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Abstract 

Digital transformation in manufacturing is having a distinct impact on a variety of business models, including aircraft 
maintenance. Airline operators are revamping their Maintenance, Repair and Overhaul (MRO) activities with the use of 
integrated digital platforms and data mining to achieve greater operational efficiencies in parts usage, downtime, and service 
costs. The term Aircraft Maintenance 4.0 captures the leveraging of information to achieve greater operational agility and to 
reduce costs. Consolidating data obtained via wireless connectivity from diverse sources enables effective performance 
monitoring that can inform MRO operations. The severe restriction of flights worldwide due to the pandemic has disrupted the 
progress of Aircraft Maintenance 4.0 by altering flight routes and rendering most of the historical data obsolete. In this paper, 
certain aspects of the disruption that deal with airline network changes and their evolution during the pandemic are studied by 
using publicly available data of a commercial airline. 
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1. Introduction 

Commercial aviation logistics and maintenance present many research challenges because of the complexity and 
sophistication of the airline networks. Optimizing flight schedules, maximizing aircraft utilization, and minimizing 
aircraft maintenance costs and inventory are essential for competitiveness and profitability. Indeed, the need for 
reduction of operational cost is essential as the sector is characterized by low profit margins [1]. Airlines were at the 
forefront of firms that embraced a data-driven culture and used early-on digital processes of optimization to develop 
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and fine-tune their operational plans. In fact, the Digital Optimization Maturity Model has been devised to assess 
best practices and to provide optimization benchmarks for 49 airlines worldwide [2]. 

Airline resource management usually proceeds in several discreet stages resolved sequentially. There are four 
major optimization problems in the airline industry: flight scheduling; fleet assignment; crew pairing and aircraft 
maintenance. After the flight scheduling has been decided and the fleet assignment and crew pairing issues are 
resolved, aircraft rotation must be managed so that each aircraft gets enough maintenance opportunities. These four 
problems have been widely studied over the past few decades but do remain largely unsolved due to their size and 
complexity [3].  

Naturally, solving optimization problems sequentially leads to globally suboptimal solutions. More recent 
approaches integrating two stages, such as airline network and aircraft family optimization or maintenance routing 
informing crew pairing, have met with limited success.  

The maintenance problem has attracted special attention because of its direct impact on reducing operational 
costs. Indeed, Maintenance, Repair and Overhaul (MRO) activities are at the core of an airline’s cost structure [4] 
accounting roughly for 10% of an airline’s total operating costs [5].  

The basic aircraft maintenance problem addresses the issue of rotating individual aircraft across routes so that 
each aircraft is routed after a set number of flight segments to a maintenance station for maintenance, repair and 
overhaul within the prescribed manufacturer recommendations, aviation authority regulations and internal airline 
guidelines. The problem is complicated by daily issues such as flight delays and more persistent ones like workflow 
capabilities and available inventory at each maintenance station. At the core of the problem is the fact that spare 
parts manufacturing for aviation is a high-tech, small-batch production industry that delivers a great variety of 
custom-ordered products and specifications [7].  

With passenger numbers rising over the past decade, and constant challenges around fuel efficiency and reducing 
CO2 emissions, optimizing aircraft maintenance became a key priority for commercial airlines [1].  

Industry 4.0 provided the impetus for the digital transformation of all maintenance operations. Maintenance 4.0 
emerged as a distinct subset of Industry 4.0 in the form of self-learning digital systems that can make diagnoses, 
predict failures, and establish maintenance plans [8]. Deep Digital Maintenance (DDM) and Predictive Maintenance 
(PdM) are two alternative terms that have been put forward to signal the use of digital systems to optimize 
maintenance activities [9, 10]. In this general context, the term Aircraft Maintenance 4.0 has been coined to 
characterize the transformation of aviation MRO activities to digital along the entire value chain [11]. 

Consolidating data procured from a variety of sources and transmitted wirelessly around the world, and 
employing advanced analytics and machine learning, has empowered airlines to gain new insights from their own 
data and to implement PdM.  

An active sub-field of the aircraft maintenance problem deals with the issue of reassigning aircrafts when a 
disruption occurs. The airline industry encounters disruptions daily due to inclement weather, volcano eruptions, 
temporary closures of airports or airspaces, unscheduled maintenance, etc. leading to flight delays and cancellations 
that can affect scheduled aircraft maintenance, crew pairing and passenger itineraries. The process of recovering the 
schedule after disruptions occur, that is modifying flight and aircraft schedules to compensate for irregular 
operations is defined as disruption management [12]. 

The impact of unplanned maintenance events on airline operations is felt directly through increased labor costs 
and inventory expenses, and indirectly through its ripple effect on network operations. Indeed, unplanned 
maintenance costs account for approximately 27% of all maintenance expenditures and for approximately half of an 
airline’s delays [4, 5]. 

The current Covid-19 pandemic has had a singularly distinct and serious impact on the aviation industry due to 
travel restrictions and a slump in demand resulting in cancelled flights and sever financial stress for the airlines [13]. 
The pandemic-related severe restriction of flights worldwide has created a problem of historic proportions for 
Aircraft Maintenance 4.0 by altering flight routes and rendering most of the historical data obsolete [14].  

The objective of this paper is to examine network related aspects of the disruption. Indeed, an airline’s network 
structure provides the platform for studying the maintenance problem in the sense that the choice itself of 
maintenance stations -be they owned or leased facilities- is determined by the structure of the network [15].  
Specifically, the objective of this paper is to assess how airline network characteristics have evolved from the pre-
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pandemic “normal” schedules to the post-pandemic “emergency” and “new-normal” ones. The findings will inform 
disruption management and in particular aircraft maintenance and spare-part logistics. 

The paper is organized as follows. A concise review of airline networks and their characteristics is presented in 
Section 2. This is followed, in Section 3, by an articulation of the issues involved via publicly available data of a 
commercial airline. An informed discussion of the results obtained is provided in Section 4.  Finally, in Section 5, 
the conclusions of the paper are summarized along with limitations and suggestions for future research. 

2. Airline Network Configurations 

Air traffic networks are essential to today’s global society because they are the fastest means of transporting 
physical goods and people. Airline networks are spatial networks that address the subset of air traffic that is covered 
by a single airline [16]. 

An airline connection network is defined by the set of arrival or departure airports (nodes) and the flight arcs 
(edges). Node and edge attributes are defined according to the scheduling problem at hand. Node attributes can be 
the population of the area that each airport serves (for routing and ticketing) or the presence or absence of a 
maintenance facility (for inventory purposes). Edge attributes can be the distance covered or the frequency of the 
connection or the type of plane flown in each flight segment. In most cases, the networks are bidirectional. 

The simplest form of an airline network is the point-to-point (PP) configuration in which airports are connected 
by direct routes. This is the preferred configuration of (typically low-cost) airlines which operate only on routes 
where demand guarantees a high load factor on aircrafts. The PP configuration allows for substantial cost reduction 
but makes long-haul routes out of reach for many airlines. 

Most full-service airlines do not implement a straight PP configuration and plan their routes from one or more 
base airports. In the basic hub-and-spoke (HS) configuration all destinations are linked to a main airport called hub. 
The main advantage of this configuration is that it allows for the connection of many origins and destinations with a 
low number of routes. In addition, airlines can centralize services such as aircraft maintenance in hubs to gain 
operational advantages. The key drawbacks of the HS configuration are that it increases the time and cost of travel 
between non-hub airports and that it can lead to congestion at hub airports. 

A variant of the HS configuration is the multi-hub-and-spoke (MHS) configuration, which is like the HS, but 
with several hubs instead of one. (These individual hubs are not necessarily of the same importance in the network.) 
The MHS configuration is observed in fragmented markets or when a hub airport reaches its scheduled capacity.  

Irrespective of their configuration, airline networks are characterized by a large set of graph theory metrics which 
help inform and parametrize all the relevant optimization problems. Some of these metrics describe the entire 
network while others describe individual nodes [17]. 

For MRO operations, the issue is the optimal placement of maintenance stations and spare parts depots at key 
nodes of the network. Node centrality, which characterizes the level of connectivity of an airport in the airline 
network, is of paramount importance for aircraft maintenance because a significant portion of maintenance 
operations is dependent upon ferrying spare parts.  

There are three common measures of node centrality, degree, closeness and betweenness representing distinct 
perspectives of importance [18]: 

● Degree centrality is defined as the number of nodes directly connected to the node in question out of the 
totality of nodes within the network. 

● Closeness centrality indicates how close a node is to all other nodes in the network. It is calculated as the 
inverse of the average geodesic distance from the node in question to every other node in the network. 

● Betweenness centrality measures the importance of a node in a network based upon how many times it occurs 
in the shortest path between all pairs of nodes. It measures the times a node acts as a bridge along the shortest 
path between two other nodes.  

The degree of an airport in an airline network refers to the number of other airports having direct flights with this 
airport. The higher the degree of an airport the greater its importance, to some extent, in the network.  

The closeness of an airport broadly refers to the accessibility of the airport and is defined through the number of 
direct and indirect air travel connections available at the airport. An airport with higher closeness is more central in 
the network, in the sense that all other airports can be reached more easily from this airport. 



124	 Mariza Tsakalerou  et al. / Procedia Computer Science 200 (2022) 121–1314 Author name / Procedia Computer Science 00 (2019) 000–000 

The betweenness of an airport measures the number of transfer opportunities available via the specific airport. 
Higher betweenness of an airport indicates a stronger effect of the airport as a bridge, and a more important role in 
the network. 

3. Operational Disruptions 

The increasing reliance of the global world economy on air traffic networks requires these networks to have high 
resilience. While previous events show that air traffic networks can be reasonably resilient to most natural hazards, 
the current pandemic has created a disruption with colossal effects. 

During the several phases of the pandemic, airlines attempted to rebuild, albeit slowly, their networks. The new 
routing schemes that emerged reflect both local and global conditions and can provide valuable new insights on how 
re-routing solutions can improve the resilience of air traffic. 

This paper is based on the real-world example of Air Astana, the flag carrier of Kazakhstan. Air Astana is a 
medium-size airline that has been recognized as "Best Airline in Central Asia and India" in the Skytrax World 
Airline Awards for eight consecutive years.  

Air Astana has three major maintenance hubs in Almaty, Nur-Sultan and Atyrau that are certified by the 
European Aviation Safety Agency (EASA) to perform full maintenance services of its aircraft. Major aircraft 
maintenance relates to airframes (referred to as the C-check, D-check, and redelivery preparation program) and 
engines. The C-check is heavy maintenance with approved performance interval. It takes place at the earliest of 
every 6,000-7,500 flight hours, 3,000-5,000 flight cycles and 18-24 months according to aircraft type. The D-check 
is heavy maintenance connected with deep aircraft disassembly, structure inspection and anticorrosion prevention 
program. It takes place with an interval of not more than 72 months. Air Astana additionally engages third-party 
maintenance and repair organizations in Asia and Europe (typically Hong Kong, Istanbul, and Frankfurt). 
Maintenance costs account for about 12% of Air Astana’s operational expenses for the years preceding 2020. 

Table 1 summarizes some key operational figures of Air Astana from 2019 and 2020 culled from its audited 
financial statements [19]. These include provisions (C-check, D-check, engines, auxiliary power units, landing 
gear), components (inventory parts that are consumed or repaired and reused), spare parts (inventory to maintain 
redundancies for uncertain demand in terms of locations and time) as well as the cost of scheduled and unscheduled 
inspections of the aircrafts the airline owns. In addition, the airline is obliged to carry out and pay for maintenance 
based on its use of leased aircraft and to return such aircraft to the lessors in a satisfactory condition at the end of the 
lease term. IATA maintenance accounting rules mandate that maintenance of leased aircraft is reported as a total, 
composite entry in financial statements because the corresponding expenses are amortized differently [20]. 

 
        Table 1. Air Astana financials 2019 vs 2020. 

’000 USD 2019 2020 CHANGE 

Engineering and Maintenance 94,407 43,198 -54% 

Maintenance – lease payments 28,154 5,988 -79% 

Maintenance – provisions 28,467 20,344 -29% 

Maintenance – components 21,418 5,749 -73% 

Spare parts 13,875 9,023 -35% 

Technical inspection 2,493 2,094 -16% 

Passenger revenue 824,952 358,413 -57% 

Aircraft crew costs 35,327 14,872 -58% 

Total operating expenses 820,030 469,578 -43% 

End-of-the-year spare parts inventory 29,755 32,193 8% 
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The objective of the table is twofold. First, to illuminate the significance of the various types of MRO operations 
on the bottom line of the airline and, second, to demonstrate the stark effect of the pandemic. Table 1 demonstrates 
that Air Astana flight operations were severely curtailed in 2020, with passenger revenue and flight personnel costs 
down by almost 60% compared to 2019. At the same time operating expenses were cut by about 40%, signaling the 
inflexibility of reducing certain operation costs. 

Maintenance costs appear to have been reduced by about 55% accounting for 9% of the total operating expenses 
in 2020 compared to 12% in 2019. This figure however is deceptive as the bulk of the maintenance savings had to do 
with leased aircraft that were mostly returned to their owners. If one excludes maintenance lease payments, 
engineering and maintenance costs were only reduced by about 40% from 2019 to 2020, following the overall trend 
of the total operational expenses. The situation is exasperated by the fact that the airline ended 2020 with 8% more 
spare parts in its depots than in 2019. 

It is apparent that maintenance costs are not amenable to cost reductions equivalent to the reduction of flight 
operations because maintenance hubs are not easily movable and incur hefty, fixed costs. In this context, the 
evolution of Air Astana’s network during the pandemic and the resultant changes in its connectivity metrics emerges 
naturally as a critical issue for MRO operations. 

4. Network Evolution and Analytics  

The objective was to determine whether the geographical location of the international airports that Air Astana 
served during the pandemic significantly altered the major metrics of its network. Only publicly available data were 
used which were obtained from official schedules and dynamically updated repositories (such as routesonline.com). 

As the airline continuously adapted to the changing conditions, there were three key dates at which its 
international network was redrawn with respect to the ebbs and flows of the pandemic: July 12th, August 23rd, and 
October 18th, 2020. The date of November 1st, 2019 was added as a benchmark of Air Astana’s international 
network before the start of the pandemic. 

For the analysis in this paper, the concept of a simplified network was used. That is, only unique flight routes 
were accounted for without taking into consideration the number of flights operating on each route. 

The analysis of the characteristics of the four evolutions of Air Astana’s international network was performed 
using the NodeXL add-in for Excel [21].   

Figure 1 displays the initial form of the network, effective from November 1st, 2019 (NOV19). The figure is 
accompanied by a table detailing the operational nodes of the network and their measures of centrality. In the 
network graph, the degree of an airport is reflected in the size of the dot representing it. 

After a quick ramp down and finally suspension of all international flights (except for evacuation ones) during 
the first half of 2020, Air Astana unfolded in July (JUL20), August (AUG20) and October (OCT20) three new 
international schedules to account for allowances and prohibitions on air travel from the relevant countries. Figures 
2, 3 and 4 represent the respective forms of the network.  

Before the pandemic, Air Astana was operating an international 28-node MHS network with two large hubs, Nur-
Sultan and Almaty. Both airports had degree, betweenness and closeness far exceeding those of the other nodes. 
Frankfurt, Istanbul and Atyrau were in the second tier of importance for the network (Figure 1).  

The structure of the network remained mostly intact after reopening in July 2020, with 28-nodes, Nur-Sultan and 
Almaty the two main hubs and Istanbul, Frankfurt and Atyrau following in terms of importance. The slight increase 
in average betweenness and the rise of Istanbul to the top of the second tier was primarily due to the cancelation of 
the direct route from Almaty to Frankfurt. 

In August 2020, the start of the second wave of the pandemic resulted in a retrenchment of the network. With 
only 20 nodes available, there was only one discernible major hub, Almaty, while Nur-Sultan and Istanbul virtually 
tied at the top of the second tier. Average degree and betweenness were reduced while average closeness increased 
for the remaining nodes. 

Finally, in October 2020, the network was further reduced to 10 nodes, with no discernible major hub, and 
Almaty, Nur-Sultan and Istanbul being delegated to the role of minor hubs. Average betweenness was further 
reduced, average degree was almost unchanged and average closeness was further increased reflecting the closer 
association of the remaining nodes. 
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The summary comparison of the international network characteristics provided in Table 2 demonstrates 
succinctly the changes of the flight schedules with respect to the pandemic. The most dramatic change is seen in the 
structure of the network which evolved from being a 2-hub MHS to an HS and finally to a form with no major hubs 
and increasingly resembling a PP network. 

 

Table 2. International network characteristics over time. 

As of: Nodes Mean 
Degree 

Mean 
Betweenness 

Mean 
Closeness 

Major/Minor 
Hubs 

NOV19 28 2.786 18.214 0.016 2/3 
JUL20 28 2.786 18.286 0.016 2/3 

AUG20 20 2.100 14.500 0.022 1/2 
OCT20 14 2.143 10.500 0.031 0/3 

 
 
Within the network the role of the major and minor hubs was restricted to five key cities (Nur-Sultan, Almaty, 

Istanbul, Frankfurt and Atyrau) with varied importance for each schedule. 
While the airline managed to maintain a minimum number of nodes to stay connected and to operate during the 

pandemic, government restrictions on flights worldwide had a significant and measurable impact on the parameters 
of the network. 

The key question remains of course how these parameter changes were reflected in the operational parameters 
and maintenance costs of the airline. 
 

 

 

 
AIRPORT Degree Betweenness Closeness 
Nur-Sultan 18 201.744 0.024 
Almaty 17 160.333 0.022 
Frankfurt 3 39.333 0.014 
Istanbul 3 37.513 0.016 
Atyrau  3 27.923 0.019 
Baku 2 3.923 0.018 
Beijing Capital 2 3.923 0.018 
Bishkek 2 3.923 0.018 
Dubai 2 3.923 0.018 
Kyiv Borispil 2 3.923 0.018 
Moscow Domodedovo 2 3.923 0.018 
Seoul Incheon 2 3.923 0.018 
St. Petersburg 2 3.923 0.018 
Tashkent 2 3.923 0.018 
Tbilisi 2 3.923 0.018 
Urumqi 2 3.923 0.018 
London Heathrow 1 0.000 0.015 
Novosibirsk 1 0.000 0.015 
Omsk 1 0.000 0.015 
Paris CDG 1 0.000 0.015 
Yekaterinburg 1 0.000 0.015 
Bangkok 1 0.000 0.014 
Delhi 1 0.000 0.014 
Dushanbe 1 0.000 0.014 
Hong Kong 1 0.000 0.014 
Kuala Lumpur 1 0.000 0.014 
Uralsk 1 0.000 0.011 
Amsterdam 1 0.000 0.010  

Fig. 1. Network representation and analytics effective NOV19. 
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AIRPORT Degree Betweenness Closeness 
Almaty 18 181.333 0.023 
Nur-Sultan 17 181.590 0.023 
Istanbul 3 38.737 0.019 
Frankfurt 3 38.333 0.016 
Atyrau 3 28.077 0.014 
Baku 2 3.994 0.018 
Beijing Capital 2 3.994 0.018 
Bishkek 2 3.994 0.018 
Dubai 2 3.994 0.018 
Kyiv Borispil 2 3.994 0.018 
Moscow Domodedovo 2 3.994 0.018 
St. Petersburg 2 3.994 0.018 
Seoul Incheon 2 3.994 0.018 
Tashkent 2 3.994 0.018 
Tbilisi 2 3.994 0.018 
Urumqi 2 3.994 0.018 
Bangkok 1 0.000 0.014 
Delhi 1 0.000 0.014 
Dushanbe 1 0.000 0.014 
Hong Kong 1 0.000 0.014 
Kuala Lumpur 1 0.000 0.014 
Paris CDG 1 0.000 0.014 
London Heathrow 1 0.000 0.014 
Novosibirsk 1 0.000 0.014 
Omsk 1 0.000 0.014 
Yekaterinburg 1 0.000 0.014 
Uralsk 1 0.000 0.011 
Amsterdam 1 0.000 0.010  

Fig. 2. Network representation and analytics effective JUL20. 

 

 
AIRPORT Degree Betweenness Closeness 
Almaty 14 146.500 0.036 
Nur-Sultan 4 37.500 0.022 
Istanbul 3 46.000 0.028 
Atyrau 2 18.000 0.019 
Frankfurt 2 18.000 0.016 
Dubai 2 12.000 0.025 
Moscow Domodedovo 2 12.000 0.025 
Baku 1 0.000 0.022 
Bangkok 1 0.000 0.022 
Beijing Capital 1 0.000 0.022 
Bishkek 1 0.000 0.022 
Delhi 1 0.000 0.022 
Dushanbe 1 0.000 0.022 
Kyiv Borispil 1 0.000 0.022 
St. Petersburg 1 0.000 0.022 
Seoul Incheon 1 0.000 0.022 
Tashkent 1 0.000 0.022 
Tbilisi 1 0.000 0.022 
Amsterdam 1 0.000 0.014 
Uralsk 1 0.000 0.013  

Fig. 3. Network representation and analytics effective AUG20. 
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Atyrau 3 28.077 0.014 
Baku 2 3.994 0.018 
Beijing Capital 2 3.994 0.018 
Bishkek 2 3.994 0.018 
Dubai 2 3.994 0.018 
Kyiv Borispil 2 3.994 0.018 
Moscow Domodedovo 2 3.994 0.018 
St. Petersburg 2 3.994 0.018 
Seoul Incheon 2 3.994 0.018 
Tashkent 2 3.994 0.018 
Tbilisi 2 3.994 0.018 
Urumqi 2 3.994 0.018 
Bangkok 1 0.000 0.014 
Delhi 1 0.000 0.014 
Dushanbe 1 0.000 0.014 
Hong Kong 1 0.000 0.014 
Kuala Lumpur 1 0.000 0.014 
Paris CDG 1 0.000 0.014 
London Heathrow 1 0.000 0.014 
Novosibirsk 1 0.000 0.014 
Omsk 1 0.000 0.014 
Yekaterinburg 1 0.000 0.014 
Uralsk 1 0.000 0.011 
Amsterdam 1 0.000 0.010  

Fig. 2. Network representation and analytics effective JUL20. 

 

 
AIRPORT Degree Betweenness Closeness 
Almaty 14 146.500 0.036 
Nur-Sultan 4 37.500 0.022 
Istanbul 3 46.000 0.028 
Atyrau 2 18.000 0.019 
Frankfurt 2 18.000 0.016 
Dubai 2 12.000 0.025 
Moscow Domodedovo 2 12.000 0.025 
Baku 1 0.000 0.022 
Bangkok 1 0.000 0.022 
Beijing Capital 1 0.000 0.022 
Bishkek 1 0.000 0.022 
Delhi 1 0.000 0.022 
Dushanbe 1 0.000 0.022 
Kyiv Borispil 1 0.000 0.022 
St. Petersburg 1 0.000 0.022 
Seoul Incheon 1 0.000 0.022 
Tashkent 1 0.000 0.022 
Tbilisi 1 0.000 0.022 
Amsterdam 1 0.000 0.014 
Uralsk 1 0.000 0.013  

Fig. 3. Network representation and analytics effective AUG20. 
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AIRPORT Degree Betweenness Closeness 
Almaty 7 45.500 0.042 
Nur-Sultan 5 35.500 0.038 
Istanbul 3 28.667 0.042 
Atyrau 2 12.000 0.029 
Frankfurt 2 12.000 0.028 
Dubai 2 6.667 0.036 
Antalya 2 6.667 0.036 
Bishkek 1 0.000 0.028 
Kyiv Borispil 1 0.000 0.028 
Seoul Incheon 1 0.000 0.028 
Tashkent 1 0.000 0.028 
Moscow Domodedovo 1 0.000 0.026 
Amsterdam 1 0.000 0.022 
Uralsk 1 0.000 0.021  

Fig. 4. Network representation and analytics effective OCT20. 

 

By turning to the financial statements of the airline for the four quarters of 2020, one can obtain the relevant data 
that roughly correspond to the evolutions of its network. 

 

Table 3. Air Astana quarterly financials 2020. 

’000 USD Q1 Q2 Q3 Q4 

Engineering and Maintenance 28,196 3,956 10,278 768 

Passenger revenue 154,112 30,944 75,179 98,178 

Aircraft crew costs 7,965 1,517 2,121 3,269 

Total operating expenses 209,703 55,586 99,661 104,628 

 
 
Figure 5 demonstrates succinctly the evolution of the Air Astana financials during the four quarters of 2020. By 

comparing the data in Tables 2 and 3, it appears that maintenance costs are correlated positively with degree and 
betweenness and negatively with closeness. In addition, they are positively correlated with the number of nodes and 
number of major and minor hubs in the network. 

While four data samples are clearly inadequate for long-term projections, it is informative to perform a linear 
regression on the maintenance costs with regressors the connectivity metrics (degree, betweenness and closeness). 
The model that emerges has the following form: 

                                          Maintenance = −15,004 – 3,515*Degree + 2,239*Betweenness                                    (1) 

with closeness not participating at all. Hence, maintenance costs are positively influenced by the average 
betweenness of Air Astana’s network and negatively affected by the average degree of the network. 
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Equation (1) is offered simply as an example of how major network disruptions can affect maintenance operations 
and costs. Additional regressions can be performed to examine the influence of network characteristics on other 
components of the airline’s cost structure and operating expenses. These types of outcomes can then be used to 
define the weights in parametrizing maintenance algorithms vis a vis network characteristics for employment and 
testing under different disruptive scenarios.   
 

 
Fig. 5. Quarterly financials in 2020. 

 

5. Conclusions 

The aircraft maintenance problem is one of the key logistic problems in the airline industry as thousands of 
aircrafts undergo maintenance, repair, and overhaul (MRO) operations daily. Maintenance 4.0 emerged as a distinct 
subset of Industry 4.0 to characterize the digital transformation of aviation maintenance. Predictive Maintenance 
(PdM) and Deep Digital Maintenance (DDM) systems are emerging to optimize maintenance activities.  

Maintenance 4.0 is complicated by the presence of disruptions in airline operations. Past and recent research has 
focused on how even simple variables such as airline punctuality can have significant effects on maintenance, repair, 
and overhaul (MRO) costs [24, 25] and that fundamental choices in airline network architectures can impact MRO 
operations [26, 27]. The digital transformation that is sweeping through airline maintenance operations has allowed 
for more nuanced analyses that extend beyond the scope of legacy maintenance strategies to provide prescriptive 
maintenance tools [28] and to assess the risks in air connection dropouts in airline networks [29].  

Prescriptive maintenance is still in its infancy. Big data analytics and predictive algorithms have been developed 
to determine impending failures at individual component, aircraft, and fleet levels, and then to provide for complete 
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repair solutions. While such approaches have succeeded in reducing downtime, they are not yet ready for real-world 
implementations because they are extremely sensitive to non-trivial network disruptions [30]. 

The key objective of Maintenance 4.0 is to integrate maintenance activities with design solutions and data 
gathering within a supportive ecosystem [31]. In aviation maintenance, location is important and location-based 
solutions are considered the next big step in MRO 4.0 [32]. At a minimum, location is essential for the optimal 
placement of maintenance stations and spare parts depots at key nodes of the network. 

It is thus crucial for air traffic networks to exhibit resilience, that is to have the ability to cope with natural, 
unforeseen, and intense worldwide disasters. The objective of this paper has been to demonstrate how key network 
characteristics influence MRO operations. The real-world case examined in this paper demonstrated that the changes 
due to events like the pandemic are very important and need to be studied further. With airline networks recovering 
very slowly (if at all) to their pre-pandemic status new data will slowly start to emerge.  

It is expected that the insight developed in this paper will be essential to inform and parametrize prescriptive 
maintenance algorithms and systems within the “supportive ecosystem” called for in [31]. 

Two immediate issues that need to be examined further are the addition of other metrics of closeness into the mix 
and the elaboration on the issue of accounting for flight frequencies between any two nodes. Future research should 
also focus on the taxonomy of disruptive events in air traffic networks so that real-world implementation will 
proceed across a well-defined continuum of possibilities. 

Finally, a similar investigation of another medium-size international airline within a meta-analysis framework 
[23] might provide adequate support to the thesis of generalizing the results of this paper across bigger segments of 
the commercial aviation industry. 
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