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A B S T R A C T 

Gravitationally lensed sources may have unresolved or blended multiple images, and for time varying sources, the light curves 
from individual images can o v erlap. We use convolutional neural nets to both classify the light curves as due to unlensed, double, 
or quad lensed sources and fit for the time delays. Focusing on lensed supernova systems with time delays � t � 6 d, we achieve 
100 per cent precision and recall in identifying the number of images and then estimating the time delays to σ� t ≈ 1 d, with a 
1000 × speedup relative to our previous Monte Carlo technique. This also succeeds for flux noise levels ∼ 10 per cent . For � t ∈ 

[2, 6] d, we obtain 94–98 per cent accuracy, depending on image configuration. We also explore using partial light curves where 
observations only start near maximum light, without the rise time data, and quantify the success. 

Key words: gravitational lensing: strong – methods: data analysis – methods: numerical – cosmology: observations – transients: 
supernovae. 
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 I N T RO D U C T I O N  

ravitationally lensed Type Ia supernovae (SN Ia) should be discov- 
red in tens and hundreds in surv e ys be ginning in the next few years
Huber et al. 2019 ; Verma et al. 2019 ; Pierel et al. 2021 ; Lochner
t al. 2022 ). These will have intriguing advantages relative to more
umerous lensed quasars and other sources due to their well-defined 
ime variation o v er time-scales of months, and standardizable candle 
ature. To increase the numbers of these useful probes of time- 
elay cosmology, one might attempt to use lensed systems where 
he images are blended or unresolved (e.g. due to lower mass galaxy
enses) and the image light curves significantly overlap. 

Such o v erlap poses three basic observational problems: (1) recog- 
ition of the light curve as a lensed SN Ia, when the light curve
oes not look like a standard SN Ia, (2) determination of the number
f images contributing to the light curve, and (3) estimation of the
ime delays between all the images. One part of the first step is
dentifying the light curve as being a SN Ia. This is an important
nitial step. Recently developed machine-learning tools using spectral 
nformation accomplish this with ∼99 per cent accuracy and can 
e potentially extended to classify non-supernovae sources as well 
Muthukrishna, Parkinson & Tucker 2019 ; Davison, Parkinson & 

ucker 2022 ); also see Boone ( 2021 ) for use of the photometric data.
ur work here then picks up with identifying the SN Ia as a lensed
N Ia, and further carries out steps 2 and 3. 
Recent articles have addressed these by considering distortions of 

tandard supernova light curves, by expanding in ‘crossing functions’ 
basically orthogonal polynomials) with arbitrary amplitudes (Bag 
t al. 2021 ), and by free form variation of light curves with
onstrained amplitudes (Denissenya et al. 2022 ). Both methods 
entioned use Monte Carlo methods to estimate the time delays, 
ith the second method also adding a step to identify robustly the
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umber of images in the unresolved systems. Both demonstrated 
ccurate measurement of the time delays for � t � 10 d. In this work,
e turn to deep learning to accomplish this more quickly, and remo v e

he need for separate time-delay estimation runs for each potential 
umber of images. Other work has also investigated various aspects 
f unresolved light curves for lensed quasars, generally involving 
onger time delays than we consider, e.g. Bag et al. ( 2022 ), Biggio
t al. ( 2021 ), Huber et al. ( 2022 ), Springer & Ofek ( 2021b , 2021a ),
nd Shu, Belokurov & Evans ( 2021 ). We note that much of our
ethod can be applied to more general cases of blended light curves,

rom a variety of transients, but we focus here on lensed SN Ia. 
In Section 2 , we describe the construction of the neural net, train-

ng, and test data. Section 3 presents the results for the classification
f the number of images and time-delay estimations, focusing on the
revious � t � 10 d range. We investigate higher noise systems in
ection 4.1 , shorter time-delay systems in Section 4.2 , and the use
f observational data that miss the early-time rise in Section 4.3 .
iscussion of results, further work, and conclusions is given in 
ection 5 . 

 DEEP  L E A R N I N G  APPROACH  

he basic physical situation is of the observation of only a single
lended light curve from the combination of unresolved gravitation- 
lly lensed multiple images of a time varying source. We follow
he notation of Bag et al. ( 2021 ) and Denissenya et al. ( 2022 ). The
bserved (blended) flux in a wavelength filter j is 

 j ( t) = 

∑ 

i∈ images 

μi U j ( t − �t i ) , (1) 

here U ( t ) is the intrinsic, unlensed source flux as a function of time
i.e. unobservable source light curve), the sum is over each image i
ith their individual lensing magnifications μi and time delays � t i .
e focus on estimating the observable relative time delays � t ij =
 t i − � t j and determining the number of images N images . Unlensed
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Figure 1. The unified structure of three convolutional neural networks CNNc, CNN2, and CNN4. The CNNs are designed to have the same combination of 
inner layers and differ in the output layers indicated enclosed in the dashed rounded boxes. The maximum probability of the softmax function of the CNNc 
output determines the number of images n estimated for the system. CNN2 and CNN4 neural networks estimate lensing time delays in the systems with n = 2 
and n = 4 number of images, respectively. CNNc, CNN2, and CNN4 have independent training sets. 
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ystems have one image, while multiply lensed systems have two
r four images (lensing gives an odd number of images but one
ensed image is generally obscured by the lens galaxy or highly
emagnified). 
Unlike Bag et al. ( 2021 ) and Denissenya et al. ( 2022 ), we do

ot input a form U ( t ), either an expansion about a given form or
 free form bounded deviation from a given form. Instead, we use
 training set of generated, noisy, lensed, and unlensed SN Ia light
urves and use a convolutional neural net to classify the blended
ight curves as arising from an N images system. These are then fed
nto a convolutional neural net to perform the time-delay estimation.
his same procedure could be used for any type of blended light
urv es, i.e. an y lensed transient source, with an appropriate training
et, though here we focus on SN Ia. 

We explored neural networks without convolution, recurrent
eural networks, and convolutional neural networks. Convolutional
eural nets with two hidden convolutional layers yield the best
erformance; we found no significant impro v ement by including
urther hidden layers. 

.1 Training and test data 

or training, we generate three data sets, each containing 10 000
ystems with successive time delays between images in the range
10,14] dagnification ratios in [0.25,4], and measurement noise at
he level of 5 per cent of the peak flux [so points on the rise and
ail of the light curv e hav e signal to noise much less than 20;
lso see Bag et al. ( 2021 ), Denissenya et al. ( 2022 ) for details],
sing the Hsiao supernova light-curve template (Hsiao et al. 2007 )
ithin sncosmo (Barbary et al. 2020 ). Our LCsimulator code used

o simulate unlensed and lensed systems is publicly available in a
itHub repository. 1 Set T124 includes 1-, 2-, and 4-image systems

n equal proportions, while Set T2 includes only 2-image systems
NRAS 515, 977–983 (2022) 

 LCsimulator ht tps://github.com/mdeat ecl/LensedSN124imagesLCs 

v
 

c  
nd Set T4 includes only 4-image systems. We use Set T124 to train
 convolutional neural network we call CNNc for classification (as
nlensed, i.e. 1-image, lensed 2-image, or lensed 4-image systems).
ata sets T2 and T4 train neural nets CNN2 and CNN4 respectively

o accurately predict the time delays for lensed systems with the
ndicated number of images. We assign 80 per cent of the systems
or training and employing 20 per cent for testing in each data set. 

.2 Data pr e-pr ocessing 

o impro v e computational efficienc y, we take sev eral steps to prepare
he data for input. We normalize the flux measurements and the
bserv ation interv als using the corresponding ensemble (10 000
ystems) maximal and minimal values. We stack flux measurements
rom the three (g, r, i) wavelength filters as well as the observation
ime instances into single input vector. 

.3 Convolutional neural network structure 

n this paper, we implement three convolutional neural networks
NNc, CNN2, and CNN4 using the PyTorch high-performance deep

earning library (Paszke et al. 2019 ). These neural networks consist
f five layers described in Fig. 1 and share the same structure of
nner layers consisting of alternating convolutional and max pooling
ayers with ReLU (rectified linear unit) acti v ation functions. The fully
onnected layers form the outputs of neural networks. The output
f CNNc predicts the number of images in the system. Depending
n the CNNc output, we invoke either CNN2 or CNN4 to estimate
ensing time delays. CNN2 has a single output number corresponding
o a lensing time delay in a two-image system. If CNNc classifies
he system as quadruply imaged, we employ CNN4 to estimate the
orresponding relative lensing time delays, resulting in the output
ector with three entries. 

Each convolutional layer produces multiple copies of an input by
onvolving it with K kernels. In our case, the convolution turns the
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Figure 2. Total loss functions of the neural net CNNc and confusion matrices at epoch 4 (left-hand panel) and 45 (right-hand panel) obtained using the Adam 

algorithm (Kingma & Ba 2017 ) on a test set. The confusion matrix is diagonalized at epochs abo v e 45 (matrix rows are input classes – unlensed 1-, lensed 2-, 
and lensed 4-image systems; columns are output classes). 
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nput vector into a tensor with an extra depth index that comes first
n a tuple defining the size of the output. The depth of the output
s equal to the number of kernels K used to transform the input to
utput data. 
We have confirmed that assigning the tasks of image number 

lassification and estimation of lensing time delays to separate neural 
etworks as we do is advantageous o v er a neural network architecture
 x ecuting these task simultaneously. For example, one could use 
NNc, including the CNN4 output layer dedicated to estimating the 

hree lensing time delays in the 4-image systems. While such a neural
etw ork w ould still be capable of reliably identifying the number of
mages, the presence of unlensed and 2-image systems in the training 
ample but fitting for (potentially null) three time delays skews the 
istributions of estimated time delays even for the 4-image systems. 
hus, we use the more robust architecture of CNNc followed by 
NN2 or CNN4. 

 RESULTS  

s described in Section 2 , we train the CNNs and then validate
hem on data not used in training. For data from an actual surv e y,
ur goal is to productively select systems for follow-up observations 
ith high-resolution instruments to enable the use of our time-delay 

stimations as a cosmological probe, co v ering the ke y range of
ensing time delays 6–14 d (Goldstein, Nugent & Goobar 2019 ). 
his section assesses the purity of the image classification and time- 
elay estimation, and we carry out some studies of the efficiency 
which will depend on surv e y characteristics be yond this work) in
ection 4 . Performance of the classification, through CNNc, can be 
uantified with a confusion matrix: for each input class, what fraction 
s classified in each output class. We find 100 per cent precision and
ecall in predicting the correct number of images in the 2000 lensing
ystems in the test set. 

Fig. 2 shows the rapid convergence of CNNc towards a perfect, 
iagonal confusion matrix. There are no false assignments. The 
raining process takes about ∼1 s for a single epoch (40 iterations), so
bout 45 s to reach the diagonal confusion matrix shown in the figure.
esting of 2000 systems takes ∼0.1 s on a 4-core CPU operating at
.5 GHz. 
Given the perfect classification, each system is unambiguously 

ssigned to either CNN2 or CNN4 for estimation of the time delays
etween the two images A, B, or the four images A, B, C, and D.
ig. 3 displays those results as a histogram of the offset of the fit value
rom the true value, � t fit − � t true . The histograms are well-peaked
nd fairly symmetric. 

Time-delay estimation precision σ� t ≈ 1 d for 4-image systems 
nd even better for 2-image systems. This is quite satisfactory: recall
he time delays entering the blended light curves are in the range
 t = [10, 14], and the observing cadence mean is 2 d. (From here

n, all time delays are understood to be in units of days.) The bias, i.e.
agnitude of systematic offsets from the true time delays, is � 0.4 σ ,

o below the statistical scatter. 
The CNN2 and CNN4 training process takes ∼1 s per epoch (40

terations); the testing of 2000 systems by CNN2 takes ∼0.1 s on
 4-core CPU operating at 3.5 GHz, and testing 2000 systems by
NN4 takes roughly the same amount of time. 

 E X T E N D I N G  T H E  RESULTS  

e next take brief looks at exploring variations, one at a time,
f the fiducial data situation to extend the usefulness of this deep
earning technique. Section 4.1 assesses the impact of data quality by
oubling the measurement noise. In Section 4.2 , we test the method
y decreasing the input time delays, first down to 6 d, then all the way
own to 2 d, giving even greater blending of light curves. Section 4.3
nvestigates the consequences of missing data from the initial rising 
hase of the observed light curve. 

.1 Noisier data 

o investigate the impact of measurement noise on the classification 
nd time-delay estimation, we generated another ensemble with flux 
oise level increased to 10 per cent, but using the same distribution of
rue time delays and magnifications as the fiducial data with 5 per cent
MNRAS 515, 977–983 (2022) 
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Figure 3. Histograms of time delays obtained for the test data sets having N images = 2 (left-hand panel) and N images = 4 (right-hand panel) using the trained 
CNN2 and CNN4 neural networks, respectively. The left-hand panel histogram shows the single time delay between the two images while the right-hand panel 
shows the three consecutive time delays between the four images A, B, C, and D. The histograms are quantified by the standard deviation σ� t , and unbiased to 
� 0.4 σ . 

Figure 4. As Fig. 3 but for 10 per cent flux noise. Time-delay estimation remains robust. 
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oise le vel. (To allo w a direct comparison of the noise impact, we
ave kept the random seeds the same between the 5 per cent and
0 per cent sets.) We found that a perfectly diagonal confusion matrix,
.e. 100 per cent precision and recall in predicting the number of
mages, still occurs in essentially the same number of iterations of
NNc, despite a noise level increased to 10 per cent. Fig. 4 shows that

he distribution of predicted time delays has a slightly larger spread
or the 2-image case compared to the fiducial 5 per cent noise case
hown in Fig. 3 , but there is little impact on the histogram width in
NRAS 515, 977–983 (2022) 
he 4-image case. Further studies show that the classification begins
o degrade at ∼20 per cent noise (much higher than expected from
pcoming surv e ys). 

.2 Shorter time delays 

n all other sections, we use a fiducial range of time delays � t =
10, 14] for comparison to the previous work of Bag et al. ( 2021 )
nd Denissenya et al. ( 2022 ). Recall that longer time delays would

art/stac1726_f3.eps
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Figure 5. The loss functions of the neural CNNc net and confusion matrices e v aluated for short time delays in the range [6,10] (left-hand panel) and [2,6] 
(right-hand panel). 
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ive more clearly resolved light curve peaks (hence images), while 
he previous techniques began to falter below � t = 10. Here, we
xplore how the deep-learning technique manages on shorter time 
elays. 
For an ensemble of systems with � t = [6, 10] generated for

raining and testing with the same neural networks, the CNNc 
onfusion matrix continues to be diagonal o v er this range � t =
6, 10]. We have also verified this for the extended range � t = [6,
4]. Finally, we pushed to even lower time delays, � t = [2, 6].
ere, lensed 2-image systems can be mistaken for a single unlensed 
ut broader system ∼ 5 per cent of the time, while true unlensed 
r 4-image systems are accurately classified ∼ 98 per cent of 
he time. 

Fig. 5 shows the confusion matrices for the � t = [6, 10] and � t =
2, 6] runs. While the neural net needs to run nearly three times as
ong to reach the loss function minimum, the end results are, as stated
bo v e, quite good. Thus, our deep-learning technique appears robust
or � t � 6. Fig. 6 presents the time-delay estimation histogram for
he two low time-delay ranges, for the classified 2- and 4-image 
ystems. The magnitudes σ� t do not change much, though of course 
he fractional σ� t / � t increases going from the � t = [10, 14] case to
he [6,10] and then [2,6] cases. 

.3 Missing early-time data 

bservations may not capture the full lensed supernova light-curve 
ata. We investigate the impact on the classification and time-delay 
stimation from missing data in the first T trunc days after the supernova
xplosion. We generated multiple training sets of partial light curves 
y truncating the rising part of the full (untruncated) light curves. 
he truncation parameter T trunc indicates the number of days missing 
fter the ideal trigger position determined at 1 per cent of the total
ux peak value for every light curve. To investigate the sensitivity
f the CNNs to truncation level, we evaluated the performance for
ev eral cases: fix ed T trunc = 10, 20, . . . , 80 for each data set, and the
runcation varying in the range T trunc = [10, 40]. 
Fig. 7 shows the results as a function of T trunc (we find that the
ase when T trunc varies o v er a range simply falls in between the
esults corresponding to the ends of the range). The recognition of
nresolved lensed images and classification of number of images 
emains quite robust. Defining the accuracy as the diagonal entry 
n the confusion matrix, we find that CNNc delivers accuracies 
bo v e 0.99 for T trunc � 35, i.e. despite missing rise time data (and
he time-delay estimation is insignificantly affected in this regime). 
urther truncation reduces the accuracy, in particular, the ability of 

he neural network to distinguish unlensed and 2-image partial light 
urves. 

These results can be understood by considering that a typical 
upernova intrinsic rise time is ∼20 d, and with a single time
elay of ∼12 d for a 2-image system, then truncation of the first
32 d means one has only data beginning near maximum flux (and

xtending until the supernova fades substantially, more than a month 
fter maximum). For 4-image systems with sequential image time 
elays of ∼12 d, while one might lose the first image for extended
runcations, there is still substantial flux from at least three images to
ater times, and such a broad light curve would look quite different
rom the separated maxima of a long time delay 2-image system, so
he accuracy remains high. 

 C O N C L U S I O N S  

trongly gravitationally lensed transients carry significant cosmolog- 
cal information, and will increasingly be disco v ered by upcoming
urv e ys. While the use of well separated, resolved, multiple images
nd their fluxes is established, many instances will have individual 
mages unresolved and their light curves blended together. We 
uild the previous work on unresolved lensed transients by using 
eep learning to a v oid restrictive assumptions about the light-curve
hape. 

Taking SN Ia as an example, we show that deep learning can
lassify the number of images with perfect precision and recall for
ime delays � t � 6 d, accurately measure the individual time delays
MNRAS 515, 977–983 (2022) 
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Figure 6. As Fig. 3 but for short time delays in the range [6,10] (left column) and [2,6] (right column). 
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to σ� t ≈ 1 d) without significant bias, and do so ∼1000 × faster
han previous Monte Carlo fitting techniques. A simple combination
f a classification neural net CNNc and a time delay measurement
eural net is found to be highly efficient and accurate. 
We extended our analysis to variations of lens system and ob-

ervational properties. The deep-learning implementation is robust
or noise up to ∼ 20 per cent of maximum flux, has ∼ 99 per cent
ccurac y ev en when rise time data are missing up to about maximum
ight, and still achiev es ∼ 95 per cent accurac y down to time delays
 t ∼ 2 d. 
While we have focused on SN Ia, the approach is generally

pplicable and can be tested for other transients in future work,
NRAS 515, 977–983 (2022) 
ncluding recognition of a transient as a SN Ia. A major use of
dentification and characterization of unresolved transients is to
ngage follow-up resources for cosmological probes; for example,
ime-delay cosmography will need not only time-delay estimation but

easurement of the lens galaxy mass profile or velocity dispersion.
y identifying a set of promising lensed supernovae through our
eep-learning work, this can make the follow up more efficient.
urther aspects to be studied include the impact of microlens-

ng, and different intrinsic light-curve shapes, ho we ver, the speed
nd accuracy of this deep-learning approach should make those
nvestigations more tractable than previous Monte Carlo fitting 
echniques. 
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t tps://github.com/mdeat ecl/LensedSN124imagesLCs4DL . 
EFERENCES  

ag S., Kim A. G., Linder E. V., Shafieloo A., 2021, ApJ , 910, 65 
ag S., Shafieloo A., Liao K., Treu T., 2022, ApJ , 927, 191 
arbary K. et al., 2020, SNCosmo: Python library for supernova cosmology.

P ackage v ersion 2.1, Available at: https://github.com/sncosmo/sncosmo 
(Last accessed: 17.02.2022) 

iggio L., Domi A., Tosi S., Vernardos G., Ricci D., Paganin L., Bracco G.,
2021, preprint ( arXiv:2110.01012 ) 

oone K., 2021, AJ , 162, 275 
avison W., Parkinson D., Tucker B. E., 2022, ApJ , 925, 186 
enissenya M., Bag S., Kim A. G., Linder E. V., Shafieloo A., 2022, MNRAS ,

511, 1210 
oldstein D. A., Nugent P. E., Goobar A., 2019, ApJS , 243, 6 
siao E. Y., Conley A. J., Howell D. A., Sulli v an M., Pritchet C. J., Carlberg

R. G., Nugent P. E., Phillips M. M., 2007, ApJS , 663, 1187 
uber S. et al., 2019, A&A , 631, A161 
uber S. et al., 2022, A&A , 658, A157 
ingma D. P., Ba J., 2017, preprint ( arXiv:1412.6980 ) 
ochner M. et al., 2022, ApJS , 259, 58 
uthukrishna D., Parkinson D., Tucker B. E., 2019, ApJ , 885, 85 

aszke A. et al., 2019, in Wallach H., Larochelle H., Beygelzimer A., d’Alch ́e-
Buc F., Fox E., Garnett R., eds, Advances in Neural Information Process-
ing Systems 32. Curran Associates, Inc.,Vancouver, British Columbia, 
Canada, p. 8024 

ierel J. D. R., Rodney S., Vernardos G., Oguri M., Kessler R., Anguita T.,
2021, ApJ. , 908, 190 

hu Y., Belokurov V., Evans N. W., 2021, MNRAS , 502, 2912 
pringer O. M., Ofek E. O., 2021a, MNRAS , 506, 864 
pringer O. M., Ofek E. O., 2021b, MNRAS , 508, 3166 
erma A., Collett T., Smith G. P., Strong Lensing Science Collaboration,

the DESC Strong Lensing Science Working Group, 2019, preprint 
( arXiv:1902.05141 ) 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
MNRAS 515, 977–983 (2022) 

 of Education “N
azarbayev U

niversity” user on 29 M
arch 2023

art/stac1726_f7.eps
https://github.com/mdeatecl/LensedSN124imagesLCs4DL
http://dx.doi.org/10.3847/1538-4357/abe238
http://dx.doi.org/10.3847/1538-4357/ac51cb
https://github.com/sncosmo/sncosmo
http://arxiv.org/abs/2110.01012
http://dx.doi.org/10.3847/1538-3881/ac2a2d
http://dx.doi.org/10.3847/1538-4357/ac3422
http://dx.doi.org/10.1093/mnras/stac143
http://dx.doi.org/10.3847/1538-4365/ab1fe0
http://dx.doi.org/10.1086/518232
http://dx.doi.org/10.1051/0004-6361/201935370
http://dx.doi.org/10.1051/0004-6361/202141956
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.3847/1538-4365/ac5033
http://dx.doi.org/10.3847/1538-4357/ab48f4
http://dx.doi.org/10.3847/1538-4357/abd8d3
http://dx.doi.org/10.1093/mnras/stab241
http://dx.doi.org/10.1093/mnras/stab1600
http://dx.doi.org/10.1093/mnras/stab2432
http://arxiv.org/abs/1902.05141

	1 INTRODUCTION
	2 DEEP LEARNING APPROACH
	3 RESULTS
	4 EXTENDING THE RESULTS
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

