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A B S T R A C T 

Gravitationally lensed Type Ia supernovae are an emerging probe with great potential for constraining dark energy, spatial 
curvature, and the Hubble constant. The multiple images and their time delayed and magnified fluxes may be unresolved, 
ho we ver, blended into a single light curve. We demonstrate methods without a fixed source template matching for extracting 

the individual images, determining whether there are one (no lensing) or two or four (lensed) images, and measuring the time 
delays between them that are valuable cosmological probes. We find 100 per cent success for determining the number of images 
for time delays greater than ∼10 d. 

Key words: gravitational lensing: strong – transients: supernovae – cosmology: observations – methods: numerical, data analy- 
sis. 
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 I N T RO D U C T I O N  

ime delays in strong gravitational lens systems are one of the few
imensionful quantities that can be measured cosmologically. This
nables an absolute distance measurement, rather than a ratio of
istances, and so determines an absolute cosmic length-scale, e.g.
he Hubble constant (Refsdal 1964 ). The time delay distance formed
rom the time delay involves combinations of distances from observer
o source, observer to lens, and lens to source; this is a valuable probe
f both the cosmic expansion behaviour and hence dark energy, and
patial curvature (Linder 2004 , 2011 ; Treu & Marshall 2016 ; Liao
t al. 2020 ; Millon et al. 2020 ; Shajib et al. 2020 ; Wong et al. 2020 ).

Each strongly lensed source is split so as to appear as multiple
mages, with generally the central lensed image unobservable due to
ens galaxy obscuration, leaving two or four images. These images
ill be magnified in flux, and delayed in time, relative to the source
ux and each other. Type Ia supernovae (hereafter just SN) have
articular advantages as gravitationally lensed sources, as they are
ime variable (so time delays are detectable), their intrinsic time
ariation is fairly well known, the observations needed to measure
ime delays span a month or two rather than years as for lensed
uasars, and the SN distances are standardizable, simplifying the
ens system modelling. 

If the multiple images can be resolved, i.e. their angular separations
re greater than the observing resolution, then each image can be
easured separately. Some particular recent work on such lensed

upernova cosmology appears in, e.g. Huber et al. ( 2021 ), Pierel
t al. ( 2021 ) and Rodney et al. ( 2021 ). Ho we ver, for worse image
esolution, smaller lensing masses, or less fa v ourable geometry of
he lens and source positions, the images may o v erlap and blend
ogether – be unresolved. In this case, only a single combined light
 E-mail: mikhail.denissenya@nu.edu.kz 
F

Pub
urve (flux versus time) can be measured, defining a system. We only
se this observed light-curve data. 
We focus here on such unresolved lensed SN, investigating

hether we can determine from a combined light curve its constituent
lements: is it lensed or unlensed, how many images, and what
re their time delays (and magnifications, to a lesser e xtent). F or
nresolved lensed supernovae this work covers the key range of
–14 d moti v ated by the expected distribution of time delays
enerally peaked around 10 d as in, e.g. Goldstein, Nugent & Goobar
 2019 ). This e xtends P aper 1 (Bag et al. 2021 ) in this series by
oing beyond two-image systems to allow four images and a more
obust exploration of multiplicity, and using a complementary fitting
ethod, also without a fixed source template. 
In Section 2, we describe the new fitting method and cross-

heck it against both simulations and the previous method for two
mages. We analyse it for four-image systems in Section 3 and
uantify its precision, accuracy, and range of robustness against
imulations. Section 4 investigates determination of multiplicity, i.e.
istinguishing unlensed (one-image) systems from two-image from
our-image systems, presenting the ‘confusion matrix’ between them.

e summarize the current state and future work in fitting unresolved
ensed SN in Section 5. 

 FREEFORM  FITTING  

trong lensing creates multiple images, each delayed in time and
agnified (greater or less) in flux. If the images cannot be resolved,

hen the signal is blended, a superposition of all images. The resulting
lended light curve defines a system. For an intrinsic, unlensed source
ux U ( t ), the measured, blended light curve is 

 j ( t) = 

∑ 

i∈ images 

μi U j ( t − �t i ) . (1) 
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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ere, j inde x es different wav elength filter bands, i the different
mages, and μi and � t i give the magnification and time delay, 
espectively, of image i . We aim to fit for � t i and μi (though we are
ostly interested in � t i ); note these quantities are one (important)

tep among many to use strong lensing systems for cosmology. The 
reeform technique works strictly from the observed light-curve data: 
upernova properties such as stretch, colour, and redshift do not enter 
urther as the method is freeform, i.e. model agnostic. As in Paper
, we do not include microlensing, which would turn the numbers 
i into time and wavelength-dependent functions μi , j ( t ). We address 
icrolensing in future work, but here focus on a direct comparison 

o and extension of Paper 1. 
If one knew the source time evolution U ( t ) perfectly, then fitting

or � t i , μi is straightforward. Ho we ver, SN do v ary in their light
urve intrinsically, and any template adopted will lead to errors, and 
ossibly biases, in the extracted time delays. Furthermore, we wish 
o keep our method reasonably general so it might be applicable 
n the future to other lensed transients besides Type Ia supernovae. 
herefore, we did not adopt a fixed template in Paper 1, and do not
ere. 

.1 Free within bounds 

n Paper 1, we took a base light-curve form with an asymmetric rise
nd fall (specifically a lognormal) and multiplied it with a Crossing
yper-function (fourth-order polynomial constructed from the first 
our Chebyshev polynomials) (Shafieloo, Clifton & Ferreira 2011 ; 
hafieloo 2012a , b ; Hazra & Shafieloo 2014 ). This gives considerable 
reedom for the light-curve shape. Ho we ver, it does correlate the
hape at one time with that at another time (recall the Chebyshev
olynomials represent a linear tilt, parabolic curvature, etc. as they 
ncrease in order). Therefore, we also explored an alternate form 

llowing freedom in the light-curve shape, which we use in this
aper. 

The technique here is of freedom at each time (SN phase), 
ncorrelated with other times. Complete freedom in the light-curve 
hape would lead to a fully degenerate problem, so we impose bounds
n the amplitude of the freedom. Concretely, we have 

 j ( t) = H j ( t) 
[
1 + h j ( t k ) 

]
GS( t) 

, (2) 

here H j ( t ) is the Hsiao (Hsiao et al. 2007 ) template for Type Ia
uperno vae in wav elength band j . We use Zwicky transient facility
ZTF; Bellm et al. 2018 ) g , r , i bands. The fit parameters h j are
yperparameters embodying the freedom to change the light-curve 
hape, but we bound their amplitude by | h j | < b . We explored various
alues for the limiting fractional change b , and found that b = 0.1, i.e.
 10 per cent change was ample to co v er the variation of SN intrinsic
ight curves used for cosmology, giving the best combination of 
reedom and accuracy. 

The hyperparameters h j are independently chosen at nodes t k 
hroughout the SN phase. The light curve in between nodes, i.e. 
he full U j ( t ), is formed by multiplying a Gaussian kernel smoothing
n time of the 1 + h j ( t k ) factor (denoted by the subscript GS( t ); the
moothing length is itself a hyperparameter, lying in [3, 8] d) by a
inear spline of H j (the Hsiao template is defined at discrete epochs).

e found this works better and is more computationally efficient 
han Gaussian smoothing (or splining) both factors. The number of 
odes used is typically 50–70, depending on the observation range. 
oo small a number of nodes will not give sufficient freedom for
ariations, while too large a number of nodes will o v ersample the
ata as well as increase the computational cost. We experimented 
ith both adaptive and equal time spacing, and found equal spacing 
o work well, a v oiding the potential for adaptive spacing to become
oo sparse in certain epochs and miss useful features (e.g. troughs as
ell as peaks inform the time delay estimation). 
As in Paper 1, we simulate data using our LCSIMULATOR code based 

n the SNCOSMO (Barbary et al. 2020 ) PYTHON package, with light
urves generated by applying noise and observing characteristics as 
n (Goldstein et al. 2019 ) to Hsiao spectra (see Appendix A for tests
ith alternative light curves). The modelled light curves in g , r , i
TF bands include observations with ∼2 −4 d cadences with the flux
ncertainties set to 5 per cent of the peak value. We normalize the
nput data to unit intervals in flux and time for consistent treatment
f numerical precision. For a system modelled with N image images, 
hen the N image − 1 relative time delays and N image − 1 relative

agnifications are derived from N image absolute time positions and 
 image magnifications. 
We infer the time delays and relative magnifications using the 

o-U-Turn Hamiltonian Monte Carlo (HMC) sampler within CMD- 
TAN , the command-line interface to the STAN statistical modelling 

anguage ( STAN Development Team 2021 ). Our typical HMC run
ncludes eight chains, each with 1400 iterations and 250 warm up
teps, with a system taking ∼0.4–4 h per chain, depending on the
umber of parameters (images) fit. 

.2 Comparison with crossing method 

dvantages exist for each one of the fitting methods we apply to
ensed light curves. The method of Paper 1, which we call the crossing

ethod, allows the amplitude of deviation from the base form to
ary widely, but places some constraints on the shape deviations. 
he freeform method here allows the shape of the light curve to
ary widely but bounds the amplitudes of de viation. Allo wing both
hape and amplitude to vary without constraint is untenable as strong
egeneracies are introduced such that, for example, an unlensed SN 

ould be made to look like a blend of two images. We believe both
he freeform and crossing method are useful, and provide valuable 
rosschecks. 

We begin the comparison between the two by considering the two-
mage systems used in Paper 1 for blind testing. By fitting them with
he freeform technique, we can directly compare the results. 

Fig. 1 shows the results for this paper’s freeform technique (left)
nd Paper 1’s crossing technique (right) for those 100 systems. The
op panels show � t fit versus � t true , the middle panels show the
umulative distribution function plots, and the lower panels the � t fit 

� t true histograms. 
F or � t fit v ersus � t true , both techniques do quite well for � t fit ≥

0 d, tightly following the diagonal, i.e. truth. The freeform method
ontinues to follow the diagonal below 10 d, down to about 6 d (this
as the limit of the Paper 1 testing; in Appendix B here we see it

ctually works well to 2 d), while the crossing technique had levelled
ff with � t fit = 10 (all � t are given in units of days). Also, for the
nlensed systems ( � t true = 0), the freeform method seems to control
he fit somewhat better, keeping false positives well below � t fit =
0, unlike the crossing technique. This makes the freeform method 
ppear promising for application to the four-image fits of the next
ection. 

F or the cumulativ e distribution functions (CDFs), the key charac-
eristic is whether the distribution has slope one, i.e. the fit distribution
ollows the true distribution, in the central part of the diagram,
ndicating reliable fit uncertainties. We indicate the central 68 per cent
robability distribution, between the 0.16 and 0.84 quantiles, by 
he vertical dotted lines. In that central 68 per cent probability, the
reeform method fits occur 65–68 per cent of the time (depending on
MNRAS 511, 1210–1217 (2022) 



1212 M. Denissenya et al. 

Figure 1. Blind tests using the freeform method (left-hand panels) and crossing technique (right-hand panels) on a set of 100 systems, with 9 unlensed and 
91 two-image systems with time delays are distributed o v er 6 −30 d. (Top panels) Time delay fits lie closely along the diagonal � t fit = � t true . For � t fit < 

10 d, the crossing technique of Paper 1 tends to level out, while the freeform method continues to follow the diagonal. Unlensed systems ( � t true = 0) are also 
clearly distinct from � t fit ≥ 10 fits with the freeform method. Error bars show the 95 per cent confidence intervals. (Middle panels) The cumulative distribution 
functions are shown for the systems with � t fit ≥ 10 d (blue) and � t fit ≥ 15 d (orange). The central 68 per cent of fit probability encompasses 65–68 per cent 
probability in the freeform case, showing excellent accuracy, an improvement over the 52–56 per cent of the crossing technique. (Bottom panels) Histograms of 
the time delay fits versus truth. Both show good peakiness around the truth. 
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Figure 2. The time delay deviations from the truth in four-image systems for the equal time delay differences � T = 6 (left-hand panel), � T = 10 (middle 
panel), and randomly chosen from the � t i = [10, 14] interval (right-hand panel). The thin dashed and dotted vertical lines are used to indicate 2 and 3 d 
de viations, respecti vely. Error bars sho w the 95 per cent confidence interv als. 
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he cut-off in � t fit ), demonstrating its accuracy, while the crossing
echnique had 52–56 per cent. Note that the vertical offset from the
iagonal is due to a sample selection bias due to the imposed cut-off
n � t fit , so that quantile zero is shifted to CDF > 0; but again, the
entral part of the diagram is the most important. 

The histograms of � t fit − � t true in Fig. 1 for � t fit ≥ 10 d show
hat the freeform approach accurately reco v ers the true time delays,
ith better than 1.25 d precision in ∼97 per cent of the cases, with

ccuracy � 0.1 d. The freeform nature of the approach allows greater
exibility in the light-curve shape for robustness and eliminates the 
ias seen for the crossing method when 10 ≤ � t fit < 15. 
Thus, the freeform technique has shown good accuracy and 

recision on two-image systems, moti v ating its use for four-image 
ystems as well. We note that both approaches have advantages in 
articular areas. The crossing technique from Paper 1 starts from a 
orm that is merely a rise and fall of flux, i.e. a fairly generic transient,
ithout assuming it comes from an SN Ia, while the freeform

echnique does use deviations around a Hsiao SN Ia light curve. 
e might expect the crossing technique to be useful for unclassified 

ransients, and then the freeform method to be more accurate for
hose suspected of being SN Ia. In the remainder of the paper we
ssume we are dealing with potentially lensed (one, two, or four
mages) SN Ia and employ the freeform method. 

 TIME  D E L AY S  O F  F O U R  IMAG ES  

aving established that the freeform method works well on two- 
mage systems, and distinguishes them from unlensed SN, we now 

roceed further and consider four-image systems (recall that strong 
ensing generally produces two or four visible images, not an odd 
umber). 
For four-image systems, there are four (unobservable) times t 1 , 

 2 , t 3 , t 4 associated with the four images, and three observable,
ndependent relative time delays, � t AB , � t BC , � t CD . We use the
umerical 1–4 and alphabetical A −D notation to emphasize the 
if ference between unobserv ables and observ ables. Furthermore, 
here are four magnifications relative to the unlensed source flux, 
o there are a large number of permutations for the test system
arameters. We therefore carry out two types of studies, one with 
ystematic time delays and one with random time delays within a 
ange. 
First, we systematically study the accuracy of four-image fits by 
onsidering equal true delays: � t AB = � t BC = � t CD ≡ � T for � T =
, 6, 8, 10, 12 d. We still fit for each time delay as independent free
arameters. These systems are simulated with a flux noise level of
 per cent of peak flux and a variety of image magnifications. 
Fig. 2 shows the fits, relative to truth, for the three relative time

elays � t AB , � t BC , � t CD for each of 10 four-image systems (we
hoose 10 systems randomly, enough to be statistically informative 
hile not swamping the figure with 100 + data bars). We exhibit

he cases for � T = 6 (left-hand panel) and � T = 10 (middle panel).
hile the fits have more variation than those for two images, nearly

ll contain the true value within the 95 per cent uncertainties. Even
or � T = 6 (well below what we will use), there is clear recognition
hat it is lensed at some non-zero time delay. 

While we can fit four images well, plus distinguish them from
he unlensed (zero time delay) case, we also want to see if we can
istinguish them from the two image, lensed case. We therefore take
he same systems and fit them as two-image systems as well, i.e. with
 single relative time delay and a relative magnification. 

Fig. 3 e v aluates the relati ve χ2 of the fit with four images relati ve
o the fit with two images, as a function of true (four images) time
elay spacing � T . If �χ2 ≡ χ2 

min , 4im 

− χ2 
min , 2im 

< 0, this means the
our-image fit is preferred. Ho we ver, as the four-image fit has four
ore parameters (two more time delays and two more relative 
agnifications), one might also look at the Akaike Information 
riterion AIC = �χ2 − 2 � N dof . Then four images is robustly
referred when �χ2 < −8. These two criteria are shown as the
otted red and dashed magenta horizontal lines, respectively. We see 
hat for � T > 8 d we can have significant confidence that we can
istinguish four image from two-image lensed systems. 
For the second study, we focus on time delays randomly distributed 

n the range � t i = [10, 14], where the subscript runs o v er AB ,
C , CD . While we have seen that we can fit well smaller time
elays for four-image systems, and for two-image systems, we 
ill not have as robust confidence that we can tell the two cases

part. Therefore, we concentrate on this range, which should be 
he most challenging of the fits for which we have confidence not
nly in the fits themselves but the number of images as well (see
ection 4 for further investigation). We also randomly select the 
agnifications μi . 
We set flat priors on t 1 and t 4 . The lower bound on t 1 is given by

hen the flux in g band reaches 15 per cent of flux peak value, and
MNRAS 511, 1210–1217 (2022) 
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1214 M. Denissenya et al. 

Figure 3. Distinction between systems with four images and with two images 
is statistically highly significant for time delay spacing of greater than 8 d, 
generated for four-image systems. Error bars give the mean �χ2 difference 
and 68 per cent confidence region at each � T spacing. Fits with �χ2 < 

0 (dotted red line) correctly prefer a four-image fit, while those with �χ2 

< −8 (dashed magenta line) have Akaike Information Criterion AIC < 0, 
accounting for the four extra parameters of a four- versus two-image fit, and 
hence are fully robust. 
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he upper bound is determined from the flux peak position. Similarly,
he upper bound on t 4 is when the flux reaches the 15 per cent of the
eak value on the tail of the observation interval. The bounds on t 2 
nd t 3 , and the lower bound on t 4 , are determined dynamically in the
t, subject to the inequalities 

 2 > τ t 1 , t 3 > τ t 2 , t 4 > τ t 3 , (3) 

here the factor τ > 1 is used to preserve some separation between
he images. That is, we do not want images lying right on top of each
ther and hence being degenerate with a lesser number of images.
e find that τ = 1.1 works well. 
For the magnification we impose μi > 0.25, since recall that μi =

 means there is no image (so a four-image system with two μi = 0
s really a two-image system) and there is a perfect de generac y for
ll values of that � t i , while for μi near zero such a low-amplitude
ump is degenerate with a local shape perturbation h ( t ). Thus the
ondition μi > 0.25 is employed to a v oid these issues and enable
obust fit convergence. The upper bound is μi < 4. 

The right-hand panel of Fig. 2 illustrates some time delay fits
elative to the truth for these varying delay systems. The best fits are
cattered about the truth, with no strong correlation between different
ime delays in a system, i.e. if one is on the positive side, the others
ay be on the positive or ne gativ e side. (More quantitatively, the

orrelation coefficients are � 0.5.) As for the previous study of equal
ime delays, the fits are well consistent with the truth. Fig. 4 shows
wo examples of the four-image fit to the observ ed light-curv e data,
ne with equal � T = 12 and one with time delays in the range � t i =
10, 14]. The points with error bars are the observed data, with the
hick solid line being the light curve constructed by the sum of the
our-image fits. The thin solid curves are the true image fluxes and
he non-solid curves the fit reconstructions – remember, the only
bservable is the data points of the unresolved, summed light curve.
NRAS 511, 1210–1217 (2022) 
he fit looks quite good, with excellent χ2 and accurate time delay
ts. The magnification fits are less good but not unreasonable. Our
ain focus ho we ver is identifying that an unresolved system is in fact
 lensed system – out of one, many – and how many images, rather
han optimizing per se the time delay and magnification estimation. 

 H OW  M A N Y  IMAG ES?  

hile obtaining four good image fits for data simulated with four
mages (or two for two) is important and valuable, we will not
now the true number of images behind observed data (unlike for
esolved lensed systems). Therefore, it is essential that we be able
o distinguish systems with one (unlensed) versus two versus four
mages. Fitting a system with the incorrect number of images will
ikely lead to either degeneracies or biases. 

We have already explored this partially with Fig. 3 , and found
obust distinction between four images and two images for � T �
 d. Now we examine this more thoroughly, forming a statistical
onfusion matrix between one- (unlensed), two-, and four-image
ystems, for realizations of random time delays � t i = [10, 14] and
agnifications. 
We simulate one-, two-, and four-image systems, 100 of each, and

t every one with one, two, and four images (e.g. not just true two
ith fit two, but true two with fit one, two, and four). By examining

he �χ2 minima, and AIC, between the N and M image fits, we can
ecide whether we can robustly identify the number of images, and
etermine the time delays for the optimized case. The results of the
tting to simulations is summarized in the confusion matrix, with
ntries for each case where there are N images simulated, i.e. truth,
nd M images fit, for N , M = 1, 2, 4. We assign the system to the
ighest number of images for which the AIC < 0 and the fit time
elays of the images exceed a given threshold, e.g. � t fit ≥ 10 d. The
raction of true systems in each image category fit is given in the
atrix entries. 
Table 1 shows the results for our fiducial threshold, � t fit ≥

0 d. The confusion matrix is perfectly diagonal, showing purity
f classification. As we have already seen in the previous sections,
he time delay fit accuracy is excellent as well. 

Studying the results as we reduce the threshold below our fiducial,
e see in Table 2 that we still identify the number of images in the

ystem perfectly for a threshold of � t fit ≥ 8 d. Note we do have
0 per cent of two-image systems that are fit as four-image systems
ith one time delay greater than 8 d, but 0 per cent with two time
elays greater than 8 d, and hence would not identify this as a four-
mage system abo v e threshold. It is not until the threshold is lowered
o � t fit ≥ 6 d that the confusion matrix becomes offdiagonal, as seen
n Table 3 . 

Thus, the freeform method can successfully identify both the
umber of unresolved images, and the individual image time delays,
or � t fit � 10 d. 

 C O N C L U S I O N S  

ensed Type Ia supernovae have the potential to become a significant
ew cosmological probe with the new generation of cosmic surv e ys.
he time delays between images carry information on the scale and
xpansion history of the uni verse. Ho we ver, not all multiply imaged
N will have visibly and resolved multiple images from which to
easure the time delays. Images may be unresolved or blended,
ith a single measured light curve summing over the images. We

nvestigate the problem of how to get out of one, many – detecting
he actual number of images and measuring their time delays. 
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Figure 4. The simulated four-image data with 5 per cent noise level are shown for two systems, with equidistant � T = 12 time delays (left-hand column) and 
randomly distributed time delays in the range � t i = [10, 14] (right-hand column). The upper, middle, and bottom rows show the light curves in g , r , i bands, 
respectively. The thin solid black and blue pairs of lines are the true light curves of individual images. The dashed, dotted, dash–dotted, and dash–double-dotted 
lines are the individual image flux reconstructions of our model using the best-fitting parameters. The extracted time delays and magnification ratios as well 
as their true counterparts are indicated in each panel. The χ2 values in the box ed te xts indicate how well the reconstructed light curves fit the observations in 
comparison to the true ones. 

Table 1. The confusion matrix showing the performance of our one-, two-, 
four-image models on a simulation set consisting of 100 unlensed systems, 
100 two-image and 100 two-image lensed systems. The lensed systems have 
true adjacent time delays random in [10, 14] and magnification ratios in [0.5, 
1.5]. The threshold is � t fit ≥ 10 d. 

Table 2. As Table 1 but with a threshold of � t fit ≥ 8 d. 

Table 3. As Table 1 but with a threshold of � t fit ≥ 6 d. 
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In Paper 1, we demonstrated one successful approach on two- 
mage systems. While it allowed wide variations in amplitude, it 
laced constraints on the shape of the light curve, correlated over
ts rise and fall. Here, we include four-image systems, where the
ariations in shape can be significant, so we develop and validate a
ew fitting method, essentially freeform in shape but more limited in
mplitude variations. Neither method assumes a fixed template for 
he light curve. 

The freeform method performs quite well for time delays � t �
0 d, and has reasonable behaviour for � t � 10 d as well. We
hen address the question of multiplicity, distinguishing not only 
MNRAS 511, 1210–1217 (2022) 
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hether a source has been lensed, but accurately discerning the
umber of images, while simultaneously fitting for their time delays
and to a lesser extent their magnifications). The confusion matrix
detailing whether a system is correctly identified or whether there

re false ne gativ es or positiv es – is nearly diagonal, i.e. pure, for the
reeform method for � t � 10 d, and does well for shorter time delays
s well. 

The goal of this research is to establish the ability to achieve out
f one, many, to go as far as possible with unresolved but potentially
lended light curves, in order to productively select systems for
ollo w-up. That follo w-up, e.g. obtaining resolved images through
igher resolution imaging (and further ingredients such as for lens
odelling) can turn the time delay systems into incisive cosmological

robes. 
Our approach a v oids fixed templates in the hope of eventually

eing applicable to a wide range of transients, beyond Type Ia
upernovae. While the crossing technique in Paper 1 is particularly
seful to deal with unclassified lensed transients, the freeform
ethod used here is seen to be more precise and accurate for

hose suspected of being SN Ia that are of crucial importance in
osmology. A combination of these two approaches and crosschecks
etween their results offer the potential to deal with a broad range
f transients. [While we focus on transients, combined light curves
rom quasars have been studied by, e.g. Shu, Belokurov & Evans
 2021 ), Springer & Ofek ( 2021a , b ), Pindor ( 2005 ), and Geiger &
chneider ( 1996 ).] 
Future research could include recognition of lensing for diverse

ransients, fitting of partial light curves (e.g. early times) or different
adence (we studied the effect of S/N in Paper 1, and for this article
hose a conserv ati ve noise le vel), etc. We will seek to improve further
ur approaches to classify various lensed transients and estimate their
ime delays. An o v erall objectiv e for the community is to determine
ccurate time delay distances for a large fraction of real systems (not
ust Type Ia supernovae). While a large sample is desired, our focus
ere emphasized an unbiased pure sample o v er completeness. We
resent a model that is designed to be accurate for transients with
ntrinsic light curves within ∼0.1 mag of a base shape at independent
hases, and can characterize lensed systems when the unresolved
bserved summed light curves deviate more than 0.1 mag from
hat single unlensed source light curve. From simulations, we find
hat accepting SN with � t fit � 10 ef fecti v ely remo v es lensing false
ositiv es. We leav e to further work the dev elopment of methods
hat identify more general systems with significant � t , but a very
if ferent shape, i.e. de viating by more than 0.1 mag from the base
hape. Comparison of fits of multiple models, such as the crossing
ethod and the freeform method using base shapes from different

ource classes, may be used to identify systems needing further
xamination. 

In addition, Paper 3 (in draft) deals with the impact of mi-
rolensing on supernova time delay estimation; preliminary re-
ults show it appears tractable within the approaches of Paper
 and this paper, while having two methods acts as a useful
rosscheck. 
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PPENDI X  A :  TESTING  FREEFORM  WI TH  

ALT2  

he Hsiao template is used in two ways: to generate the simulated
ystems, and also as the base from which the freeform method starts
n allowing shape deviations. We want to assess whether this affects
he fits, despite the addition of 50–70 free parameters allowing a free
orm. To do so, we generate systems using the SALT2 light-curve
emplate Guy et al. ( 2007 ) instead, and fit them with the freeform

ethod acting on the Hsiao base, i.e. equation (2). 
Fig. A1 shows that the freeform fit works comparably well whether

he data are generated based on SALT2 or Hsiao. As a further check,
e have verified that the clear distinction between four-image and

wo-image systems continues to hold with the freeform method even
hen generated with SALT2. 
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Figure A1. The time delay deviations from the truth in four-image systems generated using the SALT2 (left-hand panel) or Hsiao (right-hand panel; as the 
right-hand panel in Fig. 2 ) templates and fitted using the freeform method with the Hsiao base. The time delays are randomly chosen from the � t i = [10, 14] 
interval. The freeform fit works even with a different supernova input form. Error bars show the 95 per cent confidence intervals. 

Figure B1. Time delay fits are given for 30 two-image systems, showing 
that � t fit ≈ � t true even in the regime 2 d ≤ � t true < 8 d, below the threshold 
used in the main text. The dashed diagonal line gives � t fit = � t true , while 
the dotted diagonals give ±2.5 d around this. Error bars show the 95 per cent 
confidence intervals. 

APPENDI X  B:  ESTIMATING  TWO-I MAG E  TIME  

D E L AY S  BELOW  8  D  

As seen in Fig. 1 for two-image systems, the freeform method 
continues to yield � t fit ≈ � t true below the fiducial threshold of 
� t fit = 10 d. Although we do not use systems with shorter time 
delays in the main text, here we explore two-image time delays with 
2 d ≤ � t true < 8 d. Fig. B1 shows that the fits continue to follow 

� t fit ≈ � t true , with scatter of approximately 2 d (comparable to the 
observ ation cadence). Ho we ver, also as seen in Fig. 1 , we expect 
unlensed systems to ‘upscatter’ into this region of � t fit and so to 
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