the vertical mass se gre gation
f fect v anishes, the dependence of the inclination on the semimajor
xis is more prominent. The latter ef fect de velops faster and extends
o higher inclinations, and some stars even flip to counter-rotating
rbits ( i > 90 ◦). 
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Figure 9. The RMS change in the Keplerian energy (blue) and angular momentum (green, red, black) as a function of time for the thermal isolated disc models. 
The angular momentum vector magnitude (green), angular momentum vector direction (red), and Z -component of the angular momentum vector (black) are 
shown as defined in equations ( A1 ). Solid, dashed, and dotted lines show all stars, massive stars ( m ≥ 10 M �), and light stars ( m ≤ 10 M �), respectively. The 
Y -axis shows the quantities in the legend, the X -axis shows the dimensionless time normalized to the orbital period (equation A2 ). The top panels show the 
average change in the argument of periapsis ( �ω) and the longitude of the ascending node ( ��); the coherence time of SRR and VRR are related to the apsidal 
and nodal precession periods. 

Figure 10. Similar to Fig. 4 but also showing models with and without a spherical component. Left-hand panel: Mo ving av erage of inclination angles in 
semimajor axes. Colours show models with different mass factors (see le gend). F aded lines (points) of the same colour show 90 and 10 per cent quantiles. The 
time snapshots shown are chosen such that the average orbital inclination is identical for the low-mass stars (this corresponds to 40, 2.6, and 0.033 Myr for 1X 

only disc model, the 1X disc + sphere, and 30X disc + sphere models, respectively; see dotted lines in Fig. 12 ). Blue lines in both panels indicate the isolated 
disc with the stardisc initial conditions and the power-law density slope γ = 3.3. Red and green lines show the same disc embedded in the spherical stellar cusp 
with the power-law slope of γ = 1.75 for 1X and 30X models, respectively (see Section 3 for detailed description of the models). 
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The top panels of Fig. 11 show the normalized distributions of light
nd massive particles respectively at the time-snapshots of Fig. 10 
emonstrating that the relative difference in high mass stars at low 

rbital inclinations is not more than 10 per cent than that for the
ight stars for the models with an isotropic spherical component. The 
ottom panels of Fig. 11 provide a comparison for the distribution
f orbital eccentricities for massive and light stars between the 
hree reference models. As in the case of orbital inclinations, mass
e gre gation in eccentricities vanishes when the same stellar disc
nteracts with a spherical nearly isotropic distribution of stars. The 
ime-evolution of the rms inclinations and eccentricities (Fig. 12 ) 
hows that massive and light stars relax at the same rate. 
MNRAS 517, 6205–6224 (2022) 
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Figure 11. Normalized histograms of orbital inclinations and eccentricities for light ( m < 10 M �) and massive ( m ≥ 10 M �) particles to compare the isolated 
disc model with models that feature a spherical stellar cusp for the same models as in Fig. 10 . 

Figure 12. Time-evolution of RMS eccentricities and inclination angles for 1X isolated disc, 1X disc + sphere, and 30X disc + sphere models as a function of 
secular time for massive (solid lines) and light (dashed lines) particles for the same models as in Figs 10 and 11 . 
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To understand which relaxation process dominates in these sys-
ems, we examine the correlation curves for the relative changes in
nergies and angular momenta as for the case of an isolated disc
iscussed abo v e (see Appendix A for details). Fig. 13 shows that
he isolated disc case (the left-hand panel) is initially dominated by
wo-body relaxation. This is unsurprising as the initial condition for
tardisc models feature low eccentricities and low inclinations imply-
ng faster two-body relaxation initially (see equation 7 and Šubr &
aas 2014 ). As the isolated disc system is highly anisotropic, we
NRAS 517, 6205–6224 (2022) 
ee that the internal dynamics leads to anisotropic mass se gre gation
hich in this case is driven by two-body relaxation (cf. Fig. 9 for the

hermal model showing less prominent energy diffusion). The middle
anel of Fig. 13 shows the energy and angular momentum correlation
urves for the disc embedded in a dominant isotropic spherical
omponent. Here, we do not observe any differences between the
urves of the massive and light stars. Contrary to the case of the
solated disc, the 1X model with a spherical component shows that
wo-body relaxation dominates only in the initial phase of evolution

art/stac3050_f11.eps
art/stac3050_f12.eps


Stellar discs in galactic nuclei 6217 

Figure 13. Similar to Fig. 9 but also showing models with and without a spherical component. Left-hand panel shows the stardisc isolated disc model with 
γ = 3.3, the middle and right-hand panels show 1X and 30X models of the same disc embedded in an isotropic stellar component. The values are measured 
only for the stars that initially belong to the disc. 
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first 10 3 periods) after which VRR takes o v er. After 10 4 periods
RR fully dominates the evolution. We note that only the innermost 
articles contribute to the curves after τ = 10 4 showing that the 
nclination – semimajor axis anticorrelation presented in the left- 
and panel of Fig. 10 is mostly driven by VRR. 
Applying this to the Milky Way galactic centre, 10 4 orbital periods 

orrespond to less than 5 Myr for the stars with semimajor axes a <
.05 pc meaning that the S -stars are subject to an efficient VRR. The
pper panels of Fig. 13 show the average change in the argument
f periapsis ( ω) and longitude of the ascending node ( �). As also
xpected from theory (Rauch & Tremaine 1996 ), the figure shows
hat the coherent phase of SRR occurs on the apsidal precession 
ime-scale. Further, as we suggested in Section 2 , for stellar discs
mbedded in a spherical component, the coherent phase of VRR takes 
lace on the nodal precession time-scales. We refer to Appendix A for 
 detailed analysis of the VRR efficiency. Contrary to the 1X model,
he 30X models are dominated by two-body relaxation which takes 
lace in 10 3 orbital periods. Since the 30X models in our simulations
re equi v alent to dwarf galaxies with central black holes with masses
f the order of M bh � 10 5 M �, we conclude that these systems are
ominated by two-body dynamics. We explore such systems further 
n Section 5.3 . 

.2 Comparison to previous models 

o understand why stellar discs with an isotropic spherical com- 
onent do not show a vertical mass se gre gation, while previous
tudies with nearly spherical initial conditions did show this effect 
Sz ̈olgy ́en & Kocsis 2018 ; Magnan et al. 2021 ; M ́ath ́e et al. 2022 ), we
xamine the dimensionless VRR energy and angular momentum in 
ur models which determine the VRR equilibria as shown in M ́ath ́e
t al. ( 2022 ): 

 tot = −
∑ 

ij 

∑ � max 
� = 2 J ij� P � 

(
ˆ L i · ˆ L j 

)
∑ 

ij 

∑ � max 
� = 2 J ij� 

, L tot = 

∣∣∣∑ N 

i= 1 L i 

∣∣∣∑ N 

i= 1 | L i | 
. (20) 

ere, ˆ L i , ˆ L j are units vectors in angular momentum direction for the 
 

th and j th particles, � is the multipole index, J ij� are pairwise coupling
oefficients that depend on eccentricities and semimajor axes and 
 � ( x ) are Legendre polynomials. Here, ( E tot , L tot ) = (0, 0) represents
n isotropic distribution, while ( − 1, (1 + κ) −1 ) corresponds to a
azor thin disc where a κ fraction of stars orbit in one sense and 1 −
in the other. We refer to M ́ath ́e et al. ( 2022 ) and Kocsis & Tremaine

 2015 ) for details. 
In our simulations, ( E tot , L tot ) are of the order of ( − 10 −4 , 10 −4 ) for

he models with a spherical component which are clearly very nearly
sotropic. In comparison, the most isotropic case presented in M ́ath ́e
t al. ( 2022 ) had ( E tot , L tot ) = ( − 0.03, 0.16) which is relatively more
nisotropic. Moreo v er, the models with dominating disc (presented 
n Section 5.4 ) which are highly anisotropic do show vertical mass
e gre gation. Thus, we conclude that the absence of anisotropic mass
e gre gation in our models with an isotropic spherical component
oes not contradict previous studies of VRR, but it indicates that
he final state of vertical mass se gre gation depends strongly on the
eviation from isotropy. Note that two-body relaxation may also drive 
nisotropic mass se gre gation on the longer two-body relaxation time-
cale, but similarly to VRR, only in cases with an initial anisotropy in
ngular momentum vector space (see Tiongco et al. 2021 ; Livernois
t al. 2022 , for related studies in globular clusters). Thus, we conclude
hat vertical mass segregation is absent in our models with a disc +
pherical component due to a very low net initial anisotropy; and
ur models of isolated discs (Section 4 ) exhibit anisotropic mass
e gre gation as found in M ́ath ́e et al. ( 2022 ). 

.3 Long-term evolution of embedded nuclear stellar discs 

he long-term evolution is shaped by two-body interactions which 
ay lead to the exchange of energy and angular momentum between

he particles in the disc and sphere. In this subsection, we focus
n the 30X models which are dominated by two-body interactions 
nd are numerically relatively inexpensive to study the long-term 

volution on the two-body relaxation time-scale. As we have shown 
n previous sections, two-body relaxation is relatively subdominant 
n the Galactic centre and the 30X models are not appropriate in that
ase. The 30X models represent one-to-one simulations of nuclear 
tar clusters in dwarf galaxies with SMBHs of mass M bh = 4 ×
0 6 M �/ 30 = 1 . 3 × 10 5 M � (see Nguyen et al. 2019 for examples
f galaxies hosting nuclear star clusters with massive black holes 
MNRAS 517, 6205–6224 (2022) 
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Figure 14. Z -components of the angular momentum vectors of the disc (blue 
lines) and the sphere (red lines) normalized to the total angular momentum of 
the whole system. Bottom X -axis shows time in units of half-mass two-body 
relaxation time of a spherical component. Line styles correspond to different 
models of the stellar disc according to the legend. Shows only 30X models 
which are equi v alent to a dwarf galaxy hosting a 1.3 × 10 5 black hole and a 
nuclear star cluster extended to 1 pc. 
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Figure 15. Orientation of the total angular momentum vectors of the stellar 
disc and sphere, respectively, for the 30X models as in Fig. 16 , i.e. the 
cosine of the angle between the respective total angular momentum vectors 
as a function of time in units of half-mass two-body relaxation time of the 
spherical component. Line colours correspond to different disc models as 
indicated in the legend. The dotted vertical line represents the VRR time due 
to the spherical stellar cusp (equation 6 ). 

Figure 16. Time-evolution of the thickness of the stellar disc (top solid lines) 
in units of half-mass two-body relaxation time of a spherical component 
quantified by the largest eigenvalue of the quadrupole moment matrix (see 
equation 18 ). ν = 1 describes the razor-thin disc while ν = 1/3 indicates 
the spherically symmetric distribution. The bottom dashed lines show the 
corresponding eigenvalue of the sphere. Line colours are the same as in 
Fig. 15 with additional blue and red lines corresponding to the disc-dominated 
models with number of stars in the disc N d = 5 × 10 4 and N d = 9 × 10 4 . 
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elow 10 6 M �). In the analysis below, we simulate the system with
his SMBH mass and nuclear star clusters extending up to 1 pc. We
stimate the two-body relaxation time using the half-mass relaxation
ime of the spherical component (equation 2 ) using data from our
imulations. 

Fig. 14 illustrates the exchange of the z-component of the
ngular momentum between the disc ( L z,disc , blue curves) and the
phere ( L z,sphere , red curves) showing their time-evolution normal-
zed to the total angular momentum of the entire system ( L tot )
or the 30X models (see Table 1 ) normalized to the total an-
ular momentum of the entire system. The sphere has a non-
ero initial L z,sphere due to shot-noise-type stochastic deviation
rom isotropy, i.e. the initial value of L z,sphere / L z,disc is drawn
rom a uniform distribution between ±〈 N m 

2 〉 1 / 2 sphere / 〈 N m 〉 disc =
 N 

1 / 2 
sphere /N disc )( 〈 m 

2 〉 1 / 2 sphere / 〈 m 〉 disc ) where m is the stellar mass. The
isc tends to give away its angular momentum until it is completely
ixed with the spherical component, i.e. when the net L z per particle

s equal for the two components, i.e. 

L z , disc 

L tot 
→ 

〈
L z , tot 

〉
N disc 

L tot 
, 

L z , sphere 

L tot 
→ 

〈
L z , tot 

〉
N sphere 

L tot 
. (21) 

lthough none of the simulations reached complete mixing, Fig. 14
emonstrates that L z,disc approaches the equilibrium value of equa-
ion ( 21 ) for all models. 

Fig. 15 illustrates the alignment of the respective total angular
omentum vectors of the disc and spherical components in our

imulations. Alignment occurs if the stellar disc is massive enough,
 disc 〈 m 〉 disc � N 

1 / 2 
sphere 〈 m 

2 〉 1 / 2 sphere , and if so, alignment takes place
ithin the VRR time-scale shown by a vertical dotted line. For lower
isc masses, L disc and L sphere end up in the same hemisphere (cosine
f the mutual inclination angle is positi ve) e ven if they were counter-
otating initially as seen in Fig. 14 where both the disc and the sphere
ttain a net positive angular momentum. 

Fig. 16 shows the evolution of the shape of the stellar disc
uantified by the largest eigenvalue of the quadrupole moment matrix
NRAS 517, 6205–6224 (2022) 
defined in equation 18 ) as a function of time. Generally, the angular
omentum transfer from the stellar disc to a spherical component

esults in the thickening of the disc. Eventually, the disc appears to
 volve to wards a spherical shape. 

.4 Effect on the sphere 

s we have seen in the previous subsection, the stellar disc tends to
 volve to wards an isotropic distribution while interacting with the
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Figure 17. Normalized histograms of eccentricities (top panel) and cosines 
of orbital inclinations (bottom panel) for the dominating disc model with 
N d = 9 × 10 4 . Solid lines show the distribution of the massive stars, dashed 
lines correspond to the light stars. Blue lines show the stars in the sphere and 
red lines show the stars that were originally in the disc. Shown at t / t relax � 

0.3. 
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Figure 18. Longitudes of the ascending nodes of the observed S -stars with 
known orbital elements. The black and red histograms represent the black 
and red discs according to Ali et al. ( 2020 ). 
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5 Here, we define S -stars as all the stars in the Galactic Centre with known 
full orbital solutions around the SMBH as reported by Ali et al. ( 2020 ) and 
Peißker et al. ( 2020 ). 
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sotropic spherical star cluster. At the same time, as the spherical 
omponent absorbs the angular momentum of the disc, it preserves 
ts original shape as long as it is much more massive than the
isc (dashed lines in Fig. 16 ). This is the case for relatively low-
ass stellar discs (at most 15 per cent of the total stellar mass in

ur models), but in the case of the disc-dominated models ( N d =
.5 N tot and N d = 0.9 N tot ) the angular momentum vector distribution
attens significantly for the initially isotropic sphere on the two-body 
elaxation time-scales. The upper limit for the degree of flattening 
ttained by a spherical component may be determined from the total 
ngular momentum budget of the whole system (see equation 21 ). 
 similar conclusion was reached in Mastrobuono-Battisti & Perets 

 2013 , 2016 ) for simulations of globular clusters which also flatten
ue to angular momentum transfer from a stellar disc, especially in 
ase the disc mass exceeds ∼25 per cent of the total mass of the
luster. 

Finally, Fig. 17 demonstrates that when the disc is massive enough 
o cause flattening of a spherical component both the disc and 
pherical components feature vertical mass segregation. This is in 
ine with expectations from VRR dynamics: the total energy – total 
ngular momentum pairs for the dominating disc models (e v aluated 
sing equation 20 ) are ( E tot , L tot ) = ( − 0.24, 0.46) and ( E tot , L tot ) =
 − 0.65, 0.87) for the models with N d = 0 . 5 N tot and N d = 0 . 9 N tot 

mplying a large amount of initial anisotropy. Ho we ver, note that
hese 30X models are predominantly driven by two-body relaxation. 
urthermore, these models also develop a mass segregation in 
ccentricity space (top panel in Fig. 17 ). These models show that two-
ody relaxation also plays an important role in driving anisotropic 
ass se gre gation. 

 APPLI CATI ON  TO  T H E  G A L AC T I C  C E N T R E  

 -STARS  

ecent observations of the S -stars 5 in the Galactic centre revealed
hat the kinematic structure of the stars with known orbital parameters 
ppears to resemble two orthogonal discs (Ali et al. 2020 ; Peißker
t al. 2020 ) labelled as ‘red’ and ‘black’ discs. The discs can
e identified from the distribution of the position angles of the
emimajor axes projected on the sky which in turn is reflected in
he distribution of the longitudes of ascending nodes (LaNs) of the
rbits. Fig. 18 shows the distribution of LaNs of the black and red
iscs in the form of two normalized histograms separately for each of
he discs as classified by Ali et al. ( 2020 ). The peaks around 0, 180,
nd 360 ◦ correspond to one plane of the black disc while two peaks
round 100 and 270 ◦ show that the red disc is almost orthogonal to
he black one. 

We compare the observed properties of the S -stars with the
rbital parameters in three of our 1X simulations: stardisc γ = 3.3,
tardisc γ = 2.4, and the thermal model (see Table 1 ). We examine
he simulation snapshots at 5 Myr. The stardisc initial conditions 
epresent the case when the stars formed from the fragmenting 
aseous accretion disc and the stars residing inside 0.05 pc migrated
rom the outer regions due to gas-driven planetary-type migration 
Levin 2007 ). This leads to nearly circular orbits matching the
tardisc initial conditions. Alternati vely, massi ve stars could form 

y accreting matter from AGN discs (Levin 2007 ; Davies & Lin
020 ; Cantiello, Jermyn & Lin 2021 ). Another way to form the disc
f stars is by disruption of a molecular cloud resulting in high orbital
ccentricities (see e.g. Generozov 2021 ). This formation scenario is 
loser to our thermal model. 

To compare the observed distribution of inclination angles of 
he S -stars we convert the data provided by Ali et al. ( 2020 ) and
MNRAS 517, 6205–6224 (2022) 

art/stac3050_f17.eps
art/stac3050_f18.eps


6220 T. Panamarev and B. Kocsis 

M

Figure 19. Longitudes of the ascending nodes for the inner stars ( a < 0.05 pc) 
in simulations at 5 Myr (blue, red, and green lines) compared to the S -stars 
(shaded). The histogram for the S -stars shows both red and black discs. The 
reference direction for the longitudes of the ascending nodes in the simulations 
is chosen to match the peak in S -stars. 
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Figure 20. Correlation of the longitudes of the ascending nodes for the inner 
stars ( a < 0.05 pc) with semimajor axes for the model stardisc γ = 2.4 at 
1.1 Myr. Right-hand panel shows the corresponding normalized histogram 

where the dashed line represents the distribution of stars from the ‘black’ disc 
from Ali et al. ( 2020 ). 

Figure 21. Distribution of cosines of inclination angles of stars with respect 
to the principal eigenvectors. Shaded histogram corresponds to the S -stars 
and the coloured histograms show stars in the inner region of the stellar disc 
( a < 0.05 pc) from the simulations at 5 Myr (except for the green dotted line 
which corresponds to 10 Myr). 
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eißker et al. ( 2020 ) to the coordinates with respect to the principal
igenvector of the system (equation 19 ). This way the inclination
ngles are independent of the choice of the reference plane of the
oordinate system. To define the longitude of ascending nodes in
ur simulations, we orient the x − y axes such that the peak of
he distribution matches that of the S -stars. We select stars from
he inner region of the stellar disc ( a < 0 . 05 pc) and compare
heir properties to the observational data of the S -stars. Due to the
bservational limits, only the stars with masses m ≥ 3 M � can be
etected; ho we ver, we did not use the mass criterion to select the
 -stars from our simulations. This is because we previously showed
hat stellar discs embedded in a spherically symmetric and isotropic
tellar component have no vertical or eccentric mass se gre gation.
f in reality the distribution of low-mass S -stars will be different
when they are detected) from high-mass S -stars, this would point to
 larger amount of initial anisotropy of the background (old) stellar
opulation surrounding the S -stars than assumed in our models. 
We start by comparing LaNs (Fig. 19 ). The shaded histogram in

ig. 19 shows the observed S -stars without dividing them into two
iscs. As we can see, all three of our models feature a peak around
00 ◦ matching with the S -stars by construction. This anisotropy is
aused by the fluctuating torques from the spherical component.
o we ver, we cannot clearly detect the second peak corresponding to

nother disc (black disc) nor the opposite peak corresponding to a
ounter-rotating component of the disc (red disc) in the same plane
 � ∼ 250 ◦). 

We note that two distinct peaks in LaNs form in the stardisc γ =
.4 model at 1.1 Myr, but this feature is transient and dissolves in less
han 0.5 Myr. Fig. 20 shows a scatter plot of LaNs versus semimajor
xes for this model indicating that each peak in the distribution
orresponds to different semimajor axes. Comparison with the data
rom Ali et al. ( 2020 ) yields similar properties with the ‘black’ disc
shown as a dashed line in the histogram in Fig. 20 ). 

Fig. 21 shows the distribution of the cosines of the orbital inclina-
ions with respect to the principal eigenvector in the observations and
n our simulations. The observed red disc and black discs correspond
o the peaks at cos i = ±1 and at 0, respectively. In contrast, the
NRAS 517, 6205–6224 (2022) 
imulations have a more prominent peak at cos i = 1 and do not
how a peak at cos i � −1 indicating a lack of retrograde stars in the
ame plane. Furthermore, the simulations do not display a peak at
os i = 0. Our models also show significantly higher relative number
f stars in the mid-plane of the disc (cos i = 1), indicating less
iffusion took place from the initial condition in the simulations than
bserved. This suggests that the orbits of the observed S -stars are
t a later stage of angular momentum relaxation. The dotted line in
ig. 21 shows the distribution of cosines of orbital inclinations for

he thermal model at 10 Myr. Because the thermal model is the most
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Figure 22. Eccentricity distributions for the inner stars ( a < 0.05 pc) in 
simulations at 5 Myr (blue, red, and green lines) compared to the S -stars 

(shaded). 
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fficient in terms of VRR (see also Appendix A ), this implies that
ven 10 Myr is not enough to fully randomize the orbital inclinations.

Massive perturbers such as a cusp of stellar black holes or an
MBH may boost both two-body and resonant relaxation (Perets, 
opman & Alexander 2007 ; Kocsis & Tremaine 2011 , 2015 ). Let
s estimate the mass of an IMBH required to speed up VRR by a
ertain factor κ . Following equation ( 6 ) and applying the definition
f the ef fecti ve mass, gives 

 IMBH = 

√ √ √ √ 

(
κ2 − 1 

) N ∑ 

i= 1 

m 

2 
i = 

(
κ2 − 1 

)1 / 2 
N 

1 / 2 〈 m 

2 〉 1 / 2 , (22) 

here m i is the mass of i th star and N is the total number of stars
in our case within 0.05 pc), and N � 4500 and 〈 m 

2 〉 1 / 2 = 5 . 33 M �
n our models in this re gion. F or e xample, to speed up VRR by
 factor of κ = 2 one needs an IMBH of m IMBH � 620 M �. In
ppendix A , we show that VRR for a stellar disc embedded in
 spherical component is quenched by a factor βT,s / βT,d . For the
tardisc γ = 2.4 model, to speed up VRR so that an IMBH balances
he quenching from the disc one needs κ = β2 

T , s /β
2 
T , d � 2 . 23, i.e. an

MBH of m IMBH � 710 M �. Under certain conditions an IMBH may
lso produce counter-rotating stars in the same plane and give rise to
 second stellar disc (Panamarev, Zou, & Kocsis, in preparation). 

Finally, Fig. 22 shows the distribution of eccentricities, indicating 
hat the observed sample of S -stars exhibits two distinct peaks near
.4 and 0.8 (Ali et al. 2020 ). In contrast, neither of our simulations
hows two peaks, but interestingly the stardisc models match the 
eak at e = 0.4 while the thermal model matches the peak at e =
.8. Ho we ver, note that the observed sample of S -stars from Ali
t al. ( 2020 ) contains only a small sample of ∼40 stars where
he significance of the two peaks is greatly decreased by Poisson
uctuations. 
Thus, if the S -stars formed in a disc, the simulations suggest that the

istribution of their orbital angular momentum vectors should have 
etained a stronger peak up to at least 10 Myr since their formation,
nd to match the observed distribution the root-sum-squared mass in 
he same region should be ( 

∑ 

i m 

2 ) 1 / 2 = 820 M � which is possible
ith an initial stellar disc of N d = 10 3 stellar objects and remnants
nd an IMBH of mass 500 −1000 M �, or with a massive cusp of
tellar black holes. 

 SUMMARY  A N D  DI SCUSSI ON  

e performed a set of direct N -body simulations of nuclear stellar
iscs with a massive black hole at the centre. We examined cases with
nd without a spherical star cluster in the same region. We presented
he first one-to-one direct N -body simulations of the inner 0.5 pc of
he Milky Way nuclear star cluster featuring a realistic total stellar

ass and a top-heavy mass function. Furthermore, we ran simulations 
hich represent the conditions at the centres of ultracompact dwarf 
alaxies. Our main findings are as follows. 

(i) The relaxation processes in isolated stellar discs lead to vertical 
nd eccentric mass se gre gation meaning that massiv e stars settle to
ower orbital inclinations and more circular orbits than the light stars.
his is caused by both resonant and two-body relaxation. On the other
and, the interaction with an isotropic spherical distribution of stars 
uenches mass se gre gation in inclinations and eccentricities. 
(ii) The interaction of a stellar disc with a spherical component 

eads to the thickening of the stellar disc. The rate of this process
epends strongly on the semimajor axis. The stars in the inner region
elax faster in terms of inclination angles leading to an anticorrelation
etween orbital inclinations and the distance from the SMBH. Our 
imulations showed that for conditions in the Milky Way, the orbital
nclinations change predominantly due to VRR, despite the fact that 
RR is quenched by nodal precession due to the torques from within

he stellar disc. 
(iii) The nuclei of dwarf galaxies hosting stellar discs and massive 

lack holes of the order of 10 5 M � are dominated by two-body
elaxation. These systems approach full mixing on the two-body 
elaxation time-scale, where an initially thin disc becomes spherical 
f embedded in a much more massive spherical cusp. The spherical
omponent does not develop a significant flattening if the disc mass
s less than 15 per cent of the spherical cluster, but v ery massiv e discs
comparable with the mass of the sphere and more massive) cause
attening of the initially spherical distribution and drive anisotropic 
ass se gre gation. 
(iv) The dynamics of the S -stars at the Galactic centre from their

ormation up to 5 Myr is dominated by VRR. This results in an
nticorrelation of orbital inclinations with distance from the SMBH 

eaning that the thickness of the disc increases with decreasing 
adius which is confirmed in recent observations (von Fellenberg 
t al. 2022 ). The stochastic deviations from an isotropic distribution
n the spherical component of old stars give rise to a non-zero net
orque which leads to an o v erdensity of angular momentum vectors
n a given direction, hence a peak in distribution at a particular value.
o we ver, this does not explain the distribution of longitudes of the

scending nodes presented by Ali et al. ( 2020 ) which they interpret
s two orthogonal counter-rotating discs. 

(v) Our simulations led to less diffusion of angular momentum 

ector directions from a thin stellar disc in 10 Myr than currently
bserved for the S -stars. This suggests that if the S -stars initially
ormed in a stellar disc, the root-sum-squared mass of stellar 
bjects and remnants in this region should be of the order of
20 M � within 0.05pc to reproduce the observed scatter at present
n angular momentum vector directions, suggesting that the S -stars 
o-exist with a cusp of stellar black holes or with an IMBH of
ass m IMBH = 500 −1000 M � (see Gravity Collaboration 2020 , and

eferences therein for limits on an IMBH in the Galactic centre). 
MNRAS 517, 6205–6224 (2022) 

art/stac3050_f22.eps


6222 T. Panamarev and B. Kocsis 

M

 

c  

a  

i  

t  

o  

s  

t  

T  

s  

M  

i  

D  

a  

a  

(  

F  

t  

(  

V
 

s  

r  

c  

t  

p  

t  

i  

a  

s  

t  

m  

m
 

s  

o  

t  

b  

i
 

d  

s  

t  

d  

t  

i  

P  

f  

i  

i  

i  

s  

t  

r  

S  

m  

t  

b
 

m  

t  

t  

i  

s  

>  

l  

0  

m  

d

A

W  

f  

f  

U  

E  

T  

C  

o  

o  

A

D

T  

t

R

A  

A
A
A
A  

B
B
B
B
B
B
B  

C
C
D
D  

E
E
E  

F
F
F
F
F
F  

F
G
G
G  

G

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/4/6205/6772454 by Autonom
ous O

rganization of Education “N
azarbayev U

niversity” user on 29 M
arch 2023
Our simulations of the inner part of the Milky Way nuclear star
luster featured a realistic number of stars within 0.5 pc, but one of the
ssumptions for the spherical stellar component was a nearly exactly
sotropic distribution of angular momentum vectors (deviations at
he level of 10 −4 ) which is expected to be responsible for the absence
f vertical mass segregation in our models. Thus, one of the next
teps to explore the evolution of stellar nuclear discs is to study
he interaction with stellar systems with anisotropy and/or rotation.
his is reasonable as observations show that the Milky Way nuclear
tar cluster has net rotation and flattening (Feldmeier et al. 2014 ).

oreo v er, recent observations suggest that 7 per cent of the stars
n the inner parsec exhibit faster rotation (Arca Sedda et al. 2020 ;
o et al. 2020 ). Theoretical studies of the VRR indicate that initial

nisotropy in the distribution of stellar angular momenta strongly
ffect the final equilibrium distribution of multimass stellar systems
Sz ̈olgy ́en & Kocsis 2018 ; Magnan et al. 2021 ; M ́ath ́e et al. 2022 ).
urthermore, N -body simulations of rotating globular clusters show

hat vertical mass segregation may also occur in globular clusters
Sz ̈olgy ́en et al. 2019 ; Tiongco et al. 2021 ; Tiongco, Vesperini &
arri 2022 ). 
The explored initial conditions included the results of previous

tardisc simulations of AGNs (Panamarev et al. 2018 ) leading to
elatively old stellar population within the disc, but this is not the
ase in the Galactic centre (Levin & Beloborodov 2003 ). One way
o form young stars matching the initial conditions explored in this
aper is to form the stars from the gaseous accretion disc. This
ype of formation scenario was studied by Levin ( 2007 ) predicting
nnermost stars on circular orbits. One way to impro v e our models
nd to account for young stars would be to perform simulations with
tellar evolution assigning two different populations for the disc and
he sphere. As the stellar evolutionary mass-loss is high for the most

assive stars, this may affect the resulting kinematic signatures of
assive stars. 
We did not take into account the effect of the outer galaxy in the

imulations. This is justified because we modelled the innermost part
f the galactic nucleus where the potential is highly dominated by
he SMBH, while the contribution from the galactic components like
ulge, disc or halo becomes important at larger scales, outside the
nfluence radius of the SMBH. 

The configuration of the PHI-GRAPE code used in this study was
esigned to a v oid formation of binary stars in the explored stellar
ystems. But it was shown that binary stars may significantly alter
he observed orbital elements of the stars in the young stellar
isc at the Galactic centre (Naoz et al. 2018 ). Moreo v er, one of
he formation scenarios of the S -stars is the Hills mechanism that
nvolves tidal disruptions of binaries by the SMBH (Hills 1975 ;
erets et al. 2007 ; Fragione & Sari 2018 ; Generozov 2021 ). S -stars
ormed as a result of the Hills mechanism are expected to feature
nitially high eccentricities contrary to the in situ formation studied
n this paper. Therefore, a next step to impro v e our models is to
ncorporate formation and evolution of binaries starting with the
tellar disc with a fraction of stars in binary systems. Moreo v er,
his will allow us to study the effect of binaries on the efficiency of
esonant relaxation processes in galactic nuclei hosting stellar discs.
imulations including binaries with and without stellar evolution
ay be done using NBODY6 ++ GPU code (Wang et al. 2015 ) with

he most recent updates of the stellar evolution (Kamlah et al. 2022a ,
 ). 
Another way to impro v e our models is to combine direct N -body
odelling with self-consistent field models (Meiron et al. 2014 )

o account for the dynamical effects of the embedding galaxy on
he nuclear stellar disc. An example of this approach is the direct
NRAS 517, 6205–6224 (2022) 
ntegration of all the disc particles and the innermost particles in the
phere (e.g. within 0.1 pc) and hybrid integration of the outer stars ( r
 0.5 pc). This would speed up the simulations and allow to reach

arger masses and number of particles (up to 10 6 ) within the inner
.5 pc in the Milky Way and potentially to model nuclei of more
assive galaxies hosting SMBHs, nuclear star clusters, and stellar

iscs. 
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z ̈olgy ́en Á., M ́ath ́e G., Kocsis B., 2021, ApJ , 919, 140 
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PPENDI X  A :  MEASURI NG  T H E  EFFI CIENCY  

F  R E L A X AT I O N  PROCESSES  

To measure the efficiency of relaxation processes, we follow the steps 
escribed in Rauch & Tremaine ( 1996 ), Eilon et al. ( 2009 ), and Me-
ron & Kocsis ( 2019 ). We compute the relative change in Keplerian
nergy, angular momentum vector magnitude, angular momentum 

ector direction, and z-component of the angular momentum vector 
efined as: 

δE = 

E − E 0 

E 0 
, δL s = 

| L | − | L 0 | 
L c 

, 

L v = 

| L − L 0 | 
L c 

, δL z = 

| L z − L z, 0 | 
| L z, 0 | (A1) 

ith respect to the normalized time defined as: 

= 

t − t 0 

t orb 
. (A2) 

here t 0 is the initial moment in time which was chosen to
orrespond to t = 0, E 0 , L 0 , and L z,0 correspond to the time t =
 0 . The defined abo v e quantities are computed for each particle
orresponding to a rele v ant bin in the normalized time τ . After that,
e compute rms for all particles in each bin. The rms of energies and

ngular momenta are plotted in Figs 9 and 13 . 
Together with changes in energies and angular momenta, we track 

hanges in the arguments of periapsides and the longitudes of the
scending nodes. 

ω = arccos ( ω − ω 0 ) , δ� = arccos ( � − �0 ) . (A3) 

he top panes in Figs 9 and 13 show the mean change in these
uantities with respect to τ . 
To measure the rate of relaxation, we assume the following 

elations (Rauch & Tremaine 1996 ; Meiron & Kocsis 2019 ): 

ms ( δE) = α
m 2 

M bh 

√ 

N 

√ 

τ , (A4) 

ms ( δL s ) = ηs 

m 2 

M bh 

√ 

N 

√ 

τ , (A5) 

ms ( δL v ) = 

m 2 

M bh 

√ 

N ( ην

√ 

τ + βντ ) . (A6) 

We focus on the coherent part of VRR, where the efficiency is
inear with τ and is given by (following equation A6 ): 

ν = 

d rms ( δL v ) 

d τ

M bh 

m 2 

√ 

N 

. (A7) 

he definition of βν is somewhat different in different studies 
Rauch & Tremaine 1996 ; G ̈urkan & Hopman 2007 ; Eilon et al.
009 ; K ocsis & T remaine 2015 ), we use the definition of Kocsis &
remaine ( 2015 ) where βν is replaced by: 

T = 

βνm 2 

rms ( m ) 
√ 

3 − γ
, (A8) 
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M

Figure A1. Similar to Figs 9 and 13 but only for 1X models with a spherical component. Left-hand panel shows the model with thermal disc with γ = 2.4, 
mid and right-hand panels show the stardisc models with γ = 2.4 and γ = 3.3, respectively. The dash–dotted lines on all panels show the curves corresponding 
only to the stars that initially belong to the disc; solid lines show values for the stars that initially belong to a spherical component. Upper panels show change 
in argument of periapsis (which demonstrates the apsidal precession rate) and longitude of the ascending node (demonstrates the nodal precession rate). 
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here γ is the power-law density slope of the system, rms ( m ) =
 . 95 M � is the rms of stellar masses and m 2 = 12 . 17 M � is the
f fecti ve mass. 

In Fig. A1 , the coherent phase of VRR is clearly seen in the range
f 100 < τ < 500. We perform a linear fit in this range. 
To measure the effect of the stellar disc on the efficiency of VRR,

e measure βT (equation A8 ) separately for the stars that are initially
rranged in the disc ( βT,d ) and for the stars that belong initially to
he spherical component ( βT,s ). Ho we ver, for a crude estimate, in
oth cases we use the rms mass and m 2 and γ factor of the spherical
omponent in equation ( A8 ) even when calculating βT,d since the
pherical component is expected to dominate the evolution of disc
tars. We perform the measurement of βT,d and βT,s for three 1X
odels that we used to compare with the S -stars in Section 6 : thermal ,

tardisc γ = 2.4 and stardisc γ = 3.3. As a result, we find that for
he stardisc models VRR is more efficient for stars in the spherical
omponent, while for the stars that initially reside in the disc, VRR
s less efficient. As we see from Fig. A1 , the coherent accumulation
f torques of VRR is limited by the nodal precession time (orange
ines in top panels) after which we see a random walk growth. This is
learly seen for the disc stars (dash–dotted lines in Fig. A1 ). Note that
he least efficient VRR regime is in the stardisc γ = 3.3 model, where
RR is quenched by a factor of βT,s / βT,d � 3.27. This is explained
y the fact that due to the steep density profile, the inner part of
he whole system is largely dominated by the stellar disc leading to
NRAS 517, 6205–6224 (2022) 
Table A1. Measured values of βT and βEKA for simulations with a disc 
and spherical component. 

Sphere Disc Disc Disc 
stardisc stardisc thermal 

γ 1.75 3.3 2.4 2.4 

βT 1.44 0.44 0.96 1.33 
βEKA 0.99 0.30 0.66 0.92 

Note. List of the values for βT for the spherical and disc components in 
different models for the discs according to the definition from Kocsis & 

Tremaine ( 2015 ) in comparison with the definition used in Eilon et al. 
( 2009 ). First column shows the value obtained for the stars in a spherical 
component, the remaining columns indicate the values for the disc stars 
corresponding to different disc models with different γ radial density profile 
exponents. 

ast nodal precession rate. The model stardisc γ = 2.4 slows down
he vector angular momentum relaxation rate by a factor of 1.5, but
RR in the thermal model is quenched only by � 10 per cent. We

ummarize the measured values for βT,d and βT,s in Table A1 and
ompare them with βEKA – the definition of βν used in Eilon et al.
 2009 ) which is related to βT as βT = 0.69 βEKA (Kocsis & Tremaine
015 ). 
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