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An intelligent methodology 
for the use of multi‑criteria decision 
analysis in impact assessment: 
the case of real‑world offshore 
construction
Mariza Tsakalerou1*, Damianos Efthymiadis2 & Almat Abilez1

Impact assessment of large‑scale projects involves a plethora of technical, economic, social, and 
environmental factors that must be assessed along with the expectations of the stakeholders of 
each project. While impact assessment is required for a development project to receive regulatory 
approval to proceed, it is also an invaluable tool during the design phase of complex projects, 
providing for informed decision‑making. Molding multiple perspectives of diverse stakeholders into 
a single collective choice is a key challenge in the process. Multi‑Criteria Decision Analysis (MCDA) is 
the methodology used to rank a finite number of decision options based on a finite set of evaluation 
criteria. Different MCDA techniques, however, may lead to different decisions when applied to the 
same problem while different sets of criteria and weights may rank choices differently even when the 
same method is applied. This is a cause of concern, and even acrimony, amongst the stakeholders, 
often leading to protracted periods of negotiation and delaying project launching. The objective of this 
paper is to present an intelligent system to ameliorate the effects of the inherent subjectivity in MCDA 
techniques and to develop a consensus amongst the stakeholders in a data‑driven setting. A case 
study from the field of offshore construction is used as a running example. This case study, informed 
by real‑world experience in the field, demonstrates succinctly the issues involved and illustrates 
clearly the proposed intelligent methodology and its merits.

Impact assessment is a formal, evidence-based prospective analysis to estimate the attributable impact of a 
project and to inform decision makers accordingly. This ex-ante impact analysis is a part of the planning stage 
of any development project and often leads to repeated corrective cycles in the design process. (Ex-post impact 
assessment, measuring the actual impact after the completion of a project, is beyond the scope of this paper.) 
The focus of impact assessment in the past was rather narrow, examining a tightly defined set of—mostly eco-
nomic-indicators. Impact assessment today, though, is subject to regulatory oversight in the OECD countries 
and its focus evolved tremendously to cover environmental, social, sustainability, as well as economic effects of 
large-scale projects. The impact assessment process often provides opportunities and mandates roles for public 
engagement, reconciliation, and partnership in the public  interest1.

There are of course several methodological challenges to impact assessment. For instance, identifying and 
predicting the environmental, health, social and economic impacts of design choices is extremely difficult, espe-
cially since the anticipated effects may occur in different time frames. Aggregating or comparing several aspects 
of impact, measured across diverse scales, is also difficult due to potential complex interactions between them. 
Extended time horizons require assumptions about societal and technological changes that may occur over the 
expected lifetime of a project. Ultimately, impact assessment is not neutral, often causing Hawthorne effects 
whereby monitoring the impact of a process leads to improvements in it due to the awareness of being observed.

Impact assessment is currently a mandatory ingredient of development project portfolios requesting regula-
tory approval. Beyond its regulatory significance, impact assessment is an invaluable tool during the design phase 
of large complex projects, providing for informed decision-making2. Indeed, impact assessment is credited with: 
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(i) increased participation in the decision-making, reflecting a wide range of stakeholder considerations while 
making more difficult the pursuit of special interests; and (ii) improved transparency in the decision-making 
by disclosing to the stakeholders the anticipated impact of specific design choices during the design phase. The 
open and transparent process of impact assessment is of course not without its own pitfalls. Decision analysis 
tools may often rank alternatives differently based on initial assumptions and choices. Decisions and decision-
making are, however, understood in diverse ways by different stakeholders and decision makers may therefore 
act differently when faced with diverse or even conflicting  results3,4.

In this broader context, the objective of this paper is not to invent a new decision analysis technique but to 
present a novel intelligent methodology to ameliorate these real-world problems using existing methods in the 
decision analysis toolbox. While this methodology is applicable to a broad range of development projects, this 
paper utilizes a representative case study of real-world offshore construction as a running example to demon-
strate succinctly the issues involved and illustrate clearly the proposed intelligent methodology and its merits.

Offshore construction is the installation of structures and facilities for a variety of functions in a marine 
environment. Shore and harbor protection facilities, offshore oil & gas drilling platforms, underwater pipelines, 
floating solar farms, offshore wind farms, are but a few examples of offshore installations. Offshore structures 
are constructed worldwide primarily for the energy sector (mostly oil & gas but, increasingly, solar and wind) 
and have significant economic impact for the regions and firms  involved5.

An offshore installation is typically a complex and expensive engineering structure composed of many subsys-
tems. Each installation is usually unique with its own design adapted to specific operational characteristics such 
as water depths, wave patterns and overall environmental conditions. Offshore construction is characterized by 
an intricate quagmire of technical, economic, and regulatory factors that affect the financial viability, the designed 
lifetime, and the management of expectations of the stakeholders of each  project6–8. With construction taking 
place in increasingly exacting locations, disputes arising from cost overruns, scheduling delays and technical 
difficulties frequently end up in  litigation9.

Firms involved in offshore construction must address decision-making problems at every step of the process, 
to support the choices of those who are making the decision. Decision-making in this context involves the com-
parative analysis of a finite set of alternatives described in terms of a finite set of evaluation criteria. The molding 
of multiple perspectives from different stakeholders into a single collective choice is based on the values and 
preferences of the decision makers who are not necessarily (or exclusively) of the construction firm. Choosing an 
alternative amidst conflicting multiple criteria and multiple perspectives of stakeholders is a challenging task. In 
such complex situations, multi-criteria analysis is often used as an ex-ante evaluation tool to rank a finite number 
of decision options based on a finite set of evaluation  criteria10–12.

The term Multi-Criteria Decision Analysis (MCDA) encompasses the wide-ranging family of systematic 
and transparent methods providing for the rational differentiating between a range of options, based on a set of 
criteria, against which each option is assessed. A typical MCDA method evolves along five structured stages: (i) 
defining the decision problem, goal, or objective; (ii) determining the criteria and the constraints; (iii) assessing 
the importance of the criteria with respect to each other and the objective; (iv) aggregating all the information 
into a common value metric; and finally (v) ranking the alternative choices. While several MCDA methods may 
be applicable to a decision-making situation, there are no clear guidelines on how to choose the most appropriate 
one. The choice of the MCDA method can significantly affect the quality of the decision, as different methods 
may lead to different decisions when applied to the same problem. More importantly, different sets of criteria 
and weights may rank choices differently even when the same method is applied.

Decision-making problems in offshore construction are often defined by multiple objective profiles as well 
as by multiple success factors needing to be evaluated. During the distinct phases of the construction process, 
decision-making methodologies must be employed to interpret the subjective preferences of the stakeholders 
and to translate them into real actions. MCDA techniques do support the management of multiple factors in the 
quest for an optimized decision, and their use is an established practice in offshore construction.

In offshore construction it is critical to assess not only the technical and economic factors but also the social 
and environmental impact of choices at the design  stage13,14. Indeed, offshore installations raise a morass of policy 
assessment issues stretching well-beyond beyond market impact. Reflecting the value of the natural environment 
and the wellbeing of the communities affected in design decisions is essential for the sustainable development 
of offshore  installations15,16.

Visual and landscape impact on tourist activities, archaeological concerns, chemical and noise pollution, 
safety concerns from sabotage and terrorism, biodiversity risks etc. are essential elements of the offshore con-
struction process. While MCDA techniques can in principle account for such elements, many of these factors 
are difficult to measure and the impact of design choices may play out over extended periods of time. Often the 
use of non-monetary evidence provides a more meaningful picture, leading to mixed models with quantitative 
and qualitative criteria on the same canvas. In real-world problems, MCDA methods are challenged to integrate 
into a coherent framework the missing or imprecise data, the heterogeneous information, and the extended 
intervention horizons present in offshore  construction17,18.

From the simple to the highly sophisticated, MCDA methods incorporate into the analysis the subjective 
judgement of stakeholders, that is the individual or entities who are directly or indirectly affected by the outcome 
of a decision-making process. In offshore construction, the stakeholder group includes the expected range of 
technical and financial specialists but also representatives of political, administrative, and regulatory authorities 
and public, private, and community organizations. Stakeholder judgement is important in selecting the relevant 
criteria, in identifying their weights, and in scoring the options examined against each objective. While this 
approach is at the core of MCDA techniques, its subjective nature is often a cause of concern, and even acrimony, 
amongst the stakeholders, often leading to protracted periods of  negotiation19,20.
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One way to address the issue of subjectivity in MCDA methods is to use more robust hybrid models that 
combine two or more techniques to address decision-making problems. The expectation from a hybrid approach 
is that it will combine the advantages of each MCDA method while overcoming the drawbacks of each method 
applied alone. Hybrid MCDA methods can also effectively support the structuring of decision making on complex 
policy issues with fuzzy data and simultaneous use of quantitative and qualitative  variables21,22.

Coupling MCDA techniques is often done within the framework of designing intelligent Decision Support 
Systems (IDSS). Such systems have been shown to have considerable success in addressing a wide range of com-
plex real-world problems, at the expense of course of the level of transparency apparent to external stakeholders. 
In this context, the objective of this paper is threefold:

• To elucidate the view from the field on the use of MCDA techniques in offshore construction;
• To detail some of the most persistent practical issues in the use of existing MDCA methods; and
• To present an IDSS employing existing MCDA tools for the use of firms involved in the offshore construction 

of marine installations.

While the case study is informed by real-world experience in the field of offshore construction, the novel 
IDSS methodology-which is the key contribution of this paper- is applicable across a wide range of development 
projects facing similar issues.

This paper is organized as follows. In “MCDA—the view from the field” Section, a concise overview of MCDA 
techniques in offshore construction practice is presented. The overview is based primarily upon the experi-
ences and views of the second author, who is the General Director of Archirodon Group NV-one of the top 
marine contractors internationally with 60 years of experience in offshore construction. In “Offshore wind farm 
installation—a case study” Section, a case study from the literature is employed to demonstrate practical issues 
with MCDA techniques such as the infamous rank-reversal and how they may affect stakeholder perceptions. 
In “The rank reversal conundrum and identifying the top choices” Section, an intelligent DSS is presented that 
couples a traditional MCDA approach with fuzzy sets theory to ameliorate the issues identified in the previous 
section. Finally, in “Fuzzy logic and criteria clustering” Section, the conclusions of this paper and some directions 
for future research are presented in summary form.

MCDA—the view from the field
The appeal of MCDA in many real-world applications is due to its capacity to simplify complex situations char-
acterized by multiple (and possibly conflicting) objectives and criteria, and to rationalize the decision process. 
The common schema of MCDA typically involves construction of a performance matrix, with each row rep-
resenting a specific decision option and each column assessing the performance of that option against each of 
the criteria set. MCDA involves two critical choices: (i) the selection of criteria that capture the most important 
parameters, constraints and expected impacts of a project; and (ii) the weighting of the criteria to reflect their 
relative  importance23,24.

In real-world situations, such as offshore construction, where the selection of the criteria is not always obvious, 
and the data is often fuzzy, significant human resources are devoted to the structuring of the problem. Identify-
ing and selecting the individuals that will be involved in the analysis is a process critical for success, yet rife with 
technical, political, and human relations issues. The project contractor is typically responsible for appointing 
-after consultations- three teams to be involved in the application of MCDA:

• The negotiation team, with members chosen among the project’s stakeholders and whose preferences and 
ratings will inform the structure and entries of the MCDA performance matrix;

• The technical team responsible for supporting the judgement team group that includes members proficient 
in the mathematics of MCDA and the relevant software implementations as well as experts responsible for 
providing additional data to the negotiation group as needed; and

• The mediation team with managerial and legal expertise to safeguard the fairness of the process and resolve 
arguments.

The negotiation team, with the tacit support of the technical team, proceeds sequentially to establish: (i) the 
list of potential decisions or solutions to be examined in the analysis; (ii) the criteria to be used by integrating all 
the points of view expressed; (iii) the relative importance of each criterion; (iv) the rating of each solution when 
judged against each criterion; and (v) the aggregate judgements using an agreed upon MCDA technique. The 
mediation team makes sure that each step of the process unfolds within a framework established a priori, with 
rules agreed by all, so that the process will result in decisions with the broadest possible acceptance.

In practice, the process outlined previously rarely concludes in one round. Typically, there are several itera-
tions that may modify the definition of the problem, the criteria used, and the assessments made. Revisiting 
the criteria and rating their importance is a useful negotiation tool for debates among the contractor and the 
stakeholders. These iterations test the boundaries of the decision (and may even serve as a de-facto sensitivity 
analysis) until the proposed solution meets with general acceptance.

What is rarely appreciated in theoretical MCDA is the fact that the analysis (with or without iterations) takes 
considerable time. In offshore construction projects, for instance, it usually lasts several months. The distinct 
danger in such time spans is that some of the fundamental economic, social, or political dimensions may indeed 
change due to external factors, lengthening even further the decision horizon. In the experience of major inter-
national offshore contractors such as Archirodon, slow decision making -and the resultant design changes- is the 
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top factor for cost overruns. The Archirodon experience, is not unique; a comprehensive analysis of risk factors 
facing construction management firms cites the lack of robust risk management practices as a distinct threat to 
profitability, project performance, and customer  satisfaction25.

In such complex situations where there is a need to reach a timely decision and time is of essence, the MCDA 
methodology should be as simple as possible, and the dimensions of the performance matrix kept to a mini-
mum. That is, the choices compared should be as few as it is realistic, while at the same time the criteria used 
should be few and easily understood by the stakeholders. Furthermore, experienced contractors make sure that 
there is real participation and deliberation in the application of MCDA to reduce unnecessary iterations. In this 
context, participation extends beyond information dissemination to include active engagement and exchange 
of ideas. Deliberation involves fair and inclusive dialogue between participants able to debate and contribute to 
the methodology.

MCDA presents a shared framework and a common language to develop data-driven solutions for complex 
offshore installations but is particularly sensitive to subjective biases and data asymmetry. Participation and 
deliberation are essential for a timely decision, yet they are accompanied by problems of their own. Practical 
difficulties arise when:

• The stakeholders do not have basic skills in mathematical concepts and data aggregation methodologies to 
appreciate the nuances in MCDA; or

• The stakeholders do have the skills to understand the subjectivity inherent in MCDA, leading to fears that 
the manipulation of criteria and weights may privilege certain choices over others.

In the sequence, a running case study is employed to highlight some of the issues involved. To avoid using 
proprietary information from Archirodon, and to alleviate possible concerns about a conveniently designed 
example, the case study is based on publicly available data for a specific problem of designing an offshore solar 
farm  installation26. All data generated or analyzed during this study are included in the body of this paper.

Offshore wind farm installation—a case study
The case study involves the problem of site selection of an offshore solar farm deployment in the Aegean Sea, 
 Greece26. There were nine candidate locations (MA1 ÷ MA9) and seven assessment criteria (AC1 ÷ AC7) as 
outlined in Table 1. The nine locations have been chosen from a larger pool of choices after the application of 
exclusion criteria and the removal of unsuitable areas. The assessment criteria were identified through a literature 
review of renewable energy sources to include water depth (AC1), distance from shore (AC2), main voltage at a 
maximum distance of 100 km from the site area (AC3), distance from ports (AC4), serving population (AC5), 
solar radiation (AC6), and installation site area (AC7). AC1, AC2 and AC4 have negative polarity (smaller is 
better) while AC3, AC5, AC6, and AC7 have positive polarity (larger is better).

Since the criteria are expressed in truly diverse scales and units, it is customary to proceed with normalization, 
to make all the indicators comparable on the same scale, and aggregation, to combine the normalized indicators 
in an overall score/index. For MDCA input data, there are varied techniques of normalization (ordinal, linear 
scale, ratio scale, sigmoid etc.) and aggregation (additive, geometric, harmonic, minimum, median etc.). The 
actual combination of normalization and aggregation method used influences the outcome of MCDA.

For the present case study, the web-based MCDA Index Tool (www. mcdai ndex. net) is used to further analy-
sis. The MCDA Index Tool provides for all combinations of 8 normalization methods (rank, percentile rank, 
standardized, minmax, target, logistic, 3-tier categorical, 5-tier categorical) and 5 aggregation methods (additive, 
geometric, harmonic, minimum, median). Since not all normalization methods are compatible with all aggrega-
tion methods, there are 31 feasible combinations of normalization/aggregation27.

Processing the input data of the case study with the MCDA Index tool for 31 distinct combinations of nor-
malization and aggregation methods with equal weights leads to the results tabulated in Fig. 1. The color coding 
in the figure shows the strength of the ranking obtained by each alternative location. For instance, location MA9 

Table 1.  Initial assessment matrix.

AC1 (m) AC2 (km) AC3 (kV) AC4 (km) AC5 (Population) AC6 (kWh/m2) AC7  (km2)

MA1 100 11–25 150  ≤ 50 686 969 1801–1900 0.973

MA2 100 11–25 150  ≤ 50 119 887 1801–1900 1.071

MA3 100 11–25 150  ≤ 50 176 264 1701–1800 1.112

MA4 100 11–25 66 51–70 176 264 1801–1900 1.322

MA5 100 26–50 66  ≤ 50 176 264 1701–1800 4.885

MA6 100 26–50 66 51–70 176 264 1601–1700 1.669

MA7 50 11–25 66 51–70 176 264 1601–1700 0.974

MA8 50 11–25 400  ≤ 50 176 264 1601–1700 1.615

MA9 50 11–25 400  ≤ 50 176 264 1601–1700 3.628

Polarity Negative Negative Positive Negative Positive Positive Positive

http://www.mcdaindex.net
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is top-ranked in 87%, third-ranked in 3% and fourth-ranked in 10% of the 31 normalization/aggregation pairs 
examined. Figure 1 illustrates the alternative rankings that can be obtained for different pairs.

Figure 2 presents the comparison of rankings obtained by each location over all normalization/aggregation 
combinations. From these comparisons, it is evident that locations (MA4 ÷ MA7) never achieve a rank higher 
than four. This is the kind of observation that leads the negotiation team to consider dropping from the next 
iteration the locations that appear to not have a chance to rank at the top. It is a tempting consideration, as it 
will facilitate the deliberations by focusing on fewer solutions and thus will reduce the time needed to reach a 
final decision.

If the negotiation team were to succumb to the temptation and re-structure the problem with only the five 
choices (MA1, MA2, MA3, MA8 and MA9) the results produced with the MCDA Index Tool will appear as in 
Figs. 3 and 4. The rankings have transformed dramatically and in fact location MA1 might be preferable over 
MA9 while the uncertainty of the choice has also increased significantly.

This is the dreaded Rank Reversal (RR) paradox that plagues most MCDA techniques and presents a unique 
challenge to real-world  problems28. Due to the RR paradox, the results could be different depending on included 
alternatives. For instance, adopting a strategy where in each step the alternative(s) with no first ranks are dropped 

Rank: 1 2 3 4 5 6 7 8 9

MA9 87 3 10

MA1 10 52 35 3

MA8 6 48 32 10 3

MA3 6 3 65 23 3

MA2 10 3 3 32 48 3

MA5 6 6 58 13 16

MA4 6 32 48 13

MA7 3 23 23 52

MA6 10 90

Figure 1.  Ranking Strength over all normalization/aggregation combinations.

Figure 2.  Comparisons of rankings over all normalization/aggregation combinations.
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and the process is repeated for the remaining ones. The results of this -admittedly arbitrary- elimination strategy 
are highlighted in Fig. 5. Clearly, the order of choice shifts from MA9 to MA1 and returns to the original state 
only when the two alternatives compete head-on.

There is a school of thought in MCDA that recognizes that the head-on comparison of MA9 and MA1 is a 
more reliable indicator of the preferred solution and proposes to compare all the alternatives directly one to 
 one29. The Condorcet method, with origins in social choice theory, purportedly prevents distortions by making 
the relative position of two alternatives independent of their positions relative to any  other30. For the example 
at hand, comparing the 9 alternatives head-on requires the MCDA analysis of 36 pairs. Table 2 summarizes the 
results obtained through this approach with the value of each cell indicating the ratio of the  1st ranks achieved 
by the column-alternative to the  1st ranks achieved by the corresponding row-alternative. If the number is more 
than 1, the column-alternative wins over the row-alternative; if it is less than 1, the row-alternative wins; and if 
it is exactly 1 there is a tie.

The Condorcet method appears to restore the approximate order obtained through the MCDA method of all 
the 9 alternatives examined together in Fig. 1, there are still interesting rank reversals. For instance, it restores 
MA8 as a contender, while this choice disappeared early in the elimination strategy.

The Rank reversal conundrum and identifying the top choices
RR is a paradox because the rank order of alternatives can be changed when a current choice is eliminated from 
the set of alternatives or a new one is added. RR is a challenge because it undermines the credibility of ratings 
and rankings of MCDA and enhances the suspicions of stakeholders that rankings can be “manipulated” to 
advance pre-determined agendas.

Rank: 1 2 3 4 5

MA1 42 3 42 6 6

MA9 58 6 35

MA8 58 42

MA2 6 35 32 26

MA3 6 48 35 10

Figure 3.  Ranking Strength over all normalization/aggregation combinations (5 alternatives).

Figure 4.  Comparisons of rankings over all normalization/aggregation combinations (5 alternatives).

Rank: 1 2 3 4

MA1 45 39 16

MA9 48 3 48

MA3 6 26 58 10

MA2 45 29 26

Rank: 1 2 3

MA1 42 58

MA9 55 3 42

MA3 6 45 48

Rank: 1 2

MA9 65 35

MA1 55 45

Figure 5.  Progressive Ranking Strength through elimination.
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Several different MCDA techniques have been proposed in recent years claiming to be rank-reversal-free31. 
The experience from the field though is that while these methods may successfully overcome RR problems, 
they are not completely reversal free. The most promising among them is the low-complexity Stable Preference 
Ordering Towards Ideal Solution (SPOTIS)  approach32.

SPOTIS is based on the classical MCDM structure but requires additional information on the min and max 
bounds of score values for each criterion. These bounds along with the polarity of each criterion define the ideal 
best solution. For the offshore wind farm installation case study of the previous section, the ideal solution point 
is computed in Table 3. The SPOTIS method proceeds to compute the closeness of each alternative to the ideal 
point solution by utilizing a simple distance metric (E1) and normalizing it with respect to the distance between 
the min and max values for each criterion. This leads to a unitless average distance of each alternative from the 
multi-criteria ideal  one32.

Table 4 summarizes the average distances computed for the nine alternatives of the offshore wind farm instal-
lation and the resultant ranking. MA9 emerges clearly as the preferred solution, with MA8 and MA1 practically 
tied for second place.

It is safe to assume that the negotiation team might consider dropping MA6 from the next iteration. Since the 
removal of MA6 does not change the bounds of the criteria (and this is indeed the case here) the average distances 
of the remaining alternatives remain the same and there is no rank reversal. If on the other hand, MA4 ÷ MA7 
are removed as locations that appear to not have a chance to rank at the top the bounds, the ideal solution, and 
the average distances of the remaining five alternatives do change yet there is no rank reversal (Table 5).

Table 2.  Condorcet comparison of the alternatives.

MA1 MA2 MA3 MA4 MA5 MA6 MA7 MA8 MA9

MA1 0.48 0.13 0.10 0.10 0.10 0.17 0.74 1.19

MA2 2.07 1.37 0.47 0.19 0.17 0.16 1.45 1.45

MA3 7.69 0.73 0.50 0.10 0.10 0.10 1.45 1.45

MA4 10 2.14 2 0.67 0.20 0.21 1.45 1.45

MA5 10 5.26 10 1.5 0.10 0.17 1.12 1.12

MA6 10 5.87 10 5.11 10 1.00 1.45 1.45

MA7 5.87 6.25 10 4.73 5.87 1.00 1.45 1.45

MA8 1.35 0.69 0.69 0.69 0.89 0.69 0.69 1.45

MA9 0.84 0.69 0.69 0.69 0.89 0.69 0.69 0.69

WINS: 7 4 5 3 2 6 8

RANK: 2nd 5th 4th 6th 7th 8th 8th 3rd 1st

Table 3.  The SPOTIS approach.

Bounds AC1 (m) AC2 (km) AC3 (kV) AC4 (km) AC5 (Population) AC6 (kWh/m2) AC7  (km2)

min 50 25 66 50 119 987 1600 0.973

Max 100 50 400 70 686 969 1800 4.885

Polarity Negative Negative Positive Negative Positive Positive Positive

Ideal Point 50 25 400 50 686 969 1800 4.885

Table 4.  SPOTIS average distances from the ideal solution.

Average Distance RANK

MA9 0.317 1st

MA8 0.391 2nd

MA1 0.393 3rd

MA2 0.532 4th

MA3 0.588 5th

MA5 0.629 6th

MA4 0.687 7th

MA7 0.700 8th

MA6 0.960 9th



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15137  | https://doi.org/10.1038/s41598-022-19554-1

www.nature.com/scientificreports/

While SPOTIS appears to be rank-reversal free for the case study at hand, it is not certain that the rankings it 
generates are superior to the MCDA techniques. Table 6 summarizes the alternative rankings computed to this 
point. It is apparent that while MA9, MA1 and MA8 are the top three contenders, with MA2 and MA3 following 
closely, the relative ranking differs depending upon the method used.

Clearly, there could have been many more MCDA techniques used since no one method can be considered the 
most appropriate for all situations. Multiple attempts in the literature to compare or benchmark methods against 
each other failed to produce results reproducible across a wide range of  paradigms33. Beyond the fundamental 
technical aspects of each method, the use of MCDA requires a strong “craft”  element34. Practitioners should be 
cognizant of the requirements, limitations, and peculiarities of each method in their field to use them effectively 
as well as of the fundamental observation that using a particular MCDA method can and does significantly 
influence the outcome.

In offshore construction, the combination of classical and Condorcet MCDA along with SPOTIS has been 
proven to be sufficient for the recognition of the frontrunners between the various alternative decision choices. 
(In the example considered, the 31 distinct combinations of normalization and aggregation methods assessed 
through the MCDA Index tool, the 36 one-on-one comparisons of the 9 alternative choices of the MCDA Con-
dorcet method, and the results of the robust to rank-reversal technique of SPOTIS provide a sufficiently rich 
milieu to recognize the top choices.)

Identifying the frontrunners is essential for the second round of the planning process, where significant time, 
effort and funding will be spent on detailing the distinct characteristics of each alternative. Eliminating candidates 
during the first round is often a contentious issue with the stakeholders and the process should be such that it 
can withstand scrutiny. In real-world offshore construction, this often achieved with the use of an expert system.

Figure 6 illustrates succinctly the design of such an expert system that utilizes the rankings obtained via 
MCDA, MCDA Condorcet, SPOTIS (and, if there are many choices, MCDA top 5 and SPOTIS top 5) to pick 
the top alternatives.

The expert system is based on a knowledge platform that incorporates the expert knowledge and experience 
of the contractor in the field of the offshore construction. The knowledge base is continuously updated through a 
learning module, as new projects are added to the portfolio of the company and ongoing and completed projects 
are reviewed for a posteriori assessment of the choices made. The simple user interface requires only the input of 
the rankings of the various choices that emerged through the MCDA techniques applied. The inference engine 
operates on a set of relatively simple, yet proprietary, rules of the if–then type rather than through conventional 
procedural code.

The entire approach is based on fundamentally deterministic criteria, and this is a distinct limitation. (Stand-
ard sensitivity analysis can be used though to examine the extent to which changes in the weights and scores of 
the criteria influence the robustness of the rankings obtained through each technique). In offshore construction, 
real world criteria weights and scores are often assessed based on multiple conflicting information sources. To 
address such cases another approach is used based on fuzzy logic.

Table 5.  SPOTIS average distances from the ideal solution (5 alternatives).

Average Distance RANK

MA9 0.380 1st

MA8 0.532 2nd

MA1 0.600 3rd

MA2 0.793 4th

MA3 0.870 5th

Table 6.  Summary rankings of MCDA, MCDA top 5, MCDA Condorcet, SPOTIS, and SPOTIS top 5.

MCDA MCDA top 5 MCDA Condorcet SPOTIS SPOTIS top 5
MA1 2 1 2 3 3
MA2 5 4 4 4 4
MA3 4 5 5 5 5
MA4 7 6 7
MA5 6 7 6
MA6 9 8 9
MA7 8 8 8
MA8 3 3 3 2 2
MA9 1 2 1 1 1
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Fuzzy logic and criteria clustering
The Characteristic Object METhod (COMET) has been proposed recently to address MCDA problems with 
fuzziness in the criteria. COMET achieved prominence because it has been proven to be immune to the RR 
paradox. This property is interesting, although it is unfair to compare it with classical MCDA methods as it 
requires additional information in the structuring of the decision  problem35,36. COMET has been recognized 
in the offshore construction industry for: (i) its incorporation of fuzziness in the criteria; and (ii) its intuitive 
methodology for hierarchical clustering of the criteria. Each of these issues is addressed in turn.

Expert knowledge on the significance level of each of the criteria is used to convert its range of values to a 
triangular fuzzy number  (m1,  m2,  m3) where  m1 represents the smallest likely value,  m2 the most probable value, 
and  m3 the largest possible value of the fuzzy event. Table 7 indicates these characteristics values for the criteria 
of the running offshore wind farm installation case study. For criteria AC1, AC2, and AC4 the values of which 
are practically binary, only the two extremes are represented. The COMET method then proceeds by requiring 
an expert panel to score in terms of preference all pairwise combinations to create a rule base.

For the simplicity of the presentation, the assumption momentarily is of having just two criteria, say AC3 and 
AC6. Each combination of a distinct value of AC3 with a distinct value of AC6 is called a “characteristic object”, 
akin to a state vector in the (AC3, AC6) two-dimensional space. This in turn requires the expert valuation of 
whether, for instance, the combination (150 kV, 1600 kWh/m2) is preferred over (66 kV, 1700 kWh/m2). Both 
criteria are of the benefit type, hence higher values are preferable. If the expert panel consistently prefers the 
bigger incremental increase in AC3 over the less impressive step up in AC6, then the scoring of the 9 possible 
characteristic objects (CO) leads to the rule base in Table 8 and the triangular fuzzy numbers in Fig. 7. The rule 
base in Table 8 not only ranks the 9 possible pairs but also assigns a corresponding preference score between 0.0 
(least desirable) and 1.0 (most desirable). The preference score can then be used to rank the alternative choices 

Figure 6.  Expert System to identify the top alternatives.

Table 7.  Triangular fuzzy numbers for criteria AC1 ÷ AC7.

AC1 (m) AC2 (km) AC3 (kV) AC4 (km) AC5 (Population) AC6 (kWh/m2) AC7  (km2)

m1 50 25 66 30 120 000 1600 1.5

m2 – – 150 – 119 887 1700 3.0

m3 100 50 400 60 687 000 1800 4.5

Polarity Negative Negative Positive Negative Positive Positive Positive

Table 8.  Complete rule base for criteria AC3 and AC6.

AC3 AC6 P

CO1 66 1600 0.000

CO2 66 1700 0.125

CO3 66 1800 0.250

CO4 150 1600 0.375

CO5 150 1700 0.500

CO6 150 1800 0.625

CO7 400 1600 0.750

CO8 400 1700 0.875

CO9 400 1800 1.000

Polarity Positive Positive
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MA1 ÷ MA9 as in Table 9. MA8 and MA9 tie in first place and MA1, MA2 in second place while MA6 and MA7 
are the least appealing alternatives.

The COMET technique is easy to implement and the online tool DSS COMET (www. comet. edu. pl) can 
automate the process. But its applicability is constrained by the fact that it is not practical for an expert panel to 
examine more than 2–3 criteria at a time. For instance, in the offshore wind farm installation case study there 
are three criteria with two options (AC1, AC2, AC4) and four criteria with three options (AC3, AC5, AC6, 
AC7). Processing the full problem with COMET will lead to N =  34 ∙  23 = 648 characteristic objects, requiring 
½N(N−1) = 209,628 pairwise comparisons. Above and beyond that fact that so many comparisons are exhausting 
for the expert panel, the human brain cannot make inferences with more than 3–4 items stored in the working 
memory. (Working memory is the active version of short-term memory related to the temporary storage and 
manipulation of information and its limited capacity is a central bottleneck of human  cognition37,38).

This apparent “curse of dimensionality” has led the authors of the COMET technique to propose a practi-
cal alternative by decomposing the problem into smaller ones through clustering of similar  criteria39. Creating 
a structure of decisional models interconnected with each other significantly reduces the number of pairwise 
comparisons needed as well as the cognitive load on the expert panel.

In the running case study, it is plausible to group criteria AC1, AC2 and AC4 under a “marine” banner; AC3 
and AC6 under an “energy” banner; and AC3 and AC7 under a “comfort” banner. Figure 8 depicts the hierarchical 
structure of decomposing the full problem into three smaller ones.

A separate score is computed for each of the three sub-problems and a final composite score is produced as 
the product of the scores every alternative receives from each sub-problem. This modified COMET approach 
leads to  34 +  23 = 89 characteristic objects and a total set of 324 + 28 = 352 pairwise comparisons. (Admittedly, these 
savings are achieved by not solving the complete problem and hence immunity to RR is no longer guaranteed.)

The “energy” criteria were already examined in Table 8 and Fig. 7 and the results in Table 9 are incorporated 
in column  PE of Table 10. For brevity, the results for the “marine” criteria and “comfort” criteria are also sum-
marized in columns  PM and  PC respectively of Table 10.

In the interest of reproducibility of the results, the expert scoring of the COs for the values of AC1, AC2, 
AC4 favors water depth over distance from shore or from port. Similarly, the expert scoring of the COs for the 
values of AC3, AC6 and AC5, AC7 favors the pairs that exhibit higher values by a bigger margin. (For example, 
the AC3/AC6 pair 400/1700 is preferred over the 66/1800 one.) In the interest of brevity, Table 10 summarizes 
directly the scores achieved by each alternative in the evaluation of each sub-problem as well as the composite 
score and ranking.

From the results of the various methods in Table 6, the option MA9 is the top choice, followed by MA1 and 
MA8. But the SPOTIS results in Table 10 indicate that MA1 is the top choice, followed by MA9 and MA8, with 
MA9 holding a distinct 22% advantage over MA1. An additional advantage of the COMET approach is that 
allows for straightforward assessment of the values of the criteria that may shift the rank position of a  choice36.

Figure 7.  The set of three triangular fuzzy numbers for AC3 and AC6.

Table 9.  Scoring the alternative choices based on criteria AC3 and AC6 only.

AC3 AC6 P Rank

MA1 150 1800 0.625 2

MA2 150 1800 0.625 2

MA3 150 1700 0.500 3

MA4 66 1800 0.250 4

MA5 66 1700 0.125 5

MA6 66 1600 0.000 6

MA7 66 1600 0.000 6

MA8 400 1600 0.750 1

MA9 400 1600 0.750 1

http://www.comet.edu.pl
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Intelligent MCDA methodology
It should be apparent at this point that MCDA can assist individuals and organizations to make better decisions. 
But the outcome cannot be the automatic result of an MCDA algorithm; it should always be a decision made 
by the stakeholders after an exhaustive review of all the data at hand. In the case of offshore construction, the 
complexity of the tasks involved and the need to engage diverse groups of experts and stakeholders in the process 
makes matters more difficult.

In offshore construction where time is of essence, experienced contractors make sure that there is real par-
ticipation and deliberation in the application of MCDA to reduce unnecessary iterations. Yet, iterations are 
necessary to reach an acceptable and satisfactory outcome.

Figure 9 captures the proposed intelligent framework base on the mathematical foundations of MCDA and 
the real-world experience in offshore construction. The process starts with the phase of scoping the problem, 
identifying a basic set of choices, and establishing the criteria for the decision-making process. This phase 
involves mixed teams from the contractor and the stakeholders and, possibly, outside experts. Once the initial 
scope of the problem is set, the contractor team performs an in-house COMET analysis to comprehend better 
the characteristics of the choices involved, to identify potential rankings and to develop a sense of the impact 
of the various criteria.

The third phase involves the use of the expert system defined in Fig. 7, with mixed teams for the contractor 
and the stakeholders. The desired outcome of this phase is a smaller set of alternatives and fewer criteria -but it 
is quite possible that the process might need to re-start with new alternatives added to the mix as the continu-
ous exposure of the stakeholders to the issues involved might change their view on the scope of the problem.

If a smaller, more realistic set of choices emerges from the expert system phase the contractor team per-
forms another, more focused, COMET analysis in-house to inform the final decision phase. In this final phase, 

Figure 8.  Hierarchical decomposition through criteria clustering and expert scoring.

Table 10.  Scoring alternatives in the marine sub- problem.

AC1 AC2 AC4 PM AC3 AC6 PE AC5 AC7 PC P Rank

MA1 100 25 30 0.571 150 1800 0.875 687 1.5 0.625 0.846 1

MA2 100 25 30 0.571 150 1800 0.875 120 1.5 0.000 0.462 3

MA3 100 25 30 0.571 150 1700 0.625 176 1.5 0.250 0.308 5

MA4 100 25 60 0.143 66 1800 0.500 176 1.5 0.250 0.077 8

MA5 100 50 30 0.289 66 1700 0.250 176 4.5 0.750 0.154 6

MA6 100 50 60 0.000 66 1600 0.000 176 1.5 0.250 0.000 9

MA7 50 25 60 0.714 66 1600 0.000 176 1.5 0.250 0.154 6

MA8 50 25 30 1.000 400 1600 0.375 176 1.5 0.250 0.462 3

MA9 50 25 30 1.000 400 1600 0.375 176 3.0 0.500 0.692 2
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participation extends beyond information dissemination to include active dialogue and debate between the 
participants. It is again possible that the scope of the problem might be further modified in lieu of a final deci-
sion and the process will have to  restart38. Real-world experience demonstrates that this is unlikely to happen if 
the previous phases have been carefully choreographed.

Conclusions
Impact assessment, the evidence-based prospective impact analysis part of the planning stage of any development 
project, is subject to regulatory oversight providing for public engagement, reconciliation, and partnership in 
the public interest during the design phase. Indeed, impact assessment of large-scale projects involves a plethora 
of technical, economic, social, and environmental factors that must be assessed along with the expectations of 
the stakeholders of each project.

Molding the multiple perspectives of diverse stakeholders into a single collective choice is a key challenge 
in impact assessment and MCDA is the de facto methodology used to rank decision options based on a prede-
termined set of evaluation criteria. Different MCDA techniques, however, may lead to different decisions when 
applied to the same problem, while different sets of criteria and weights may rank choices differently even when 
the same method is applied. This is a cause of concern, and even acrimony, amongst the stakeholders, often 
leading to protracted periods to protracted negotiations and delaying construction.

The objective of this paper was to ameliorate the effects of the inherent subjectivity in MCDA techniques and 
to develop a consensus amongst the stakeholders in a data-driven setting. This was accomplished not by devising 
a new MCDA technique but, rather, through a novel IDSS employing existing methods from the MCDA toolbox 
and implemented via web-based software. The design of the system is informed both by theoretical MCDA (and 
COMET in particular) and by field experience.

While the intelligent methodology presented in this paper has been detailed through the running example of 
a case study from offshore construction, the proposed approach is directly applicable to all large-scale projects 
requiring impact assessment throughout their design phase. Indeed, real-world offshore construction is repre-
sentative of the field of large-scale projects where a plethora of technical, economic, social, and environmental 
factors collude to create a morass of complex issues and expectations that are difficult to assess in a uniform 
canvas.

It would be natural at this point to offer to fully automate the process as an extension of current research. 
It is the strong conviction of the authors, though, that a desirable outcome cannot be the product of an auto-
mated process. The criteria used as well as their respective weights are products of expert opinion and cannot 
be fully captured by an expert system. The deliberative nature of the proposed framework, while cumbersome, 
is essential to form consensus especially when the technical, economic, and regulatory issues involved created 
an often-fuzzy decision tableau.

Data availability
The original case study data have been published  in26, publicly available at https:// www. mdpi. com/ 2077- 1312/ 
10/2/ 224. All other data generated or analyzed during this study are included in the present manuscript.
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Figure 9.  An intelligent framework for MCDA use in offshore construction.
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