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ABSTRACT

We explore the dynamics of stellar discs in the close vicinity of a supermassive black hole (SMBH) by means of direct N-body
simulations. We show that an isolated nuclear stellar disc exhibits anisotropic mass segregation meaning that massive stars
settle to lower orbital inclinations and more circular orbits than the light stars. However, in systems in which the stellar disc
is embedded in a much more massive isotropic stellar cluster, anisotropic mass segregation tends to be suppressed. In both
cases, an initially thin stellar disc becomes thicker, especially in the inner parts due to the fluctuating anisotropy in the spherical
component. We find that vector resonant relaxation is quenched in the disc by nodal precession, but it is still the most efficient
relaxation process around SMBHs of mass 10° Mg, and above. Two-body relaxation may dominate for less massive SMBHs
found in dwarf galaxies. Stellar discs embedded in massive isotropic stellar clusters ultimately tend to become isotropic on the
local two-body relaxation time-scale. Our simulations show that the dynamics of young stars at the centre of the Milky Way is
mostly driven by vector resonant relaxation leading to an anticorrelation between the scatter of orbital inclinations and distance
from the SMBH. If the S-stars formed in a disc less than 10 Myr ago, they may coexist with a cusp of stellar mass black holes

or an intermediate mass black hole with mass up to 1000 Mg, to reproduce the observed scatter of angular momenta.
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1 INTRODUCTION

More than two decades of repeated monitoring of stellar orbits in
the Galactic centre revealed the presence of a compact massive
object that coincides with the radio source SgrA (Ghez et al. 2000;
Gillessen et al. 2009; Genzel, Eisenhauer & Gillessen 2010; Gillessen
et al. 2017). The high mass (M ~ 4 x 10°Mg) and compact size
(R < 107%pc) suggest that the object is a supermassive black hole
(SMBH; see Eckart et al. 2017 for a discussion). The SMBH is
surrounded by a dense cluster of stars, most of which are old (> 5 Gyr
old), but some stars are very young (< 10 Myr old). The majority
of young and massive stars are distributed in a disc-like structure
as seen from their angular momentum vector directions (Levin &
Beloborodov 2003; Paumard et al. 2006; Bartko et al. 2009; Yelda
et al. 2014; von Fellenberg et al. 2022). This kinematic structure
is called the clockwise stellar disc and is located between 0.04 and
0.5 pc (Levin & Beloborodov 2003). Another distinct kinematic
structure is the S-star cluster: a cluster of young massive stars located
within the inner arcsecond (0.04 pc) from the SMBH. Detailed
spectroscopic studies of the S-stars indicate their ages are comparable
with those of the clockwise stellar disc suggesting the same origin
for both systems (Habibi et al. 2017). Recent observations suggest
that the S-star cluster is likely to be arranged in two orthogonal discs
(Ali et al. 2020; Peiflker et al. 2020) which may be identified from
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the distributions of the position angles of the semimajor axes of the
sky-projected orbits (Ali et al. 2020).!

The Milky Way galaxy is not the only galaxy that features a stellar
disc. At the centre of the Andromeda galaxy, two distinct brightness
peaks are observed (Lauer et al. 1993) which may be explained by
the so-called eccentric nuclear disc (Tremaine 1995) where orbits of
stars have aligned arguments of periapsides. Observations of nuclear
star clusters in nearby edge-on galaxies suggest that some of them
host stellar discs associated with multiple stellar populations (Seth
et al. 2006, 2008). Therefore, the coexistence of the nuclear star
clusters with SMBHs and stellar discs appears to be common in the
Universe motivating studies of these systems. The main focus of this
paper is the nuclear stellar disc of the Milky Way, but we also discuss
stellar discs in nuclei of dwarf galaxies.

The interaction between a young stellar disc and the old spherical
cluster may be described by secular processes that take place on
time-scales significantly shorter than two-body relaxation. Due to the
finite number of stars even a spherical cluster exhibits a fluctuating
stochastic anisotropy that generates a strong net gravitational torque
on stellar orbits, giving rise to rapid diffusion of orbital angular
momenta in a process called resonant relaxation (Rauch & Tremaine
1996; Hopman & Alexander 2006; Eilon, Kupi & Alexander 2009;
Kocsis & Tremaine 2011, 2015; Giral Martinez, Fouvry & Pichon
2020). In near-Kepler potentials in which the orbital time is much
shorter than the apsidal precession time, the dynamics of stars can

"Note that the existence of two orthogonal discs in S-stars is debated (von
Fellenberg et al. 2022).
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be represented as the interaction of quasi-stationary elliptical wires
exerting mutual gravitational torques. In this case, the individual
orbital energies are approximately conserved, but the torques change
both the magnitudes and the directions of the angular momentum
vectors due to scalar resonant relaxation (SRR). In non-Keplerian
spherical mean-field potential, which arises in the Galactic centre due
to the extended stellar mass distribution and/or general relativistic
precession, the elliptical orbits are not closed, but experience rapid
apsidal precession. For these systems, the dynamical relaxation of
orbital parameters is further accelerated by the coherent torques
between N rings or annuli covered by the individual stellar orbits.
This reorients the angular momentum vector directions even more
rapidly in a process called vector resonant relaxation (VRR) while
both orbital energy and angular momentum magnitude are nearly
conserved (Rauch & Tremaine 1996).

Theoretical studies of VRR benefit from the Hamiltonian formal-
ism where the Hamiltonian represents the gravitational energy from
the stellar potential excluding the Keplerian orbital energy around
the SMBH (Kocsis & Tremaine 2015). This may be achieved by
orbit-averaging over the precession time-scale. The final equilibrium
state may be found by means of mean field theory, the Markov
chain Monte Carlo (MCMC) method, kinetic theory, or by integrating
Hamilton’s equations of motion in time using orbit-averaged N-ring
or direct N-body simulations. First, using the mean field approach,
the distribution function of the angular momentum vector directions
can be found by maximizing the entropy of the system using
calculus of variations (Roupas, Kocsis & Tremaine 2017; Takacs &
Kocsis 2018; Magnan et al. 2021). The equations have been solved
analytically in the idealized case where all stars have identical
masses, semimajor axes, and eccentricities. Roupas et al. (2017) and
Takdcs & Kocsis (2018) found that the stellar discs may represent
statistical equilibrium structures. Moreover, depending on the total
energy and angular momentum the system exhibits a phase transition
between disc and spherical phases showing an analogy with liquid
crystals. Recently, these models were generalized by Magnan et al.
(2021) to include the mass spectrum of stars showing that massive
stars tend to arrange in thinner discs than light stars in a process called
vertical mass segregation. This confirms the original expectation of
Rauch & Tremaine (1996).

A similar conclusion was reached earlier using the MCMC
method. Szolgyén & Kocsis (2018) showed that for a particular
anisotropic initial condition the massive stars in the cluster form
a disc. The study was recently extended by Maithé, Szolgyén &
Kocsis (2022) where the authors explored the VRR equilibrium for a
range of initial configurations in energy — angular momentum space.
Both of these studies included orbit-averaged interactions but did
not consider the diffusion arising from two-body encounters. They
found that massive objects form discs even in cases where the initial
level of anisotropy is only a few per cent.

Mass segregation may also occur in the eccentricity distribution,
but in this case driven by SRR. SRR is the dominant process to
randomize the eccentricities of the S-stars in the Galactic centre
(Perets et al. 2009). Fouvry, Pichon & Chavanis (2018) showed that
massive stars tend to become more circular than light stars in dis-
crete quasi-Keplerian axisymmetric discs. In spherically symmetric
systems, mass segregation in eccentricity may take place in both
directions: the orbits of massive stars become more circular and light
stars become more eccentric or vice versa depending on the total
energy of the system (Gruzinov, Levin & Zhu 2020).

The time-evolution of the system towards VRR equilibrium may
be described by kinetic theory solving the Boltzmann equation. This
approach has been used to elucidate SRR (Bar-Or & Fouvry 2018)
and VRR processes (Fouvry, Bar-Or & Chavanis 2019b).
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The time-evolution leading to mass-dependent anisotropy was
demonstrated in a set of direct N-body and N-ring simulations
featuring a stellar disc, an intermediate mass black hole (IMBH)
and a spherically symmetric cluster of stars (implemented as an
external potential) with an SMBH. Szolgyén, Mdthé & Kocsis (2021)
showed that the orbit of the IMBH aligns rapidly with the disc of
stars within 3—10 Myr (depending on the IMBH mass and the initial
inclination angle) and the IMBH eccentricity decreases rapidly due to
VRR and SRR by the effect called resonant dynamical friction. This
work featured direct integration of two-body encounters between the
SMBH, IMBH, and the stars in the disc, but neglected the two-body
interactions between stars in the disc and in the spherical cluster and
deviations from spherical symmetry.

Mass segregation effects in the vicinity of a massive black hole
were originally described in the context of two-body relaxation in
isotropic spherically symmetric stellar systems (Bahcall & Wolf
1977) which were later confirmed by direct N-body simulations
(Preto & Amaro-Seoane 2010; Panamarev et al. 2019). For an
isotropic system two-body relaxation is much slower than VRR
by the ratio of the central mass to the individual stellar mass
times N'?, i.e. Msvpu/(N"?m), where N is the number of stars.
It drives mass segregation slowly both in semimajor axes and, as
shown by Mikhaloff & Perets (2017), it leads to mass segregation
in orbital inclinations and eccentricities in isolated stellar discs.
Recently, N-body modelling of Foote, Generozov & Madigan (2020)
demonstrated vertical and eccentric mass segregation in eccentric
nuclear discs. It was not clear from this study whether these effects
were caused by two-body or resonant relaxation or both. Anisotropic
mass segregation was also observed in direct N-body simulations of
rotating globular clusters (Szolgyén, Meiron & Kocsis 2019), where
VRR dominates over two-body relaxation for N > 10* (Meiron &
Kocsis 2019).

Perets et al. (2018) showed that the collective effect of stars in
a spherical distribution (in their case a cusp of stellar black holes)
may lead to the formation of clumps, warps, and spiral arms in the
stellar disc. They compared results from direct N-body simulations
of isolated stellar discs, stellar discs embedded in a smooth potential,
a hybrid self-consistent field modelling of disc — sphere interactions
(Meiron et al. 2014) and direct N-body integration of the whole sys-
tem. While isolated discs and discs embedded in a smooth potential
showed steady increase in disc thickness, both hybrid and direct
N-body models led to the formation of clumps, warps, and spiral
arms. The qualitative agreement between hybrid and direct models
suggests that these effects may be caused by resonant relaxation.

Mastrobuono-Battisti et al. (2019) used direct N-body simulations
to study the co-evolution of multiple stellar discs embedded in an
analytical stellar cusp and a discrete population of stellar black holes.
By introducing a new disc every 100 Myr, they found that the discs
evolve towards a uniform distribution in orbital inclinations, but at
the end of their simulations (500 Myr) each of the discs showed
different morphologies and kinematics.

Kocsis & Tremaine (2015) and Giral Martinez et al. (2020)
showed that the fluctuating anisotropy of a spherical distribution
leads to diffusion in angular momentum direction space in a nearly
spherical system due to VRR. Thus, as long as the gravitational
interaction between disc particles may be neglected, a spherical
distribution drives the disruption of a stellar disc. Furthermore,
two-body relaxation may further accelerate rapid diffusion, rapidly
increasing the thickness of an initially very thin disc (Cuadra,
Armitage & Alexander 2008). In the opposite limit of a strongly
self-interacting thin stellar disc with no two-body relaxation, the disc
acts as a coupled system of harmonic oscillators, counteracting the
external torques such that the disc remains intact and exhibits normal
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mode oscillations (Kocsis & Tremaine 2011). In this paper, we aim to
study the interaction of a nuclear stellar disc with a spherical nuclear
star cluster around a central massive black hole self-consistently by
means of direct N-body simulations. We improve the physical realism
and particle number resolution over previous direct N-body models
to understand if stellar discs or black hole discs may be long lived in
nuclear star clusters.

The paper is organized as follows. In Section 2, we review the
Galactic centre time-scales. In Section 3, we describe the initial
setup for our numerical models. Section 4 is devoted to the analysis
of isolated stellar discs without a spherical stellar population, and
Section 5 to the effects caused by the dynamical interaction with
the sphere. In Section 6, we apply our findings to compare with the
observed population of S-stars and, finally, we summarize the paper
in Section 7.

2 THE TIME-SCALES

In this section, we review the relaxation processes in galactic nuclei
and the associated time-scales similar to Kocsis & Tremaine (2011)
and Rauch & Tremaine (1996).

2.1 Two-body relaxation

Two-body relaxation arises from the fluctuating force acting on a
subject star over the orbital period. As the total impulses received
by a star over the orbital period are uncorrelated, the relaxation rate
occurs in a random-walk fashion and is often called non-coherent
relaxation. The two-body relaxation changes both the energy and
the corresponding angular momentum at the rate (see e.g. Rauch &
Tremaine 1996 or Binney & Tremaine 2008):

AE myNY2 / t \'"* AL myNV2 /¢ \ 2
- = L= —) . m

o R
E Mbh Torb L Mbh Torb

where N is the total number of stars, My, is the mass of the central
massive black hole, E ~ 2GMy,/R is the Keplerian energy, m, =
(m?)/(m) is the effective mass and o ~ B ~ (In A)"?> within factors
of order unity where In A =~ In (Myy/m) is the Coulomb logarithm, m
is the stellar mass, and 7.y, is the orbital period.

The two-body relaxation time-scale for a spherical stellar system
with a central massive black hole can be computed by (Binney &
Tremaine 2008):

a(r) Mg,

fretax = 0.34 = forbs 2
cle G2p(rymyIn A~ B2miN &

where o is the 1D velocity dispersion, p is the stellar density.

2.2 Scalar resonant relaxation

Contrary to two-body relaxation, SRR occurs in a coherent way over
the apsidal precession time-scale. In near-Kepler potentials, the orbit-
averaged interaction may be approximated as elliptic wires exerting
mutual torques. In this case, the Keplerian energy is conserved, but
both the magnitude and the direction of angular momentum vectors
L are changed at the following rate:

AL maNY2 [ bt \ V2
= ("—) , 3)

L. T My, 12

orb

where L. = L/+/1 — €2, n, is a dimensionless coefficient of order
unity and fp is the apsidal precession time. The total relaxation rate
occurs in a random walk fashion with the apsidal precession time
being the step size (duration of the coherent phase). The long duration
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of the step size compared to the orbital period makes this process
more efficient than two-body relaxation in near-Kepler potentials
where fyrec > torp-

The SRR time in a spherical stellar system can be found by:

dnle| M,
B M(rmy’

s 4
where @ = 27/t is the apsidal precession rate (sum of Newtonian
and relativistic), 2 = 2m/to is the orbital frequency, and B is
a dimensionless coefficient estimated by Eilon et al. (2009) to be
1.05 + 0.02.

2.3 Vector resonant relaxation

In spherical potentials where the precession time is short, the stellar
orbits may be approximated as annuli that exert mutual torques.
In this case, the torques change the direction of orbital angular
momentum vectors at the rate:

77‘[2]\]1/2 ( 1 >1/2 leNl/z t
T v

AL/L.=n, (5)

My, Torb Mpn o

where 7, is a dimensionless coefficient that corresponds to the
contribution of two-body relaxation and SRR, and the term with
B, = 1.83 £ 0.03 represents the contribution from the coherent phase
of VRR (linear with #/t,) (Eilon et al. 2009). Kocsis & Tremaine
(2015) found that VRR is slower by a factor 3 due to rapid apsidal
precession consistent with earlier work (Rauch & Tremaine 1996).
It is expected that VRR may be the most efficient way to randomize
the stellar orbital inclinations as the step size of the coherent phase
is the largest among all relaxation processes.

For a spherical stellar system, the VRR time is (Eilon et al. 2009):

po_ Mot
T VMmy B

Kocsis & Tremaine (2015) found that m;, is replaced by the RMS
mass for VRR.

(6)

2.4 Two-body relaxation in a stellar disc

Two-body relaxation time-scale for a stellar disc can be computed
by (Stewart & Ida 2000):
(@) M

, 7
45Q myXr2ln A @

Irx,disc -

where X is the surface density of the disc, A ~ <e? > 32 M, /m. The
formula assumes <iZ > 2 ~ 0.5 < ¢? > 2.

2.5 Vector resonant relaxation in a stellar disc

VRR may also occur in stellar discs. Since stars exert torques from
the disc plane leading to precession in the line of nodes at the rate
(Kocsis & Tremaine 2011):

vzi_gzm%, (8)
()" Mo

the nodal precession will limit the step size for the coherent phase

of VRR. To compute VRR in a stellar disc, we replace the apsidal

precession rate in equation (4) by the nodal precession rate and Mg,

by M(r):

4 M bh

o) R

L~
Lyrr dise ==
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Figure 1. The time-scales of dynamical processes as a function of distance from the SMBH in our simulations of the Galactic centre. Computed from analytical
expressions presented in Section 2 using the data from the initial conditions of the models described in Section 3. All thick lines show the time-scales related to
the interaction of the stellar disc with a spherical component with a 3D density distribution p oc 773, All thin lines show the relaxation time-scales within the
disc neglecting contribution from a spherical component. Black lines illustrate two-body relaxation within the discs, purple lines show VRR within the discs.
Different line styles correspond to density distributions of the stellar discs with corresponding power-law density slope according to the legend.

This expression shows relaxation of the angular momentum vectors
which in this case is dominated by relaxation in azimuthal com-
ponents driven by the nodal precession (as shown in section 2 of
Kocsis & Tremaine 2011). Note that VRR in the vertical direction
may be much slower due to kinetic blocking (Fouvry, Bar-Or &
Chavanis 2019a). Furthermore, fy gisc estimates the time-scale for
the relaxation of a disc by neglecting the fluctuating torques from the
spherical component of the stellar distribution.

We refer to Tremaine (1998) and Fouvry et al. (2018) for the
discussion and analysis of SRR in discs.

For the relaxation processes that occur much faster than two-body
relaxation, it is often useful to compare the time-scales with respect
to the secular time, defined as:

tsee = — Pinners (10)

where Py 1S the orbital period of the innermost star (in our models
determined by the inner edge of the stellar disc) and M, is the total
stellar mass of the system. This time-scale sets the shortest apsidal
precession time.

Fig. 1 shows the time-scales described above applied to the
Galactic centre using data from our simulations (see Section 3). The
spherical component corresponds to the Bahcall-Wolf cusp (Bah-
call & Wolf 1976) while stellar discs feature various distributions
of 3D densities and orbital parameters adopted in our simulations
as described in the following section. The figure compares the time-
scales of dynamical processes within the sphere (thick lines) and
within the discs (thin lines). As we see, VRR within the sphere (thick
red line) is the fastest process followed by VRR in discs (although for
some disc models two-body relaxation within the disc is comparable
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in some regions; see purple and black lines). On the other hand, if
the total mass of the whole stellar system is increased by a factor of
30 (labelled as 30X in the legend), while keeping the same number
of particles, two-body relaxation within the disc becomes the fastest
process (see the section below for a motivation on the 30X models).

Note that the time-scales presented in Fig. 1 (and the equivalent
analytical expressions) are derived either neglecting the contribution
from the disc (time-scales within the sphere) or from the sphere
(time-scales within the discs), but in reality the dynamics of a stellar
disc embedded in a sphere may be shaped by the contribution from
both the disc and the sphere. The torque acting on a test particle in
the presence of an isotropic cluster due to the fluctuating stochastic
anisotropy is of the order of (Kocsis & Tremaine 2015)

slp/hzeremrms,sphere LC

M forb

(11)

Lsphere ~ /3 v

while a stellar disc drives nodal precession at the rate of the order of

R NiscMay dise L
Ldisc ~ disc/Ttav,disc T ) (12)
Mon o

Here, Mussphere = (M?)? and mgyaisc = (m) for objects in the
spherical cluster and the disc, respectively. Thus, the effect of the disc
dominates over the sphere if Ngiscay disc > N:p/hzerem,msphere and the
disc exhibits normal mode oscillations (Kocsis & Tremaine 2011),
and in the opposite limit the disc dissolves on the #,;, VRR time-scale
due to the sphere (Kocsis & Tremaine 2015; Giral Martinez et al.
2020). To explore the dynamics and the dominant relaxation process
for different systems, we perform direct N-body simulations of stellar
discs embedded in a spherical cusp of stars in the intermediate

«
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we describe in the following section.

Mms sphere areé comparable as

3 SIMULATIONS
We adopt the following system of units for all the models:
G = Mbh = Roul = 17 (13)

where G is the gravitational constant, My, is the initial SMBH mass,
and R, is the initial outer radius of the stellar system which is defined
as the orbital semimajor axis of the outermost star in the system.
When converting to physical units we typically assume Ry, = 0.5 pc,
My, = 4 x 10° Mg, unless indicated otherwise, and in some cases we
adopt Ryy = 1 pc, My, = 1.3 x 10° M.

3.1 The code

We use a modified direct N-body code PHI-GRAPE (Harfst et al. 2007)
that uses fourth-order Hermite integration method (Makino 1991;
Makino & Aarseth 1992; Aarseth 2003) to solve the equation of
motion. The code was originally designed for the GRAPE cards and
now utilizes an emulation library to run on modern GPUs (Nitadori &
Makino 2008). The modified version of the original code includes the
gravitational interaction with the massive central object implemented
as a fixed external point-mass potential and the accretion of stars on
to the central object (Justet al. 2012; Li et al. 2012; Zhong, Berczik &
Spurzem 2014). The equation of motion is

Gmir; G Myr;
r..l_:_z . 12113/2_ I;h i (14)
i%) (rij +€%) T
where r;; =r; —r; with r;, r; the positions of stars i and j,

respectively, € = 1.0 x 107* is the stellar softening parameter.
The value for the softening between stars is chosen to be small
enough to resolve relevant close encounters but large enough to
prevent formation of the compact binary systems. Lower value for
the softening may result in a larger number of very close encounters
between stars, but they are rare and are not relevant on the resonant
relaxation time-scales which are the main focus of this work.

The central massive black hole can grow in mass by consumption
of stars. The criterion for the accretion is the instantaneous distance
to the star is less than the accretion radius which was set to be equal to
the tidal disruption radius of a 2 Ry, star by a4 x 10° Mg, black hole.
After the accretion event the total mass of the star is instantaneously
added to the mass of the SMBH and the star is removed from the
simulation (Just et al. 2012; Li et al. 2012; Zhong et al. 2014). The
accretion radius sets the innermost resolution of the simulations and,
thus, allows not to soften the interaction between stars and the SMBH
(Khan et al. 2018).

The accuracy of the simulations is controlled by the time-step
factor n (Aarseth 1985; Makino & Aarseth 1992). We choose 1 =
0.01 as a compromise between the accuracy and the computing time.
To ensure that n = 0.01 is the optimal choice, one can measure
the total energy exchange between particles caused by two-body
relaxation over the apsidal precession time and compare it to the
total absolute energy error of the system over the same period of
time. For all of our models, the ratio of the absolute energy error
over the total energy exchange between particles does not exceed
1073 over the apsidal precession time for a given particle ensuring
that n = 0.01 is the optimal choice. The total relative energy error at
the end of the simulations is of the order of AE = E;—OEU ~ 1074, the

total angular momentum error is of the order of AL = ‘L‘z(ﬁ"‘ ~ 1073,
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Reducing the value for n improves the error tolerance, but slows down
the computations and qualitatively shows the same results.

3.2 Initial conditions

We study the gravitational interaction of a galactic nucleus with three
components: a central massive black hole, a spherical cluster of old
stars, and a population of stars resembling a disc.

We run one-to-one simulations meaning that one particle in the
simulation represents one realistic star. This can be achieved by
modelling a system of 10° particles with an average particle mass of
107® My,,. Using a top-heavy initial mass function (IMF, equation 15
below) and applying the parameters to the Milky Way Galaxy
centre gives the total stellar mass M, ~ 2 x 10° M, for the inner
0.5 pc. This value is comparable to the total stellar mass inferred
from observations: Schédel et al. (2018) find M ~ 1.3 x 10* Mg
within 0.1 pc and M =~ 1.0 x 10® Mg, within 1 pc.2 The most recent
estimates based on interferometric astrometry indicate that the total
extended mass within 0.1 pc does not exceed M ~ 10° M, (Gravity
Collaboration 2022).

We generate the initial positions and velocities for the spherical
stellar system to follow Keplerian orbits with spatial density distri-
bution resembling a Bahcall-Wolf cusp with p o ¥~7"* where r is the
distance from the SMBH (Bahcall & Wolf 1976). The distribution
of orbital parameters for the spherical cluster is the same in all our
models while we vary the spatial density distribution and orbital
parameters for the disc stars as described in Section 3.2. In all the
models, we keep the stellar disc embedded in a spherical component.

To model the mass spectrum of stars, we adopt the Kroupa (2001)
top-heavy IMF for the sphere:

1.3, if 0.08 My, < m < 0.5M,,
2.3, if0.5My <m < 1.0Mg . (15)
1.5, if m > 1.0M,,

dN
— xm™?,

dm Usphere =
The top-heavy IMF is motivated by the expected mass segregation
in galactic nuclei (see e.g. Panamarev et al. 2019), and the observed
stellar mass function in the Galactic centre following m~"7*%2 (Lu
et al. 2013). After the IMF is generated we use the stellar evolution
code (SSE; Hurley, Pols & Tout 2000) to evolve the whole system
up to 1 Gyr and use stellar masses at 1 Gyr as the initial mass
distribution for both disc and spherical components. This allows us
to ignore the mass-loss due to the stellar evolution in the code during
the dynamical evolution.

We use a slightly shallower slope for the heavier masses but
keep the same break points to generate the IMF for the stellar disc
motivated by observations (Bartko et al. 2010)3:

1.3, if 0.08 My < m < 0.5M,,
2.3, if0.5My <m < 1.0Mg, . (16)
1.3, if m > 1.0My

Adisc =

We explore several models for the distribution of orbital pa-
rameters in the disc as summarized in Table 1. We consider two
main scenarios for the origin of the stellar disc. The first one is
the formation of the disc due to the star — disc interactions in an
active galactic nucleus (AGN). Panamarev et al. (2018) showed that
the gaseous accretion disc may capture stars from the surrounding

2Note that these estimates do not include stellar remnants meaning that the
actual enclosed mass within the regions may be higher.

3Galactic centre observations suggest an even more top-heavy profile
dN/dm oc m=045£03 (Bartko et al. 2010).
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Table 1. List of simulations with a nuclear stellar disc and sphere.

Fiducial models:

Mass factor Initial orbital Disc 3D density

parameters

1; 10; 30 stardisc 1.75
24
33

1;10; 30 stardisc-random 2.4

1; 10; 30 thermal 2.4

Additional

models:

Ny Ns Mg/M

10* 10° 0.14

103 10° 0.04 (massive disc)

5% 10* 5% 10* 1.0

9 x 10* 10* 8.8

Note. List of models with different initial conditions for stellar discs. The
default number of stars in the disc and the sphere are Ng = 103 and Ny = 109,
respectively; the radial number density profile exponent of the sphere and
the disc are —1.75 and y = —2.4. For the stardisc initial conditions we also
adopted two additional y values as shown. For each of these main models,
we adopted three different mass factors to scale the stellar mass distribution
as shown to accelerate the code (see text). In total, for the main models we
have 9 stardisc models, 3 stardisc-random, and 3 thermal models. For the
additional models, the mass factor is 30, the disc radial density profile slope
is y = 2.4 and initial orbital parameters are thermal.

star cluster with the captured stars following the disc-like shape
resembling the shape of the underlying gaseous accretion disc (see
also Bartos et al. 2017). The formed stellar disc is in steady state
balanced by the accretion of stars on to the SMBH and capturing
new stars by the accretion disc. To generate the initial positions and
velocities, we take data from Panamarev et al. (2018) at 1 relaxation
time (enough to form the steady state disc) and make statistical
bootstrapping to increase the number of stars (in Panamarev et al.
2018 the authors had to use the superparticle approach where 1
particle represented a group of stars). First, we convert positions
and velocities to 6 Keplerian orbital parameters (this is a good
approximation for orbits deep inside the influence radius of the
SMBH), then generate a larger number of objects corresponding

400

200

lr—ﬂ
0 T e——n I !

0.0 0.2 0.4 0.6 0.8 1.0
e

to the distribution function of orbital parameters, and finally, we
convert the orbital parameters back to positions and velocities. This
way we generate 1000 particles for our models from the original
~100 particles taken from Panamarev et al. (2018). We refer to the
initial orbital parameters of the disc stars derived this way as the
stardisc initial conditions. Fig. 2 (blue lines in both panels) shows
notable features: nearly circular orbits for most of the stars and
low orbital inclinations. There is also a linear dependence of the
orbital inclination, eccentricity and semimajor axis that resembles
the outer warp of the stellar disc (see the left-hand panel of Fig. 3
that shows the correlation between the inclination angles and
eccentricities).

As this type of initial conditions may seem specific to the
underlying accretion disc model used in Panamarev et al. (2018), we
explored another family of the stardisc initial conditions where we
kept the same distributions of the orbital parameters as in Fig. 2, but
randomized the inclination — eccentricity — semimajor axis relation
as shown in the middle panel of Fig. 3. We refer to these initial
conditions as the stardisc-random initial conditions. In the stardisc
initial condition models, we vary the 3D density power-law slope for
semimajor axes as described in Section 3.2.

In addition to the stardisc and stardisc-random initial conditions,
we also explore the case where the stellar disc follows a thermal
eccentricity distribution, uniformly distributed orbital inclinations
between cos 10° and cos 0°, and a 3D power-law density slope for the
semimajor axes p oc 7% implying that dN/da = a~%*. Orange lines
in both panels of Fig. 2 and the right-hand panel of Fig. 3 highlight the
differences between the models. We refer to these initial conditions as
thermal initial conditions. The remaining Keplerian orbital elements,
namely longitudes of the ascending nodes, arguments of periapsis
and mean anomalies are drawn from a uniform distribution within
the whole range of their allowed values.

We perform a set of simulations with N, = 10° total number of
stars in the sphere, Ny = 10? total number of stars in the disc and
average mass ratio of m,/My, =5 x 10~7. Given the slightly different
mass functions for the disc and for the sphere the total mass fraction
of the disc is My/M; ~ 0.015. To explore the effects of the initial
orbital parameters distribution we use three sets of models: stardisc,
stardisc-random, and thermal, as described above. For the stardisc
model, we vary the power-law slope for the 3D density distribution
p o r 7V with y = 1.75 to represent the standard Bahcall-Wolf
cusp (Bahcall & Wolf 1976), y = 2.4 to match the observed density

600+ . ]
[ stardisc
1 thermal
400+
200+
oL o T e e I B
0.95 0.96 0.97 0.98 0.99 1.00

COSi

Figure 2. Left-hand panel: Initial distribution of eccentricities for the stellar disc. Blue histogram shows the initial conditions originating from the stardisc
simulations (Panamarev et al. 2018) of AGNs while the orange histogram represents thermal eccentricity distribution. Right-hand panel: Distribution of cosines
of inclination angles for the stellar disc. Blue shows the stardisc initial conditions and orange line corresponds to the thermal model: uniform distribution in

cos(i) corresponding to angles between 0 and 10°.
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Figure 3. Scatter plot of stellar disc eccentricities and inclination angles for the three types of initial conditions adopted. Left-hand panel, labelled stardisc,
shows the relation between eccentricity and inclination angle arising from previous stardisc simulations in AGNs (Panamarev et al. 2018). Middle panel, labelled
stardisc-random, shows the model in which the correlation is removed by independently assigning inclinations and eccentricities from the stardisc model, and

the right-hand panel shows the thermal model (see text).

distribution of the clockwise stellar disc in the Galactic centre (Yelda
etal. 2014) and y = 3.3 — the steepest density profile in our models
which originates from the star — disc simulations of Panamarev et al.
(2018), for other models we fix y = 2.4. This gives us five different
models which are referred as 1X models. Due to the high numerical
cost, these types of simulations can be advanced up to 5-10 Myr
when applied to the Galactic centre corresponding to the observed
age of the nuclear stellar disc and S-stars (Habibi et al. 2017).

To study long-term evolution of the system, we increase the total
stellar mass of the system by factors of 10 and 30, respectively, while
keeping the same number of particles. This gives 10 more models. We
refer to these models as 10X and 30X models. As we saw in Section 2,
the dynamical time-scales are reduced for a larger total stellar mass.
Due to the fact that the scaling with mass is different for the resonant
relaxation and for the two-body relaxation (see equations 2 and 6),
we can study the contribution from these relaxation processes by
comparing the 1X, 10X, and 30X models. Table 1 lists all the models
and their parameters.

The bottom part of Table 1 lists several additional models that we
simulated with the thermal initial conditions and y = 2.4 disc density
exponent. First we include additional variants of the 30X models,
which are numerically the least expensive and allow us to explore the
parameter space of the system. In particular, we run additional models
with (i) a larger number of stars in the disc Ny = 10*; and (ii) with the
same number of stars in the disc but increased total mass of the disc.
Furthermore, we examine two additional models where the number
of stars in the disc was equal to the number of stars in the sphere and
where the number of stars in the disc was 90 per cent of the total num-
ber of particles with the total number of particles N = 10° in both runs.
In addition, in order to study the effect of the sphere on the dynamics
of stars within the disc, we run the fiducial 1X, 10X, and 30X models
without the sphere, with only a stellar disc of Ng = 107 stars around
the SMBH. We refer to these models as the isolated disc models.

4 DYNAMICS OF THE ISOLATED STELLAR
DISCS

In this section, we describe the evolution of isolated stellar discs
rotating around an SMBH with 100 percent of stars initially on
prograde orbits and no spherical stellar component. As reference
models, we choose the thermal models with the power-law density

slope of the disc y = 2.4 and the mass factors 1, 10, and 30. We
examine how the total stellar mass (with fixed number of particles)
affects the dynamics of the relaxation processes.

The dynamical relaxation processes are expected to change the
distribution of orbital inclination angles by warping, twisting, and
affecting the thickness of the disc. The left-hand panel of Fig. 4 shows
the 10 per cent, 50 per cent, and 90 per cent cumulative distribution
levels of orbital inclination angles as a function of semimajor
axis. The innermost stars tend to have higher orbital inclinations,
which is explained by the shorter relaxation time-scales at smaller
distances from the SMBH (see Section 2). The right-hand panel of
the figure shows the average inclination angle as a function of mass
indicating that the high-mass stars (black holes) have systematically
lower inclinations forming a thin disc. This effect develops in all
models with an isolated stellar disc. The time instances corresponding
to the 1X, 10X, and 30X models in Fig. 4 are chosen to have the same
average inclination angle for the light stars (m < 10 Mg),* implying
that the curves in the right-hand panel of Fig. 4 overlap for light stars
by construction. The inclination versus semimajor axis shows very
similar trends in the left-hand panel of the figure implying that all
models are at the same level of relaxation.

In the top panels of Fig. 5, we compare the distribution of
cosines of the orbital inclinations for massive (m > 10 Mg ) and light
(m < 10Mj) stellar objects. Each panel corresponds to the model
with different mass factors (1X, 10X, and 30X) at the same time
as in Fig. 4. While the distribution of low-mass stars is identical
by construction, the 1X model clearly shows the strongest effect in
vertical mass segregation compared to 10X and 30X models. Bottom
panels of the same figure demonstrate that the isolated stellar discs
also feature mass segregation in the eccentricity distribution as seen
from the normalized distribution of orbital eccentricities for light and
massive stars. But in this case the higher-mass models show stronger
mass segregation than the 1X model.

To examine the time dependence of mass segregation in inclination
and eccentricity and its dependence on the 1X, 10X, 30X models, we
track the time evolution of the root-mean-square (rms) inclination

4This choice is somewhat arbitrary, but as we see from the right-hand panel
of Fig. 4 the value m = 10 M, is in the mass-gap produced by the stellar
evolution and all objects with higher masses in the simulation are stellar mass
black holes.
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Figure 4. Left-hand panel: Moving average of inclination angles in semimajor axes for the thermal isolated disc models (see Table 1) with mass factors
according to the legend. Right-hand panel: Moving average of inclination angles in mass for the same models. Both panels correspond to the same time snapshot.
Blue, red, and green colours indicate 1X, 10X, and 30X thermal isolated disc models, respectively. Faded lines (points) of the same colour show 90 and
10 per cent quantiles. The time snapshots for each model are chosen such that average orbital inclinations match for the low-mass stars (this corresponds to 56,
5, and 0.9 Myr for 1X, 10X, and 30X models, respectively; see dotted lines in Fig. 6). For the 10X and 30X models (red and green lines in the right-hand panel),
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we show m/10 and m/30, respectively, so that the mass ranges overlap. The window for the moving averages was chosen to be 100 data points.
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Figure 5. Normalized histograms of orbital inclinations and eccentricities for light and massive particles. Top panels show the cosines of orbital inclinations for
1X, 10X, and 30X models. Bottom panels show eccentricities for the same models. Solid and dashed lines indicate massive (m > 10 Mg ) and light (m < 10 M)
particles, respectively. The histograms correspond to the same time snapshots as in Fig. 4. The shaded histogram in the bottom right panel shows the initial
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eccentricity distribution for all of these models.
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Figure 6. Evolution of rms inclination angles and eccentricities for the same thermal isolated disc models as in Figs 4 and 5 a function of secular time (defined
in equation 10). Solid and dashed lines indicate massive and light particles, respectively. Dotted vertical lines show the time at corresponding to the snapshots

of Figs 4 and 5.

angles and eccentricities for all the models as a function of secular
time. Fig. 6 confirms the expectation that vertical mass segregation
is strongest for the 1X models and the weakest for the 30X models
while mass dependence in eccentricities is the opposite.

To explore the long-term evolution of isolated stellar discs, we
focus on the 30X model which is numerically the least expensive.
Fig. 7 shows that massive and light stars develop a different rms
inclination and eccentricity during the first stages of the evolution
and continue with the same pace after a few thousand secular times.
As a result, mass segregation effects are expected to be present in
such systems (see Fig. 8).

Vertical mass segregation in galactic nuclei may be caused by VRR
as shown first by Szolgyén & Kocsis (2018) and later confirmed
by other studies (Fouvry et al. 2020; Magnan et al. 2021; Mdathé
et al. 2022). On the other hand, angular momentum conservation
during pairwise interactions implies that two-body relaxation may
also cause vertical mass segregation in the long-run especially in
highly anisotropic systems (Ernst et al. 2007; Tiongco, Collier &
Varri 2021). The mass segregation in eccentricities may be caused
by both SRR (Fouvry et al. 2018; Gruzinov et al. 2020) and two-
body relaxation. As shown by Alexander, Begelman & Armitage
(2007), the rms eccentricity of a stellar disc is related to its velocity
dispersion as:

s = V22, (17)
UK

where vk is the Keplerian orbital speed. Following this logic,
Mikhaloff & Perets (2017) showed that the evolution of rms eccen-
tricities is different for light and heavy stars as a result of two-body
interactions.

To explore which relaxation process drives anisotropic mass
segregation predominantly in our models of isolated stellar discs with
no spherical component, we perform the correlation curve analysis
(Rauch & Tremaine 1996; Eilon et al. 2009; Kocsis & Tremaine
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Figure 7. Long-term evolution of the rms inclination angles and eccentrici-
ties for the 30X model. Top lines in each panel show light particles.
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Figure 8. Normalized histograms of the cosines of orbital inclinations and
eccentricities for light and massive particles. For the 30X models at the
moment of 28 000 7.

2015). We measure changes in energies and angular momenta for
each particle to compute the rate of diffusion in energy — angular
momentum for the whole system (see Appendix A for details).
Fig. 9 shows the rms change in Keplerian energy (to track two-body
relaxation), angular momentum magnitude (to track SRR), angular
momentum vector direction (to track VRR), and the Z-component of
the angular momentum vector (VRR in vertical direction) relative to
the initial state. Clearly, VRR strongly dominates in the 1X models:
the relative change in angular momentum vector direction occurs
faster than the change in other quantities (the red line is always
above). However, due to the strong nodal precession, the change
is predominantly along the azimuthal component of the angular
momentum vector, while the orbital inclination is nearly constant.
The mixing of orbital inclination angles is represented by the change
in the Z-component of the angular momentum vectors (shown as
a black line in Fig. 9). This is suppressed initially compared to
the change in the energy, but becomes more prominent after 102
orbital periods. For 10X and 30X models two-body relaxation is the
most efficient relaxation process, at least during the first 10° periods.
Fig. 9 also shows the comparison of the efficiency of the relaxation
processes for massive (dashed lines of the same colour) and light
(dotted lines of the same colour) stars. As light stars represent the
majority of the system, they are almost indistinguishable from the
overall cluster properties. On the other hand, the difference between
the change in energy and angular momentum for massive stars
indicates that the diffusion in energy and angular momentum for the
massive stars is less efficient. Since relaxation is driven by VRR in
the 1X model, this explains the strongest vertical mass segregation
compared to 10X and 30X models discussed above (see Fig. 6).
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On the other hand, energy and angular momentum changes in the
10X and 30X models are mostly driven by two-body relaxation.
This explains the more prominent mass segregation effect in the
eccentricities in 10X and 30X models compared to the 1X model.
Since the contribution from SRR is the least significant for the studied
models (especially the 10X and 30X models, see green lines in
Fig. 9), we conclude that the anisotropic mass segregation effects
in thermal isolated discs are caused by both VRR and two-body
relaxation.

S INTERACTION OF A NUCLEAR STELLAR
DISC WITH A SPHERICAL CUSP OF STARS

We analyse the shape and thickness of the stellar disc using the
quadrupole moment matrix (see e.g. Roupas et al. 2017, Szdlgyén
et al. 2021) defined as follows:

N
> imi LiaLig
Ny
Z,‘:] |Li|2

where L; is the angular momentum vector of the i-th star, o and B
are the corresponding Cartesian components.

The largest eigenvalue of the matrix corresponds to the shape of
the disc while the corresponding principal eigenvector describes the
orientation of the system

Qupv = Av. (19)

In this normalization, the trace of the matrix satisfies TrQ = 1
meaning thatequal eigenvalues A} = Ay = A3 = % represent a sphere
with zero angular momentum, and a razor-thin disc has (A1, A, A3) =
(1, 0, 0). Thus, the largest eigenvalue which takes the values 1/3 < A
< 1 quantifies the thickness of the stellar disc.

In this section, the inclination angles of the disc stars refer to the
mean inclinations with respect to the principal eigenvector of the
disc. This way, the orbital inclinations are always computed relative
to the instantaneous mid-plane of the disc in angular momentum
space even if the disc as a whole is tilted with respect to its initial
position.

OQup = (18)

5.1 Secular evolution of the embedded nuclear stellar discs

We follow the same steps as in Section 4 to study the dynamics
of discs embedded in a spherical cusp of stars on secular time-
scales. But in this subsection we use the stardisc models with the
power-law slope y = 3.3 and compare the isolated disc, the disc
embedded in a sphere, and the 30X model of the same disc embedded
in a sphere. The semimajor axes — inclination dependence (left-hand
panel of Fig. 10) is qualitatively similar for all three models, but the
models with a spherical component extend to higher inclinations in
the innermost part.

The right-hand panel of Fig. 10 shows a striking difference in
the average inclinations as a function of mass for high-mass stars:
while the isolated disc model shows lower inclination angles with
increasing mass, there is almost no correlation between stellar
mass and orbital inclinations for models with an isotropic spherical
component. Similar to Fig. 4, the time instances shown in Fig. 10
have the same average inclination angle for the low-mass stars
(m < 10 Mg) by construction. While the vertical mass segregation
effect vanishes, the dependence of the inclination on the semimajor
axis is more prominent. The latter effect develops faster and extends
to higher inclinations, and some stars even flip to counter-rotating
orbits (i > 90°).
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Figure 9. The RMS change in the Keplerian energy (blue) and angular momentum (green, red, black) as a function of time for the thermal isolated disc models.
The angular momentum vector magnitude (green), angular momentum vector direction (red), and Z-component of the angular momentum vector (black) are
shown as defined in equations (A1). Solid, dashed, and dotted lines show all stars, massive stars (m > 10 M), and light stars (m < 10 Mg), respectively. The
Y-axis shows the quantities in the legend, the X-axis shows the dimensionless time normalized to the orbital period (equation A2). The top panels show the
average change in the argument of periapsis (Aw) and the longitude of the ascending node (A€2); the coherence time of SRR and VRR are related to the apsidal

and nodal precession periods.
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Figure 10. Similar to Fig. 4 but also showing models with and without a spherical component. Left-hand panel: Moving average of inclination angles in
semimajor axes. Colours show models with different mass factors (see legend). Faded lines (points) of the same colour show 90 and 10 per cent quantiles. The
time snapshots shown are chosen such that the average orbital inclination is identical for the low-mass stars (this corresponds to 40, 2.6, and 0.033 Myr for 1X
only disc model, the 1X disc + sphere, and 30X disc 4 sphere models, respectively; see dotted lines in Fig. 12). Blue lines in both panels indicate the isolated
disc with the stardisc initial conditions and the power-law density slope y = 3.3. Red and green lines show the same disc embedded in the spherical stellar cusp
with the power-law slope of y = 1.75 for 1X and 30X models, respectively (see Section 3 for detailed description of the models).

The top panels of Fig. 11 show the normalized distributions of light
and massive particles respectively at the time-snapshots of Fig. 10
demonstrating that the relative difference in high mass stars at low
orbital inclinations is not more than 10 percent than that for the
light stars for the models with an isotropic spherical component. The
bottom panels of Fig. 11 provide a comparison for the distribution

of orbital eccentricities for massive and light stars between the
three reference models. As in the case of orbital inclinations, mass
segregation in eccentricities vanishes when the same stellar disc
interacts with a spherical nearly isotropic distribution of stars. The
time-evolution of the rms inclinations and eccentricities (Fig. 12)
shows that massive and light stars relax at the same rate.
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Figure 11. Normalized histograms of orbital inclinations and eccentricities for light (m < 10 M) and massive (m > 10 M) particles to compare the isolated
disc model with models that feature a spherical stellar cusp for the same models as in Fig. 10.
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Figure 12. Time-evolution of RMS eccentricities and inclination angles for 1X isolated disc, 1X disc + sphere, and 30X disc + sphere models as a function of
secular time for massive (solid lines) and light (dashed lines) particles for the same models as in Figs 10 and 11.

To understand which relaxation process dominates in these sys-
tems, we examine the correlation curves for the relative changes in
energies and angular momenta as for the case of an isolated disc
discussed above (see Appendix A for details). Fig. 13 shows that
the isolated disc case (the left-hand panel) is initially dominated by
two-body relaxation. This is unsurprising as the initial condition for
stardisc models feature low eccentricities and low inclinations imply-
ing faster two-body relaxation initially (see equation 7 and Subr &
Haas 2014). As the isolated disc system is highly anisotropic, we
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see that the internal dynamics leads to anisotropic mass segregation
which in this case is driven by two-body relaxation (cf. Fig. 9 for the
thermal model showing less prominent energy diffusion). The middle
panel of Fig. 13 shows the energy and angular momentum correlation
curves for the disc embedded in a dominant isotropic spherical
component. Here, we do not observe any differences between the
curves of the massive and light stars. Contrary to the case of the
isolated disc, the 1X model with a spherical component shows that
two-body relaxation dominates only in the initial phase of evolution
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Figure 13. Similar to Fig. 9 but also showing models with and without a spherical component. Left-hand panel shows the stardisc isolated disc model with
y = 3.3, the middle and right-hand panels show 1X and 30X models of the same disc embedded in an isotropic stellar component. The values are measured

only for the stars that initially belong to the disc.

(first 10* periods) after which VRR takes over. After 10* periods
VRR fully dominates the evolution. We note that only the innermost
particles contribute to the curves after T = 10* showing that the
inclination — semimajor axis anticorrelation presented in the left-
hand panel of Fig. 10 is mostly driven by VRR.

Applying this to the Milky Way galactic centre, 10* orbital periods
correspond to less than 5 Myr for the stars with semimajor axes a <
0.05 pc meaning that the S-stars are subject to an efficient VRR. The
upper panels of Fig. 13 show the average change in the argument
of periapsis (@) and longitude of the ascending node (£2). As also
expected from theory (Rauch & Tremaine 1996), the figure shows
that the coherent phase of SRR occurs on the apsidal precession
time-scale. Further, as we suggested in Section 2, for stellar discs
embedded in a spherical component, the coherent phase of VRR takes
place on the nodal precession time-scales. We refer to Appendix A for
a detailed analysis of the VRR efficiency. Contrary to the 1X model,
the 30X models are dominated by two-body relaxation which takes
place in 10? orbital periods. Since the 30X models in our simulations
are equivalent to dwarf galaxies with central black holes with masses
of the order of My, ~ 10° M, we conclude that these systems are
dominated by two-body dynamics. We explore such systems further
in Section 5.3.

5.2 Comparison to previous models

To understand why stellar discs with an isotropic spherical com-
ponent do not show a vertical mass segregation, while previous
studies with nearly spherical initial conditions did show this effect
(Szolgyén & Kocsis 2018; Magnan et al. 2021; Mathé et al. 2022), we
examine the dimensionless VRR energy and angular momentum in
our models which determine the VRR equilibria as shown in Mathé
et al. (2022):

S s JijePy (R - L) (Zfil L;

Eo = — 12 v L= —N ., (20
20 2 Jije > izt 1Ll

Here, L i L ; are units vectors in angular momentum direction for the

i"™ and j" particles, ¢ is the multipole index, J; , are pairwise coupling

coefficients that depend on eccentricities and semimajor axes and

Py (x) are Legendre polynomials. Here, (E\y, Liot) = (0, 0) represents
an isotropic distribution, while (— 1, (1 + «)~!) corresponds to a
razor thin disc where a k fraction of stars orbit in one sense and 1 —
« in the other. We refer to Mathé et al. (2022) and Kocsis & Tremaine
(2015) for details.

In our simulations, (E, Lio) are of the order of (— 107, 10~*) for
the models with a spherical component which are clearly very nearly
isotropic. In comparison, the most isotropic case presented in Mathé
etal. (2022) had (Eio, Lior) = (— 0.03, 0.16) which is relatively more
anisotropic. Moreover, the models with dominating disc (presented
in Section 5.4) which are highly anisotropic do show vertical mass
segregation. Thus, we conclude that the absence of anisotropic mass
segregation in our models with an isotropic spherical component
does not contradict previous studies of VRR, but it indicates that
the final state of vertical mass segregation depends strongly on the
deviation from isotropy. Note that two-body relaxation may also drive
anisotropic mass segregation on the longer two-body relaxation time-
scale, but similarly to VRR, only in cases with an initial anisotropy in
angular momentum vector space (see Tiongco et al. 2021; Livernois
etal. 2022, for related studies in globular clusters). Thus, we conclude
that vertical mass segregation is absent in our models with a disc +
spherical component due to a very low net initial anisotropy; and
our models of isolated discs (Section 4) exhibit anisotropic mass
segregation as found in Mathé et al. (2022).

5.3 Long-term evolution of embedded nuclear stellar discs

The long-term evolution is shaped by two-body interactions which
may lead to the exchange of energy and angular momentum between
the particles in the disc and sphere. In this subsection, we focus
on the 30X models which are dominated by two-body interactions
and are numerically relatively inexpensive to study the long-term
evolution on the two-body relaxation time-scale. As we have shown
in previous sections, two-body relaxation is relatively subdominant
in the Galactic centre and the 30X models are not appropriate in that
case. The 30X models represent one-to-one simulations of nuclear
star clusters in dwarf galaxies with SMBHs of mass My, = 4 x
10°Mg /30 = 1.3 x 10° My, (see Nguyen et al. 2019 for examples
of galaxies hosting nuclear star clusters with massive black holes
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Figure 14. Z-components of the angular momentum vectors of the disc (blue
lines) and the sphere (red lines) normalized to the total angular momentum of
the whole system. Bottom X-axis shows time in units of half-mass two-body
relaxation time of a spherical component. Line styles correspond to different
models of the stellar disc according to the legend. Shows only 30X models
which are equivalent to a dwarf galaxy hosting a 1.3 x 10° black hole and a
nuclear star cluster extended to 1 pc.

below 10° My). In the analysis below, we simulate the system with
this SMBH mass and nuclear star clusters extending up to 1 pc. We
estimate the two-body relaxation time using the half-mass relaxation
time of the spherical component (equation 2) using data from our
simulations.

Fig. 14 illustrates the exchange of the z-component of the
angular momentum between the disc (L, gisc, blue curves) and the
sphere (L, sphere, red curves) showing their time-evolution normal-
ized to the total angular momentum of the entire system (L)
for the 30X models (see Table 1) normalized to the total an-
gular momentum of the entire system. The sphere has a non-
zero initial L, gphere due to shot-noise-type stochastic deviation
from isotropy, i.e. the initial value of L, phere/Lzgisc 18 drawn

from a uniform distribution between :I:(Nmz);éﬁere/ (Nm)gise =

1/2 1/2 .
(Nsp/here/Ndisc)((mz)séhm/(m)disc) where m is the stellar mass. The
disc tends to give away its angular momentum until it is completely
mixed with the spherical component, i.e. when the net L, per particle

is equal for the two components, i.e.

Lz,disc <Lz,tot> Nise
—
Ll(\l Lt()l

Lzs here LZ tot Ns here
e (L) N
LIO( LIO(

, (21
Although none of the simulations reached complete mixing, Fig. 14
demonstrates that L, 4ic approaches the equilibrium value of equa-
tion (21) for all models.

Fig. 15 illustrates the alignment of the respective total angular
momentum vectors of the disc and spherical components in our
simulations. Alignment occurs if the stellar disc is massive enough,
Naise (m) dise > Nslp/hzcrc(mz)iésm, and if so, alignment takes place
within the VRR time-scale shown by a vertical dotted line. For lower
disc masses, Lgjsc and Lpper. €nd up in the same hemisphere (cosine
of the mutual inclination angle is positive) even if they were counter-
rotating initially as seen in Fig. 14 where both the disc and the sphere
attain a net positive angular momentum.

Fig. 16 shows the evolution of the shape of the stellar disc
quantified by the largest eigenvalue of the quadrupole moment matrix
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Figure 15. Orientation of the total angular momentum vectors of the stellar
disc and sphere, respectively, for the 30X models as in Fig. 16, i.e. the
cosine of the angle between the respective total angular momentum vectors
as a function of time in units of half-mass two-body relaxation time of the
spherical component. Line colours correspond to different disc models as
indicated in the legend. The dotted vertical line represents the VRR time due
to the spherical stellar cusp (equation 6).
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Figure 16. Time-evolution of the thickness of the stellar disc (top solid lines)
in units of half-mass two-body relaxation time of a spherical component
quantified by the largest eigenvalue of the quadrupole moment matrix (see
equation 18). v = 1 describes the razor-thin disc while v = 1/3 indicates
the spherically symmetric distribution. The bottom dashed lines show the
corresponding eigenvalue of the sphere. Line colours are the same as in
Fig. 15 with additional blue and red lines corresponding to the disc-dominated
models with number of stars in the disc Ng = 5 x 10% and Ng = 9 x 10*.

(defined in equation 18) as a function of time. Generally, the angular
momentum transfer from the stellar disc to a spherical component
results in the thickening of the disc. Eventually, the disc appears to
evolve towards a spherical shape.

5.4 Effect on the sphere

As we have seen in the previous subsection, the stellar disc tends to
evolve towards an isotropic distribution while interacting with the
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Figure 17. Normalized histograms of eccentricities (top panel) and cosines
of orbital inclinations (bottom panel) for the dominating disc model with
Ng =9 x 10*. Solid lines show the distribution of the massive stars, dashed
lines correspond to the light stars. Blue lines show the stars in the sphere and
red lines show the stars that were originally in the disc. Shown at #/frejax =
0.3.

isotropic spherical star cluster. At the same time, as the spherical
component absorbs the angular momentum of the disc, it preserves
its original shape as long as it is much more massive than the
disc (dashed lines in Fig. 16). This is the case for relatively low-
mass stellar discs (at most 15 percent of the total stellar mass in
our models), but in the case of the disc-dominated models (Nq =
0.5No¢ and Ng = 0.9N,o¢) the angular momentum vector distribution
flattens significantly for the initially isotropic sphere on the two-body
relaxation time-scales. The upper limit for the degree of flattening
attained by a spherical component may be determined from the total
angular momentum budget of the whole system (see equation 21).
A similar conclusion was reached in Mastrobuono-Battisti & Perets
(2013, 2016) for simulations of globular clusters which also flatten
due to angular momentum transfer from a stellar disc, especially in
case the disc mass exceeds ~25 percent of the total mass of the
cluster.

Finally, Fig. 17 demonstrates that when the disc is massive enough
to cause flattening of a spherical component both the disc and
spherical components feature vertical mass segregation. This is in
line with expectations from VRR dynamics: the total energy — total
angular momentum pairs for the dominating disc models (evaluated
using equation 20) are (Eior, Lior) = (— 0.24, 0.46) and (E, Liot) =
(— 0.65, 0.87) for the models with Ny = 0.5 Ny, and Ny = 0.9 Ny
implying a large amount of initial anisotropy. However, note that
these 30X models are predominantly driven by two-body relaxation.
Furthermore, these models also develop a mass segregation in
eccentricity space (top panel in Fig. 17). These models show that two-
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Figure 18. Longitudes of the ascending nodes of the observed S-stars with
known orbital elements. The black and red histograms represent the black
and red discs according to Ali et al. (2020).

body relaxation also plays an important role in driving anisotropic
mass segregation.

6 APPLICATION TO THE GALACTIC CENTRE
S-STARS

Recent observations of the S-stars® in the Galactic centre revealed
that the kinematic structure of the stars with known orbital parameters
appears to resemble two orthogonal discs (Ali et al. 2020; Pei3ker
et al. 2020) labelled as ‘red’” and ‘black’ discs. The discs can
be identified from the distribution of the position angles of the
semimajor axes projected on the sky which in turn is reflected in
the distribution of the longitudes of ascending nodes (LaNs) of the
orbits. Fig. 18 shows the distribution of LaNs of the black and red
discs in the form of two normalized histograms separately for each of
the discs as classified by Ali et al. (2020). The peaks around 0, 180,
and 360° correspond to one plane of the black disc while two peaks
around 100 and 270° show that the red disc is almost orthogonal to
the black one.

We compare the observed properties of the S-stars with the
orbital parameters in three of our 1X simulations: stardisc y = 3.3,
stardisc y = 2.4, and the thermal model (see Table 1). We examine
the simulation snapshots at 5 Myr. The stardisc initial conditions
represent the case when the stars formed from the fragmenting
gaseous accretion disc and the stars residing inside 0.05 pc migrated
from the outer regions due to gas-driven planetary-type migration
(Levin 2007). This leads to nearly circular orbits matching the
stardisc initial conditions. Alternatively, massive stars could form
by accreting matter from AGN discs (Levin 2007; Davies & Lin
2020; Cantiello, Jermyn & Lin 2021). Another way to form the disc
of stars is by disruption of a molecular cloud resulting in high orbital
eccentricities (see e.g. Generozov 2021). This formation scenario is
closer to our thermal model.

To compare the observed distribution of inclination angles of
the S-stars we convert the data provided by Ali et al. (2020) and

SHere, we define S-stars as all the stars in the Galactic Centre with known
full orbital solutions around the SMBH as reported by Ali et al. (2020) and
PeiBlker et al. (2020).
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Figure 19. Longitudes of the ascending nodes for the inner stars (a < 0.05 pc)
in simulations at 5 Myr (blue, red, and green lines) compared to the S-stars
(shaded). The histogram for the S-stars shows both red and black discs. The
reference direction for the longitudes of the ascending nodes in the simulations
is chosen to match the peak in S-stars.

PeiB3ker et al. (2020) to the coordinates with respect to the principal
eigenvector of the system (equation 19). This way the inclination
angles are independent of the choice of the reference plane of the
coordinate system. To define the longitude of ascending nodes in
our simulations, we orient the x — y axes such that the peak of
the distribution matches that of the S-stars. We select stars from
the inner region of the stellar disc (a < 0.05 pc) and compare
their properties to the observational data of the S-stars. Due to the
observational limits, only the stars with masses m > 3 Mg can be
detected; however, we did not use the mass criterion to select the
S-stars from our simulations. This is because we previously showed
that stellar discs embedded in a spherically symmetric and isotropic
stellar component have no vertical or eccentric mass segregation.
If in reality the distribution of low-mass S-stars will be different
(when they are detected) from high-mass S-stars, this would point to
a larger amount of initial anisotropy of the background (old) stellar
population surrounding the S-stars than assumed in our models.

We start by comparing LaNs (Fig. 19). The shaded histogram in
Fig. 19 shows the observed S-stars without dividing them into two
discs. As we can see, all three of our models feature a peak around
100° matching with the S-stars by construction. This anisotropy is
caused by the fluctuating torques from the spherical component.
However, we cannot clearly detect the second peak corresponding to
another disc (black disc) nor the opposite peak corresponding to a
counter-rotating component of the disc (red disc) in the same plane
(82 ~ 250°).

‘We note that two distinct peaks in LaNs form in the stardisc y =
2.4 model at 1.1 Myr, but this feature is transient and dissolves in less
than 0.5 Myr. Fig. 20 shows a scatter plot of LaNs versus semimajor
axes for this model indicating that each peak in the distribution
corresponds to different semimajor axes. Comparison with the data
from Ali et al. (2020) yields similar properties with the ‘black’ disc
(shown as a dashed line in the histogram in Fig. 20).

Fig. 21 shows the distribution of the cosines of the orbital inclina-
tions with respect to the principal eigenvector in the observations and
in our simulations. The observed red disc and black discs correspond
to the peaks at cosi = %1 and at 0, respectively. In contrast, the
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Figure 20. Correlation of the longitudes of the ascending nodes for the inner
stars (a < 0.05 pc) with semimajor axes for the model stardisc y = 2.4 at
1.1 Myr. Right-hand panel shows the corresponding normalized histogram
where the dashed line represents the distribution of stars from the ‘black’ disc
from Ali et al. (2020).
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Figure 21. Distribution of cosines of inclination angles of stars with respect
to the principal eigenvectors. Shaded histogram corresponds to the S-stars
and the coloured histograms show stars in the inner region of the stellar disc
(a < 0.05 pc) from the simulations at 5 Myr (except for the green dotted line
which corresponds to 10 Myr).

simulations have a more prominent peak at cosi = 1 and do not
show a peak at cos i >~ —1 indicating a lack of retrograde stars in the
same plane. Furthermore, the simulations do not display a peak at
cosi = 0. Our models also show significantly higher relative number
of stars in the mid-plane of the disc (cosi = 1), indicating less
diffusion took place from the initial condition in the simulations than
observed. This suggests that the orbits of the observed S-stars are
at a later stage of angular momentum relaxation. The dotted line in
Fig. 21 shows the distribution of cosines of orbital inclinations for
the thermal model at 10 Myr. Because the thermal model is the most
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Figure 22. Eccentricity distributions for the inner stars (a¢ < 0.05 pc) in
simulations at 5 Myr (blue, red, and green lines) compared to the S-stars
(shaded).

efficient in terms of VRR (see also Appendix A), this implies that
even 10 Myr is not enough to fully randomize the orbital inclinations.

Massive perturbers such as a cusp of stellar black holes or an
IMBH may boost both two-body and resonant relaxation (Perets,
Hopman & Alexander 2007; Kocsis & Tremaine 2011, 2015). Let
us estimate the mass of an IMBH required to speed up VRR by a
certain factor k. Following equation (6) and applying the definition
of the effective mass, gives

MIMBH =

N
(2= 1) > m2 = (k2= 1) N2 m?)12, 22)

where m; is the mass of i star and N is the total number of stars
(in our case within 0.05 pc), and N ~ 4500 and (m?)"/? = 5.33 M
in our models in this region. For example, to speed up VRR by
a factor of x = 2 one needs an IMBH of mpy >~ 620Mg. In
Appendix A, we show that VRR for a stellar disc embedded in
a spherical component is quenched by a factor fr/frq4. For the
stardisc y = 2.4 model, to speed up VRR so that an IMBH balances
the quenching from the disc one needs k = 7 /Bt 4 = 2.23,i.e. an
IMBH of mpgu =~ 710 M. Under certain conditions an IMBH may
also produce counter-rotating stars in the same plane and give rise to
a second stellar disc (Panamarev, Zou, & Kocsis, in preparation).

Finally, Fig. 22 shows the distribution of eccentricities, indicating
that the observed sample of S-stars exhibits two distinct peaks near
0.4 and 0.8 (Ali et al. 2020). In contrast, neither of our simulations
shows two peaks, but interestingly the stardisc models match the
peak at e = 0.4 while the thermal model matches the peak at e =
0.8. However, note that the observed sample of S-stars from Ali
et al. (2020) contains only a small sample of ~40 stars where
the significance of the two peaks is greatly decreased by Poisson
fluctuations.

Thus, if the S-stars formed in a disc, the simulations suggest that the
distribution of their orbital angular momentum vectors should have
retained a stronger peak up to at least 10 Myr since their formation,
and to match the observed distribution the root-sum-squared mass in
the same region should be (3°; m*)!/? = 820 M, which is possible
with an initial stellar disc of Ny = 10° stellar objects and remnants
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and an IMBH of mass 500—1000 Mg, or with a massive cusp of
stellar black holes.

7 SUMMARY AND DISCUSSION

We performed a set of direct N-body simulations of nuclear stellar
discs with a massive black hole at the centre. We examined cases with
and without a spherical star cluster in the same region. We presented
the first one-to-one direct N-body simulations of the inner 0.5 pc of
the Milky Way nuclear star cluster featuring a realistic total stellar
mass and a top-heavy mass function. Furthermore, we ran simulations
which represent the conditions at the centres of ultracompact dwarf
galaxies. Our main findings are as follows.

(1) The relaxation processes in isolated stellar discs lead to vertical
and eccentric mass segregation meaning that massive stars settle to
lower orbital inclinations and more circular orbits than the light stars.
This is caused by both resonant and two-body relaxation. On the other
hand, the interaction with an isotropic spherical distribution of stars
quenches mass segregation in inclinations and eccentricities.

(ii) The interaction of a stellar disc with a spherical component
leads to the thickening of the stellar disc. The rate of this process
depends strongly on the semimajor axis. The stars in the inner region
relax faster in terms of inclination angles leading to an anticorrelation
between orbital inclinations and the distance from the SMBH. Our
simulations showed that for conditions in the Milky Way, the orbital
inclinations change predominantly due to VRR, despite the fact that
VRR is quenched by nodal precession due to the torques from within
the stellar disc.

(iii) The nuclei of dwarf galaxies hosting stellar discs and massive
black holes of the order of 10° My are dominated by two-body
relaxation. These systems approach full mixing on the two-body
relaxation time-scale, where an initially thin disc becomes spherical
if embedded in a much more massive spherical cusp. The spherical
component does not develop a significant flattening if the disc mass
is less than 15 per cent of the spherical cluster, but very massive discs
(comparable with the mass of the sphere and more massive) cause
flattening of the initially spherical distribution and drive anisotropic
mass segregation.

(iv) The dynamics of the S-stars at the Galactic centre from their
formation up to 5 Myr is dominated by VRR. This results in an
anticorrelation of orbital inclinations with distance from the SMBH
meaning that the thickness of the disc increases with decreasing
radius which is confirmed in recent observations (von Fellenberg
et al. 2022). The stochastic deviations from an isotropic distribution
in the spherical component of old stars give rise to a non-zero net
torque which leads to an overdensity of angular momentum vectors
in a given direction, hence a peak in distribution at a particular value.
However, this does not explain the distribution of longitudes of the
ascending nodes presented by Ali et al. (2020) which they interpret
as two orthogonal counter-rotating discs.

(v) Our simulations led to less diffusion of angular momentum
vector directions from a thin stellar disc in 10 Myr than currently
observed for the S-stars. This suggests that if the S-stars initially
formed in a stellar disc, the root-sum-squared mass of stellar
objects and remnants in this region should be of the order of
820 Mg within 0.05pc to reproduce the observed scatter at present
in angular momentum vector directions, suggesting that the S-stars
co-exist with a cusp of stellar black holes or with an IMBH of
mass mppu = 500—1000 Mg (see Gravity Collaboration 2020, and
references therein for limits on an IMBH in the Galactic centre).
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Our simulations of the inner part of the Milky Way nuclear star
cluster featured a realistic number of stars within 0.5 pc, but one of the
assumptions for the spherical stellar component was a nearly exactly
isotropic distribution of angular momentum vectors (deviations at
the level of 10~*) which is expected to be responsible for the absence
of vertical mass segregation in our models. Thus, one of the next
steps to explore the evolution of stellar nuclear discs is to study
the interaction with stellar systems with anisotropy and/or rotation.
This is reasonable as observations show that the Milky Way nuclear
star cluster has net rotation and flattening (Feldmeier et al. 2014).
Moreover, recent observations suggest that 7 percent of the stars
in the inner parsec exhibit faster rotation (Arca Sedda et al. 2020;
Do et al. 2020). Theoretical studies of the VRR indicate that initial
anisotropy in the distribution of stellar angular momenta strongly
affect the final equilibrium distribution of multimass stellar systems
(Szolgyén & Kocsis 2018; Magnan et al. 2021; Mathé et al. 2022).
Furthermore, N-body simulations of rotating globular clusters show
that vertical mass segregation may also occur in globular clusters
(Szolgyén et al. 2019; Tiongco et al. 2021; Tiongco, Vesperini &
Varri 2022).

The explored initial conditions included the results of previous
stardisc simulations of AGNs (Panamarev et al. 2018) leading to
relatively old stellar population within the disc, but this is not the
case in the Galactic centre (Levin & Beloborodov 2003). One way
to form young stars matching the initial conditions explored in this
paper is to form the stars from the gaseous accretion disc. This
type of formation scenario was studied by Levin (2007) predicting
innermost stars on circular orbits. One way to improve our models
and to account for young stars would be to perform simulations with
stellar evolution assigning two different populations for the disc and
the sphere. As the stellar evolutionary mass-loss is high for the most
massive stars, this may affect the resulting kinematic signatures of
massive stars.

We did not take into account the effect of the outer galaxy in the
simulations. This is justified because we modelled the innermost part
of the galactic nucleus where the potential is highly dominated by
the SMBH, while the contribution from the galactic components like
bulge, disc or halo becomes important at larger scales, outside the
influence radius of the SMBH.

The configuration of the PHI-GRAPE code used in this study was
designed to avoid formation of binary stars in the explored stellar
systems. But it was shown that binary stars may significantly alter
the observed orbital elements of the stars in the young stellar
disc at the Galactic centre (Naoz et al. 2018). Moreover, one of
the formation scenarios of the S-stars is the Hills mechanism that
involves tidal disruptions of binaries by the SMBH (Hills 1975;
Perets et al. 2007; Fragione & Sari 2018; Generozov 2021). S-stars
formed as a result of the Hills mechanism are expected to feature
initially high eccentricities contrary to the in situ formation studied
in this paper. Therefore, a next step to improve our models is to
incorporate formation and evolution of binaries starting with the
stellar disc with a fraction of stars in binary systems. Moreover,
this will allow us to study the effect of binaries on the efficiency of
resonant relaxation processes in galactic nuclei hosting stellar discs.
Simulations including binaries with and without stellar evolution
may be done using NBODY6++ GPU code (Wang et al. 2015) with
the most recent updates of the stellar evolution (Kamlah et al. 2022a,
b).

Another way to improve our models is to combine direct N-body
modelling with self-consistent field models (Meiron et al. 2014)
to account for the dynamical effects of the embedding galaxy on
the nuclear stellar disc. An example of this approach is the direct

MNRAS 517, 6205-6224 (2022)

integration of all the disc particles and the innermost particles in the
sphere (e.g. within 0.1 pc) and hybrid integration of the outer stars (r
> 0.5 pc). This would speed up the simulations and allow to reach
larger masses and number of particles (up to 10°) within the inner
0.5 pc in the Milky Way and potentially to model nuclei of more
massive galaxies hosting SMBHs, nuclear star clusters, and stellar
discs.
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APPENDIX A: MEASURING THE EFFICIENCY
OF RELAXATION PROCESSES

To measure the efficiency of relaxation processes, we follow the steps
described in Rauch & Tremaine (1996), Eilon et al. (2009), and Me-
iron & Kocsis (2019). We compute the relative change in Keplerian
energy, angular momentum vector magnitude, angular momentum
vector direction, and z-component of the angular momentum vector
defined as:

E—E L —|L
sg = L= B0 5y _ IEI= 1Ll
Ey L.
L-L L. —L,
SL, = | of sp, = 1z~ Leol (A1)
L. Lz,0|
with respect to the normalized time defined as:
r—1
T = . (A2)
Torb

Where 1, is the initial moment in time which was chosen to
correspond to t = 0, Ey, Ly, and L. correspond to the time t =
to. The defined above quantities are computed for each particle
corresponding to a relevant bin in the normalized time . After that,
we compute rms for all particles in each bin. The rms of energies and
angular momenta are plotted in Figs 9 and 13.

Together with changes in energies and angular momenta, we track
changes in the arguments of periapsides and the longitudes of the
ascending nodes.

dw = arccos (w — wp), 6S2 = arccos (2 — Qo). (A3)

The top panes in Figs 9 and 13 show the mean change in these
quantities with respect to 7.

To measure the rate of relaxation, we assume the following
relations (Rauch & Tremaine 1996; Meiron & Kocsis 2019):

ms(SE) = a2 /N JT, (Ad)
My
ms(SLy) = n, - /NA/T, (A5)
My,
mMSGL,) = —2 /N7 + BoT) . (A6)
M,

We focus on the coherent part of VRR, where the efficiency is
linear with t and is given by (following equation A6):

_ drms(6Ly) My,
o dr my/N'
The definition of B, is somewhat different in different studies
(Rauch & Tremaine 1996; Giirkan & Hopman 2007; Eilon et al.

2009; Kocsis & Tremaine 2015), we use the definition of Kocsis &
Tremaine (2015) where S, is replaced by:

(A7)

Bumy

- ms(m)/3 —y’ (A%)

pr
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Figure Al. Similar to Figs 9 and 13 but only for 1X models with a spherical component. Left-hand panel shows the model with thermal disc with y = 2.4,
mid and right-hand panels show the stardisc models with y = 2.4 and y = 3.3, respectively. The dash—dotted lines on all panels show the curves corresponding
only to the stars that initially belong to the disc; solid lines show values for the stars that initially belong to a spherical component. Upper panels show change
in argument of periapsis (which demonstrates the apsidal precession rate) and longitude of the ascending node (demonstrates the nodal precession rate).

where y is the power-law density slope of the system, rms(m) =
4.95Mg is the rms of stellar masses and m, = 12.17 Mg, is the
effective mass.

In Fig. A1, the coherent phase of VRR is clearly seen in the range
of 100 < 7 < 500. We perform a linear fit in this range.

To measure the effect of the stellar disc on the efficiency of VRR,
we measure Bt (equation A8) separately for the stars that are initially
arranged in the disc (B1g4) and for the stars that belong initially to
the spherical component (B15). However, for a crude estimate, in
both cases we use the rms mass and m, and y factor of the spherical
component in equation (A8) even when calculating Brq4 since the
spherical component is expected to dominate the evolution of disc
stars. We perform the measurement of Sr4 and Bt for three 1X
models that we used to compare with the S-stars in Section 6: thermal,
stardisc y = 2.4 and stardisc y = 3.3. As a result, we find that for
the stardisc models VRR is more efficient for stars in the spherical
component, while for the stars that initially reside in the disc, VRR
is less efficient. As we see from Fig. Al, the coherent accumulation
of torques of VRR is limited by the nodal precession time (orange
lines in top panels) after which we see a random walk growth. This is
clearly seen for the disc stars (dash—dotted lines in Fig. A1). Note that
the least efficient VRR regime is in the stardisc y = 3.3 model, where
VRR is quenched by a factor of Brs/Bra = 3.27. This is explained
by the fact that due to the steep density profile, the inner part of
the whole system is largely dominated by the stellar disc leading to
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Table A1l. Measured values of Bt and Sgka for simulations with a disc
and spherical component.

Sphere Disc Disc Disc

stardisc stardisc thermal
y 1.75 33 2.4 2.4
Bt 1.44 0.44 0.96 1.33
BERA 0.99 0.30 0.66 0.92

Note. List of the values for St for the spherical and disc components in
different models for the discs according to the definition from Kocsis &
Tremaine (2015) in comparison with the definition used in Eilon et al.
(2009). First column shows the value obtained for the stars in a spherical
component, the remaining columns indicate the values for the disc stars
corresponding to different disc models with different y radial density profile
exponents.

fast nodal precession rate. The model stardisc y = 2.4 slows down
the vector angular momentum relaxation rate by a factor of 1.5, but
VRR in the thermal model is quenched only by ~10 per cent. We
summarize the measured values for 14 and Bt in Table Al and
compare them with BFXA — the definition of 8, used in Eilon et al.
(2009) which is related to Bt as Bt = 0.698F%A (Kocsis & Tremaine
2015).

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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