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ABSTRACT Filament identification became a pivotal step in tackling fundamental problems in various
fields of Astronomy. Nevertheless, existing filament identification algorithms are critically user-dependent
and require individual parametrization. This study aimed to adapt the neural networks approach to elaborate
on the best model for filament identification that would not require fine-tuning for a given astronomical
map. First, we created training samples based on the most commonly used maps of the interstellar medium
obtained by Planck andHerschel space telescopes and the atomic hydrogen all-sky surveyHI4PI.We used the
Rolling Hough Transform, a widely used algorithm for filament identification, to produce training outputs.
In the next step, we trained different neural network models. We discovered that a combination of the Mask
R-CNN and U-Net architecture is most appropriate for filament identification and determination of their
orientation angles. We showed that neural network training might be performed efficiently on a relatively
small training sample of only around 100 maps. Our approach eliminates the parametrization bias and
facilitates filament identification and angle determination on large data sets.

INDEX TERMS Filaments, image processing, interstellar medium, neural networks.

I. INTRODUCTION
Filaments are one of the main morphological structures of
the baryonic compound of the Universe. They are present
over many scales, both in the intergalactic and interstellar
medium. The first evidence of the cosmic web structure in
the distribution of galaxies was observed almost 50 years
ago [1], [2] and then reproduced in analytical models and sim-
ulations [3]–[6] and references therein. On the contrary, in the
interstellar medium (ISM), filaments were first predicted
by numerical simulations as elongated structures in density
fields. Different authors ascribed their origin to compression
and interpreted them as ‘‘cuts’’ through the sheets [7]–[10].
The presence of filaments in the ISM became irrefutable after
the release of the Herschel telescope images of interstellar
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dust emission [11], [12]. Since then, filament studies con-
stitute a buoyant topic because they coincide with sites of
active star formation and act as evidence of the turbulent
nature of the ISM and its interplay with themagnetic field and
gravity [13]–[17], to cite a few amongmany. In Solar Science,
filament studies have also found its application [18], [19]
because filaments act as means of solar cycle detection [20].

Filament studies require their identification in a map, espe-
cially if one is interested in deriving statistical properties.
Depending on the purpose, different authors adapted dif-
ferent pattern identification approaches or developed new
techniques. Some methods are based on gradients, which
are first-order derivatives [21], while other methods use
Hessian matrices [22], which involve second-order deriva-
tives, to search for pixels with zero curvature to trace the
filaments’ crest. In the work by [23], the author devel-
oped the so-called DisPerSE method, which combines the
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aforementioned approaches to detect voids, walls, and peaks
in addition to filaments. This method was initially designed
to be used on cosmological data but was further applied in the
ISM studies [24]. Another example is theGetsourcesmethod
developed by [25] for the Herschel data. It constructs filtered
decomposition of images over a range of spatial scales to be
analyzed separately and reconstructs the filaments. There are
also methods based on pattern recognition. The principle is to
match a kernel of a given shape, usually a long rectangle, with
an original image. Rolling Hough Transform (RHT, [26]),
Template Matching (TM, [27]) are such examples.

The methods mentioned above can be virtually divided
into two groups, depending on the purpose of the studies.
The first group would encompass methods that enable tracing
crests of the brightest structures (gradients, Hessian matrices,
DisPerSE). The second group aims to identify the spatial
extent of structures (filaments having a width), regardless of
their absolute intensity (RHT, TM).

Everymethod uses well-researched image processing tech-
niques and has proven efficiency in specific studies. How-
ever, all methods mentioned above are parameter-based and
require parameter fine-tuning for every map. Thus, detection
of filaments in a large dataset by a given method is usually
performed with a predefined set of parameters. The high
dependence on a slight change in parametrization may cause
bias in filament identification regarding their size or shape.
Additionally, the existing methods commonly use advanced
image processing procedures applied over the whole image
field, which requires ample computational resources. More-
over, a significant amount of time is spent on the parametriza-
tion of output maps by visual inspection. We propose a
machine learning-based method for filament identification
that solves the issue of manual parameter search and visual
inspection.

Neural networks are well suited to solve the filament
identification problem. Recent developments in the field of
deep learning, where object segmentation networks such
as U-Net [28], Mask R-CNN (Region-based Convolution
Neural Network) [29], FastFCN (Fully Convolution Net-
work) [30], Gated-SCNN (Gated-Shape Convolution Neural
Network) [31], DeepLab [32] provide an efficient and fast
image segmentation results. Moreover, neural networks have
already showed their efficiency in improving astronomical
data and solve the problem of noise [33], [34].

In astronomy, much effort is dedicated to methods of
detection of specific morphological structures. For instance,
in solar physics, the detection of bright points has been
addressed with a combination of observation and simulation
techniques [35]. Analysis of granulation process on solar sur-
face was treated using correlation tracking [36], [37]. Several
studies have already used neural networks for filament identi-
fication. Authors in [38] proposed a neural network for solar
filament segmentation, using a database of filaments detected
by alternative methods. Their neural network is based on
(R-CNN) model. Additionally, filament identification was
researched in other domains, such as microscopy [39].

FIGURE 1. Schematic representation of the RHT kernel scanning in a
circular window centered at a pixel (x, y ). The blue curve represents he
skeleton of the filament in the original image. The green and orange line
represent thee kernel positions for different orientation angles θ1 and θ2
respectively. The width of the orange line is enhanced to show that for
θ2 the histogram value is greater than the fixed threshold.

The authors proposed a densely connected stacked U-Net for
filament segmentation in microscopy images. Similar work
was performed by [40] for automated and semi-automated
enhancement, segmentation, and tracing of cytoskeletal net-
works in microscopic images.

Our focus is to search for best neural network models that
identify filamentary structures and their orientation angles in
2D maps, to apply it to the ISM studies. In particular, we are
interested in detecting extended structures of a certain width
and their orientation angles. For this purpose, we apply the
RHT method to Planck, Herschel space telescopes, and the
Effelsberg-Bonn and Parkes telescope survey data. This data
contains a large number of interstellar dust filaments to pro-
duce training data sets. Nevertheless, it is worth noting that
neural networks can be trained using filament identification
methods other than the RHT and different training data sets.

This paper is organised as follows. First, we describe
methods in Section II and present the training datasets in
Section III. We show and discuss our results in Sections IV
and V respectively. Finally, we summarise our work and
provide quick tips for the network operation in Section VI.

II. METHOD
In this Section, we first outline the existing filament identifi-
cation algorithm, the RHT, that was used to generate the train-
ing samples. Second, we describe the neural networks based
on which we constructed our models. Finally, we describe the
principle of the goodness-of-fit mathematical measure that
we use to assess the effectiveness of our results and during
the preparation of the training samples.

A. THE ROLLING HOUGH TRANSFORM
The Rolling Hough Transform is based on the computer
vision algorithm developed by Paul Hough in 1962 [41]
to solve the problem of shape identification in 2D
images. It employs parametrization from Cartesian coor-
dinates (x, y) to slope-intercept parameter space. Further,
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Duda and Hart [42] improved the method by replacing the
slope-intercept space with angle-radius:

ρ = x cos θ + y sin θ . (1)

This transformation ensures counting all pixels contributing
to a pair (ρ, θ). Duda andHart’s representation also facilitated
the generalization of the Hough Transform from lines to
various shapes such as ellipses, rectangles, or triangles.

More recently, authors in [26] introduced the Rolling
Hough Transform. The method consists of applying the
Hough Transform at the same location inside a circular area
of a fixed diameter, consequently in different directions. The
number of pixels that are ‘‘on’’ the rotating rectangular kernel
at each rotation position is stored. Thus, a histogram of orien-
tation angles is built. The angle, for which a certain threshold
is achieved for each pixel, is stored in the final output, as well
as a measure of the cumulated intensity of the pixels.

Practically, this is performed in the following way. First, a
‘‘top-hat’’ filter is applied on the image. Second, the resulting
image is subtracted from the original image which provides
skeletons of the structures. Third, a bitmap is created. Finally,
a rotating structuring element, called a kernel, is matched
with the bitmap via the RHT. It is worth noting that for RHT,
ρ = 0 because it is limited to a circular area, and the angle is
retrieved by:

θ = arctan(
−x
y
) . (2)

This last step is illustrated in Fig. 1. For a more detailed
representation of the RHT method, please refer to [26].

Hence, RHT provides a mapping from the intensity of the
2D image to the orientation of detected structures. It is a
practical method used in the studies of the ISMwhere relative
orientation with respect to magnetic fields is often one of the
main goals [26], [43], [44]. However, as we have seen above,
the RHT procedure requires repeating the Hough Transform
at each pixel of the map making it computationally heavy.

We used the code available at GitHub1 to generate our
training samples described in Section III.

B. NEURAL NETWORKS ARCHITECTURE
The input in our models is a 2D image, while the desired
output consists of two maps: a mask representing filaments
and a map with the values of the orientation angle of detected
structures. We tested several neural network architectures
such as the regular CNNmodel, theMask-RCNN, the autoen-
coder model, the decision tree regression, and the U-Net
model. We ran each of the four datasets through the models.
We experimentally found that our task requires a two-step
neural network that first identifies filaments and later deter-
mines the orientation angles. The best performing models are
the Mask-RCNN and the U-Net model for filament identifi-
cation and angle determination, respectively. The correspond-
ing diagram is shown in Fig. 2, while Section IV describes the
models in detail.

1https://github.com/seclark/RHT, based on [26].

C. MEASURE OF THE STRUCTURAL SIMILARITY
Minimization of human bias in filament identification is one
of the principal aims of this work. The Mean Structural
Similarity index (MSSIM) was introduced by [45] to measure
similarity between images. Reference [46] proposed to use
MSSIM in filaments analysis applied to the results of Dis-
PerSE and FILFINDER filament identification algorithms
which yield skeletons as output results. Here, we use MSSIM
to quantify and compare the results of the neural networks
approach to the results of the RHT. We used the publicly
available2 code written in Python. Below we shortly describe
the main principles of the similarity index.

For a given pixel, the relationship between two images,
or signals, x and y, is characterized by ‘‘luminance’’,
‘‘contrast’’, and ‘‘structure’’ [45]. They are denoted as l, c,
and s, respectively, and are, in fact, the mean intensity, the
standard deviation, and the stored pattern, or the correlation
between them:

l(x, y) =
2µxµy + C1

µ2
x + µ

2
y + C1

, (3)

c(x, y) =
2σxσy + C2

σ 2
x + σ

2
y + C2

, (4)

s(x, y) =
σxy + C3

σxσy + C3
, (5)

where

µx =
1
N

N∑
i=1

xi, µy =
1
N

N∑
i=1

yi, (6)

σxy =
( 1
N − 1

N∑
i=1

(xi − µx)
)
(yi − µy)

)
, (7)

σx =
( 1
N − 1

N∑
i=1

(xi − µx)
)1/2

(8)

σy =
( 1
N − 1

N∑
i=1

(yi − µy)
)1/2

(9)

are the mean values of signals x and y (µx , µy), their
covariance (σxy), and the variances (σx , σy, respectively).
The constants C1,C2, and C3 are much smaller than 1 and
are introduced to avoid division by 0. The local structural
similarity index (SSIM) is given by the multiplication of the
three above-cited parameters which results in the following
expression:

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

, (10)

given that C3 = C2/2 for simplification.
Then, the mean value of the SSIM index over an image

provides a single value called MSSIM. It appears from [46],
[47] that MSSIM primarily reflects the variation of the struc-
ture rather than luminance and contrast. For this reason,

2https://github.com/mubeta06/python/tree/master/signal_processing/sp
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FIGURE 2. Diagram of the combined Mask-RCNN and U-Net model. Upper: Mask-RCNN, lower: U-Net.

the metric is efficient for comparing the outputs of filament
identification algorithms with the original images.

MSSIM ranges from −1 to +1, where −1 means no simi-
larity while+1 means perfect match. The higher the MSSIM
value of the output image containing identified filaments, the
better the algorithm identifies critically essential structures of
the image.

III. DATA
In our work, we collected approximately 506 labelled images
to train the neural networks. We generated the datasets from
the data from the following telescopes: Planck and Herschel
space telescopes and Parkes and Effelsberg ground-based
radio telescopes, the data from which is used the most in the
analysis of ISM filaments.

We ran each astronomical map through the RHT procedure
and obtained the RHT intensity and angle. We then trans-
formed RHT intensity maps to bitmap to obtain a mask. Thus,
samples in our dataset contain three 2D maps of a particular
region: an original intensity or column density map, a mask of
identified filaments, and a map of filament angles. Examples
are shown in Fig. 3.

A. PLANCK-BASED SAMPLE
Planck filaments are represented in our sample in two ways.
The first Planck dataset is taken from the analysis of [44],
where RHT was applied over regions where Planck

Galactic Cold Clumps are identified [48]. The Cold Clumps
are regions that correspond to the coldest ISM, which are
generally part of molecular clouds. The dataset contained
137 maps and the associated RHT outputs, such as maps of
RHT intensity, angle, and angle uncertainty. The sub-sample
will be denoted as ‘‘Planck-cc’’ in what follows. The angular
size of the maps in this sub-sample was limited to two-by-
two degrees, so we decided to complement it with yet another
Planck-based dataset from [49]. The authors designed an
algorithm dedicated to filament identification and maps seg-
mentation from large maps. It applies the RHT method on
an arbitrarily chosen portion of the large map, labels all the
detected structures, chooses the most prominent filament and
determines the direction in which the map should be extended
to capture the whole filament. As a result, it produces maps
(mask and angle) that contain unique entire filaments while
more minor features are masked. Finally, a visual analysis of
the maps was performed to pick the most successful selec-
tions. The sub-sample will be denoted as ‘‘Planck-1’’. In total,
the Planck-based sample consists of 242 maps.

B. HERSCHEL-BASED SAMPLE
We usedHerschelmaps from the Galactic Cold Cores (GCC)
survey [50], which consisted of 116 targets. Herschel tele-
scope’s angular resolution (37′′) allows us to resolve the
intriguing filamentary structures of molecular clouds. Thus,
it diversifies our dataset and allows us to test the performance
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of neural networks at different complexity level because
Planck filaments are generally smooth and extended because
of the low angular resolution (7′ in our sample) of the tele-
scope. The corresponding column density maps were com-
puted using spectral energy distribution fits with modified
black-body law with a given spectral index β = 2 [51]. The
advantage of using the column density maps is having more
prominent filaments and less marginal features, especially at
low sensitivity observations, which is the case for Herschel
compared to Planck.
Herschel GCC fields are an example of maps for which

using the RHT method may be problematic because each
map needs detailed parametrization. This is due to the variety
of the shapes of the observed molecular clouds and their
morphological complexity. To get the most robust training
sample, we ran RHT with different parameters for each map
and chose the output maps that gave the best MSSIM result.
The kernel parameters, length, and width in pixels, are given
in Table 1. Their ranges extend from 1 pixel to 7 pixels for the
width and from 5 to 31 pixels for the length. These values are
motivated by the maps’ size, and the variety of the structures
observed in the maps. Thus, each Herschel map was treated
with the most appropriate kernel that provided the mask and
the angles map used in the neural network training. In gen-
eral, a Herschel GCC map contains many small structures
because each observed structure is resolved and complex.
Thus, after the RHT procedure, we additionally performmask
binarization and select only ten largest filaments with respect
to their pixel count. This choice is motivated by the necessity
to avoid noisy input and non-significant structures, improving
generalization.

TABLE 1. Kernels’ length (l ) and width (w) in pixels, used in the RHT
procedure to generate training sample based on Herschel GCC maps.

C. HI4PI-BASED SAMPLE
We used the all-sky survey of the atomic hydrogen data from
the Effelsberg-Bonn and Parkes telescopes which is publicly
available as the HI4PI survey [52]. The atomic hydrogen (HI)
traces the diffuse gas content and is generally mixed with dust
in the ISM. In addition, findings of [53], [54] showed that
the HI gas and Planck dust filaments show good agreement.
Thus, HI data adds another dimension to the angular scales in
our dataset, with 16′ resolution. We ran the RHT procedure
through the column density maps of HI at the same positions
where Planck filaments were found in the study by [49].
We conducted a visual check-up and obtained 148 maps.

IV. RESULTS
In this Section, we present the results of application of two
most efficient architectures for our purposes, although other

FIGURE 3. Examples of maps in the training samples. First row: Cold
Cores Planck-based sample (Planck-cc), second row: all-sky Planck-based
sample (Planck-1), third row: HI4PI-based sample, fourth row:
Herschel-based sample.

models were tested and will be discussed in Section V. The
first architecture is based on Mask R-CNN model. It is used
to identify the location and the shape of the filaments, that is,
to produce segmentation masks. The masks give the location
and extent of the identified filaments. The second architecture
is based on the U-Net model. It is used to determine the
filaments orientation angles from the mask.

A. MASK R-CNN LEARNING MODEL
In our study, we use Mask-RCNN network architecture [29]
to extract masks of filament structures. Mask R-CNN is a
Convolutional Neural Network (CNN) and state-of-the-art
in terms of image segmentation and instance segmentation.
It generates bounding boxes and segmentationmasks for each
instance of an object in the image. In other words, it detects
each object in an image and provides information about its
position. Mask R-CNN is based on ResNet101 backbone and
Feature Pyramid Network (FPN).

1) TRAINING
In this work, we decided to train the neural network using
training sets of astronomical images and their masks gener-
ated by means of the RHT procedure. The training datasets
consist of astronomical maps described in Section III and
their corresponding masks. The latter are obtained from RHT
intensity maps to which we applied binary thresholding.
The final objective of the neural network was to identify
filamentary structures. All images were resized to 256 ×
256 × 3 pixels dimension. Technically, the Mask R-CNN
neural network was implemented based on Keras [55] and
Tensorflow libraries [56] with the support of the GPU assisted
parallel computations. We trained the network for 30 epochs.
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To improve the process, we applied transfer learning which
was enabled based on the COCO data set [57].

We first ran the network on the Planck-1 data set where
each map has only one identified filament. However, experi-
mental results showed the critical importance of feeding the
neural network with multiple filaments in the target image
during the training phase. If the neural network was provided
with a single filament for each map at the training stage,
as in the case of Planck-1 sub-sample, the network could not
detect many significant structures in the test set. This explains
low mean Average Precision with increasing training size
in Fig. 6. Once the criterion of a single filament is relaxed,
there is no critical difference related to the number of input
filaments, as we see in theHerschel-based data set. However,
increasing the number of significant filaments led to detection
of noisy structures that blended the results.

2) RESULTS
We trained the neural network separately on each of the
available data sets.

We show in the central column of Fig. 4 sample outputs
of the Mask R-CNN, and the corresponding RHT masks in
the left column. Qualitatively, Mask R-CNN yields larger
and smoother structures than the RHT procedure and detects
the most significant structures. Quantitatively, we assess the
performance of the neural network compared to RHT using
the MSSIM index and the mean average precision score. The
MSSIM index, described in Section II, quantifies how the
output masks differ in structure compared to the original map.
A high score correlates with a high similarity between entities
and a low score informs about less significant similarities.
The score ranges from −1 to 1. We also assess the results
using the mean average precision (mAP). The mean average
precision shows the average precision score for the fixed
value of intersection over union (IOU) of 0.5, i.e. the propor-
tions of test samples that has higher score than the predefined
IOU score. The average precision is computed according to
the following equation:

AP =
∑
n

(Rn − Rn−1)Pn, (11)

where Rn and Pn depict the recall and precision values at
n-th threshold. The mean average precision is a mean value
of AP across all data set.

We summarize in Table 2 the performance of the
Mask-RCNN model by calculating the mAP score and the
mean and standard deviation of the differences between
MSSIM indexes. On average, in terms of the morphological
similarity of the output, neural network performs at least as
well or better than the RHT.

Fig. 5 shows the comparison between the RHT generated
filament masks and the output masks produced by the neural
network based on MSSIM index. For the HI filaments, the
larger the training size, the higher the MSSIM value, mean-
ing that the neural network becomes more efficient. As for
the Planck- and Herschel-based data sets, the morphological

FIGURE 4. Examples of obtained filaments: the first column depicts the
original intensity maps, the second column shows results of the Mask
R-CNN and the last column shows results of the RHT procedure. Numbers
in the second and third columns indicate the structural similarity score
measured by the MSSIM metric.

similarity comparison does not show any clear trend with
increasing size. We note that the Planck-1 sub-sample shows
low performance because maps contain only one, largest
filament, by construction.

Fig. 6 shows the accuracy of the filament identification
measured in terms ofmean average precision score depending
on the size of the training sample, normalized to one. Neural
network trained onHerschel-based and HI4PI-based data sets
shows a steady increase in accuracy as the sample size is
increased while Planck-based sub-samples show more pecu-
liar behaviors. The Planck-cc sub-sample does not show sig-
nificant improvements, while the Planck-1 sub-sample shows
an evident lack of efficiency that correlates with the size of
the training sample.

VOLUME 10, 2022 74477



D. Alina et al.: MaLeFiSenta: Machine Learning for FilamentS Identification and Orientation in the ISM

FIGURE 5. MSSIM values over the different training sample sizes for the
Mask R-CNN neural network.

FIGURE 6. Mean average precision (mAP) values over the different
training sample sizes, normalised to one with respect to the total number,
for the Mask R-CNN neural network.

B. U-NET MODEL
For estimating the orientation angle of the filaments, we pro-
pose the U-Net deep learning architecture [58]. The U-Net
model was originally used for biomedical image segmenta-
tion, but later was adopted for various domains and proved to
be effective due to combination of local and global features
in the process of making the resulting prediction.

1) TRAINING
In the training procedure, the input is the mask based on the
RHT intensity result, similar to the masks used as the desired
output for the Mask-RCNN. The output is the map with
orientation angles, also provided by the result of the RHT.
There, the orientation angles range between −90◦ and 90◦

degrees with 0◦ corresponding to the vertical. It is worth
noting that the results of the Mask-RCNN model can be used
as an input, however, this would require additional run of the
RHT to determine the corresponding orientation angles. For
simplicity and robustness, we opted to work with RHT results
for the training.

Optimization of the parameters of the network is one of
the essential steps in the training procedure. Due to a lim-
ited size of the training data sets, a particular attention was

paid to the choice of the optimizer. We have tested different
optimizers, among which the family of Adam optimizers
showed the best training convergence and the loss results.
Adam [59] is an adaptive learning rate optimization algorithm
that’s been designed specifically for training deep neural
networks. Adam,Adamax, Adadelta andAdaGrad optimizers
are among those that showed the best performance on our
data sets. The respective initial values of the learning rate for
these optimizers are 10−3, 5× 10−4, 5× 10−2, 10−3 with the
corresponding loss values of 33.65, 119.65, 51.26 and 18.49.
As a result of this search procedure, the AdaGrad optimizer
achieved the best loss and the training performance, hence,
it was chosen for the our task of finding the angle orientation
of the filaments in the given dataset.

The U-Net neural network was trained on Planck-cc,
Hershel-based and HI4PI-based sample data sets. We exclu-
ded the Planck-1 sub-sample at this stage as it only con-
tains a single filament and was already proven inefficient
for Mask-RCNN. Additionally we resized the intensity maps
and the output masks to 256 × 256 pixels. The training took
100 epochs. Similarly toMask R-CNN, the Keras and Tensor-
Flow deep learning packages with GPU support were used.
The U-Net model in our implementation consists of ten mod-
ules, in which each module contains a convolutional, pool-
ing/upsampling layers. The final layer has a linear activation
function due to the regressive nature of the task. Minimum
squared loss function was employed, with a learning rate
of 0.0001. The minimum squared loss was measured at each
training step to monitor the training process. The training
has been shown to gradually converge after the 100 epochs
of training. The total number of trainable parameters of the
network was 31,031,685.

2) RESULTS
Results of the U-Net training for identification of orien-
tation angles using three different data sets are presented
in the Table 3. The mean squared error parameter (MSE)
shows the squared difference between the U-Net model’s
predictions and the ground truth, averaged across the whole
data set. The MSE will never be negative since we always
squared the errors. The following equation formally defines
the MSE:

MSE =
D∑
i=1

(Yi − Ŷi)2 (12)

U-Net allows to predict the orientation angles (see Fig. 7)
with an accuracy comparable to RHT. This is confirmed by
small average differences across each map. The mean over
the average differences is shown in Table 3, which is of order
of 1 to 3 degrees.

V. DISCUSSION
This section first describes the neural network models that we
have additionally tested. Second, we summarize and discuss
both our models.
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TABLE 2. Estimation of performance of the Mask R-CNN training. The mean average precision (mAP) score measures the overlap between the neural
network result and the RHT result. Difference between the MSSIM from Mask R-CNN and RHT results measures the efficiency of the
neural network over RHT regarding morphological structure compared to the original image.

TABLE 3. Estimation of performance of the U-Net training. Mean squared error measures the squared difference between the model’s predictions
and the desired output across the whole data set. The last column shows the mean difference between derived angles with the U-Net and
with the RHT methods.

A. ALTERNATIVE NEURAL NETWORK MODELS
For orientation angle estimation, we have tried several
approaches to test the most widely used models in machine
learning. In particular, we compared the regular CNN model,
the auto-encoder model, the decision tree regression, and
U-Net models.

The advantage of the CNN models is that they can capture
spatial features in images, providemasks and perform reliable
classification. However, they are not efficient in regression
tasks. Thus, this type of neural network is not well suited for
orientation angles determination. Hence, alongside CNNs,
we used auto-encoder and U-Net models in our study. Due
to the specific architecture, these models both use global and
encapsulated local features in the images to provide a decoded
2D output with more precision. We also tried decision tree
regression as one of the most robust and reliable classical
machine learning methods. However, we faced over-fitting
and poor generalization problem using this method. The sam-
ple variation significantly affected the results, in which some
samples could reliably estimate the angles while other sam-
ples provided orders of magnitude less efficient orientation
angle estimates.

B. MASK R-CNN FOR FILAMENT IDENTIFICATION
The Mask R-CNN-based model is used to distinguish
filaments in the input maps. It is trained with data sets
that contain structures of different sizes and morphological
characteristics, with more ‘‘blobby’’, low angular resolution
HI4PI data or more delicate, higher angular resolution Her-
schel data (ratio of angular resolution of 20). Using different

data sets diversifies the learning procedure and ensures relia-
bility. The output of the Mask R-CNN neural network con-
sists of multiple layers, each containing a single filament.
Furthermore, we can combine all masks to produce a single
mask or perform a sorting procedure to limit the identified
filaments in, e.g., a hierarchical order. Although the neural
network was trained with maps containing ten filaments,
the output contained more or less than ten significant fila-
ments. This concludes that the neural network is able to make
autonomous decisions. In addition, we showed that the train-
ing on a sample as small as 90 maps already gives results that
are at least as reliable as the commonly used automated pro-
cedure such as the RHT. A comparison of the neural network
results with the classic automated RHT procedure results
in terms of morphological similarity showed that the neural
networks approach provides outputs that are morphologically
more representative of the original image. In addition, once a
neural network is trained, the computational time for a single
map with around 500 pixels per side is less than 1 second
compared to a few dozens of minutes with the RHT procedure
on the same machine.

C. U-NET FOR FILAMENT IDENTIFICATION
Although the U-Net architecture was previously used for the
identification of thin filaments in microscopy, in this study,
for the first time, it was used to determine the values of the
orientation angle of the filaments.

In principle, U-Net may be used to identify the orientation
of filaments in a map containing masks of filaments obtained
from any filament identification methods, such as intensity
threshold or skeletons, among the most simple. Alternatively,
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FIGURE 7. Examples of filaments obtained using the U-Net model: the
first column depicts the original intensity maps, the second column
shows results of the U-Net, with the color code corresponding to the
orientation angle in degrees, and the last column shows results of the
RHT procedure. Numbers in the second and third columns indicate the
structural similarity score measured by the MSSIM metric.

it can be combined with more sophisticated procedures such
as DisPerSE.

To find out howU-Net can identify orientation angles from
the intensity maps directly, we tested various parameters of
the network to estimate the best performance. This procedure
was repeated on all data sets. We compared results of the
U-Net with the following inputs: mask of the filament or the
original intensity map. This allowed us to conclude that

the latter gives significantly worse results. Hence, we propose
using the architecture consisting of 2 stages: Mask-RCNN
followed by U-Net to identify filaments and their orientation
angles efficiently.

VI. CONCLUSION
We applied machine learning approach to filament identifica-
tion for the studies of the interstellar medium. The approach is
based on neural networks and allows us to identify extended
filaments of finite width and their orientation angles. To cre-
ate training samples, we used a machine vision algorithm,
the Rolling Hough Transform (RHT), that we applied to the
publicly available astronomical data: thePlanck andHerschel
telescope and the HI4PI survey, which are the most used in
ISM studies [11], [16], [26], [44], [54], [60]–[63]. Our main
goal was to find the best neural network architectures that
would efficiently identify filaments and primarily estimate
orientation angles.

We found that two neural network models satisfy the
required tasks: the Mask R-CNN and the U-Net. The first
model is the best suited for filament mask construction while
the second allows us to estimate the orientation angles of
structures in the image. We recommend using a combination
of the two models. However, it is worth noting that the U-Net
model can be applied directly to the intensity or density
image, and can also be used in combination with any mask
of filaments.

The main advantage of neural networks approach is that
the models can be trained to identify structures of differ-
ent sizes thus diminishing human bias. Such an approach
minimizes parametrization, which facilitates application on
large or diversified data sets. It opens an opportunity
for neural network applications for relative orientation
between interstellar filaments, hubs, and magnetic fields.
Upon publication, the models set-up will be available via
GitHub (https://github.com/danakz). In perspective, future
work might be envisaged to improve the efficiency of the
models regarding the set-up and the training samples.
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