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Abstract: We consider non-Newtonian boundary-layer fluid flow, governed by a power-law Ostwald-
de Waele rheology. Boundary-layer flows of non-Newtonian fluids have far-reaching applications,
and are very frequently encountered in physical, as well as, engineering and industrial processes.
A similarity transformation results in a BVP consisting of an ODE and some boundary conditions.
Our aim is to derive highly accurate analytical relationships between the physical and mathematical
parameters associated with the BVP and boundary-layer flow problem. Mathematical analyses
are employed, where the results are verified at the numerical computational level, illustrating the
accuracy of the derived relations. A set of “Crocco variables” is used to transform the problem, and,
where appropriate, techniques are used to deal with the resulting singularities in order to establish
an efficient computational setting. The resulting computational setting provides an alternative,
which is different from those previously used in the literature. We employ it to carry out our
numerical computations.

Keywords: boundary-layer flow; non-Newtonian fluid; power-law model; non-linear; singularity;
semi-infinite domain; boundary-value problem

1. Introduction

Boundary-layer fluid-flow problems have been of much interest since their early
development in the works of Schowalter and Acrivos et al. [1,2]. In [1] Schowalter derived
the mathematical and physical formulations. However, the first numerical solutions were
obtained by Acrivos et al. in [2]. The boundary-layer flow of non-Newtonian fluids assumes a
variable viscosity. Classically the models are reduced by a similarity variable transformation
from a system of coupled PDEs into a third-order non-linear ODE. The most commonly
used model of the fluid is that of a power-law Ostwald-de Waele rheology, which is
encountered quite often in the literature with many physical and industrial applications.
We note that the power-law models are characterized by a power-law index n, where
n = 1 corresponds to a Newtonian fluid. However, if n > 1 then the fluid is dilatant or
shear-thickening, while the fluid is pseudo-plastic or shear-thinning if 0 < n < 1. The
reader is referred to [3–5] for further details on the general theory and applications of
boundary layer non-Newtonian fluid flows.

Many variations of non-Newtonian boundary layer flows can be found in the literature
with somewhat different governing equations and/or different sets of boundary conditions.
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Numerical solutions can be found in many studies. For example, Denier and
Dabrowski [6] found numerical solutions and used them to obtain a graphical represen-
tation for the relationship between the shear stress (also referred to as the wall shear or
skin-friction coefficient) and a parameter m in the governing ODE. The parameter m was
associated with a stream-wise velocity profile at infinity. They also discussed the difficulties
associated with the numerical approaches employed to solve the ODE, and how to over-
come them. Liao [7] also considered the difficulties involved in the numerical approaches
and obtained numerical solutions for a different variant of the problem (consisting of a
slightly different ODE). In [8], Chen et al. considered boundary layer flow of an electrically
conducting non-Newtonian fluid in the presence of a magnetic field. They used the Ado-
mian decomposition method (ADM) to obtain approximate solutions. They proceeded to
find estimates for the value of the shear stress with relatively high accuracy. Zheng et al. [9]
applied classical mathematical analysis to obtain bounds on the values of the shear stress,
and compared their results to numerical estimates which showed the accuracy of their
computations. Their upper and lower bounds showed a narrow range for large values of n.

Analytical solutions are also found in the literature. In [10], Guedda established an
exact solution to a variant of the problem with certain boundary conditions that consist of
a power-law velocity profile at infinity. He utilized symmetry methods to obtain his result.
Bognár [11] obtained analytical solutions and proved existence and uniqueness using an
approach involving the Briot–Bouquet Theorem. Wei and Al-Ashhab [12] established
existence and uniqueness for all values of the power-law index n for a certain variant of
the problem. Magyari et al. [13] also considered existence and uniqueness, where they
determined parameter ranges for which solutions exist. They also determined parameter
values where solutions do not exist. The interested reader is referred to the book by Merkin
et al. [14] for a recent treatment of boundary-layer non-Newtonian fluid flow, with an
extensive discussion of recent and novel applications (including applications of nanofluids,
and micropolar fluids).

Similar solutions of power-law non-Newtonian fluid flow, not involving boundary
layers, are also found in the literature. They exhibit very similar mathematical features
to boundary-layer non-Newtonian flows. In this regard, Bedjaoui et al. [15] for exam-
ple, established existence and uniqueness for a Rayleigh problem with Ostwald-de Wael
electrically conducting fluids. Their study involved a second-order ODE. In [16], condi-
tions for the existence and non-existence of self-similar solutions were determined for the
two-dimensional Navier—Stokes equation involving non-Newtonian fluids.

Further applications of boundary-layer non-Newtonian fluids are found in the magne-
tohydrodynamics flow of fluids over a non-linear stretching sheet, cf. [17]. In these cases
the problem was modeled by a coupled system of ODEs with the velocity, temperature
and concentration as dependent variables. The authors needed to resort to numerical
techniques and computers to solve the system of ODEs. Recent applications have involved
micromixers with many applications in mechanical and chemical engineering. Researchers
investigating microfluids and micromixers normally resort to numerical methods and
algorithms to solve the corresponding coupled system of PDEs [18–20]. More applications
of non-Newtonian fluid flow that became of interest in recent years can be found in the
squeezing flow between two infinite plates [21–23]. Interesting applications that are consid-
ered involve a fourth-order non-linear ODE. All the recent applications constitute possible
fields of application for our study and results. Applications of non-Newtonian fluids are
far-reaching and it would not be possible to list all those who contributed in this field.

We intend to investigate the boundary-layer non-Newtonian fluid flow problem by
applying analytical and computational approaches. Our aim is to use a “Crocco variable”
transformation, which proved its efficiency in [24–26]. This technique was employed in [24]
to investigate existence and uniqueness for Newtonian fluids which exhibited a linear model.
It was employed in [25,26] to investigate existence and uniqueness, as well as properties
of solutions for non-linear models. We shall investigate the same variant of the problem
that was considered in [2,6,26] (with the same governing ODE and BCs). However, rather
than obtaining numerical solutions, as in [2,6], and rather than investigating existence and
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uniqueness of solutions, as in [26], we shall aim at finding relations between the different
mathematical and physical parameters.

In Section 2, we introduce the problem, and determine how to deal with the result-
ing singularities in order to establish a reliable and efficient computational setting. This
computational setting makes it possible to use computer integrators (computational meth-
ods) to obtain numerical measurements of the parameters. We derive our main results in
Sections 3 and 4, where we employ classical mathematical analyses (and arguments). In
Section 3, we derive a mathematical relationship between the cut-off values of the parameter
m (where solutions do not exist past that point) and the power-law index n. This constitutes
a very important and novel result, as, to the best of our knowledge, this has not been done
before in any variant of the boundary-layer non-Newtonian fluid flow problem. One can
only find numerical measurements of those parameters. In fact, the graphical relationships
presented in [6] were based solely on numerical measurements of the parameters that were
accomplished by computing machines. This would tell us what velocity profiles at infinity
(of the form u(x, ∞) = xm) are not possible to obtain, no matter what the wall shear ( f ′′(0))
is. This is a natural result since it may not be physically possible for a profile with largely
negative m to exist (in a domain reaching x = 0).

It turns out that the parameter m is crucial in the approximation and determination of
the relationship between shear stress f ′′(0) and m, as shall be illustrated in Section 4. The
corresponding derived approximate relationship involves the power-law index n, so that
it provides means to estimate f ′′(0) for all values of n. The derived formulas constitute
important new findings for several reasons. Firstly, we find out phenomena/methods to
improve the accuracy of these formulas, yielding highly accurate estimates. Secondly, it
is very likely that similar formulas will be obtained in other non-Newtonian fluid flow
applications. Thirdly, the mathematical formulas may be used in future research, at the
analytical level, to draw conclusions about the solutions, or reveal more properties of the
parameters themselves.

2. Formulation

Boundary-layer flow of non-Newtonian fluids is classically modeled by the Cauchy
equations, which constitute a coupled system of PDEs. Upon simplification, the ‘scaled’
Cauchy equations are obtained as follows:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ n

∣∣∣∣∂2u
∂y2

∣∣∣∣(n−1)(
∂2u
∂y2

)
(2)

The reader is referred to [4,6] and the references therein for details of the derivation
process as we aim to be brief and concise. The variables x and y represent the (scaled)
spatial variables, while u and v represent the corresponding scaled orthogonal velocities of
the moving fluid, in the x and y directions, respectively. A stream-wise velocity outside the
boundary layer is assumed, where it is represented by ue(x) as in Equation (2). We shall
assume ue(x) = xm as was used in [6]. (We remark that in [10], the condition at infinity
was given as u = ym, see (3) below; however, the governing system of equations did not
have the term involving ue. Simpler boundary conditions at infinity are also found in the
literature, cf. [1,25].) The boundary conditions of interest to us are (as in [2,6]):

u = v = 0 on y = 0, u→ ue(x) as y→ ∞ (3)

We remark that different sets of boundary conditions, in addition to the one above,
are found in the literature. The Equations (1) and (2) admit self-similar solutions via the
transformation:

u = xm f ′(η), v = αxs+m−1(sη f ′(η)− (s + m) f (η)
)

(4)
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where s = (1 + m(n− 2))/(n + 1), α = n1/(n+1), and where η = y/(αxs) is a similarity
variable. This reduces the system (1) and (2) into the following ODE:

1
n
(| f ′′|n−1 f ′′)′ = m(( f ′)2 − 1)− 2mn−m + 1

n + 1
f f ′′ (5)

Remark 1. The function f may be referred to as the shape function or the auto-similarity function.

The boundary conditions (3) are transformed into:

f (0) = f ′(0) = 0, f ′(∞) = 1 (6)

We shall assume positive curvature solutions where f ′′ > 0 on the entire solution
domain. This is very typical in the literature and applications, c.f. [10,12,25]. Thus, we have
the following boundary value problem:

( f ′′)n−1 f ′′′ = m(( f ′)2 − 1)− k f f ′′ (7)

subject to
f (0) = 0, f ′(0) = 0, f ′(∞) = 1, (8)

where k = 2mn−m+1
n+1 .

Numerical solutions of this particular problem (7) and (8) can be found in [6]. Analyt-
ical investigation of this problem was conducted in [26], where the focus was mostly on
existence and uniqueness in addition to the asymptotic behavior of solutions.

2.1. “Crocco Variables” and the Resulting Singularities

We introduce the following set of variables:

z = f ′(η), h(z) = ( f ′′(η))n. (9)

These are similar to the classical Crocco variables which are given with new variables
defined by f (η) and f ′(η). The following transformed problem is obtained from (7)–(9)

h′′(z) =
(

αz−m(z2 − 1)
h′(z)
h(z)

)
h−1/n(z), 0 < z < 1, (10)

subject to
h(1) = 0, h(0) = ( f ′′(0))n, h′(0) = −mn/ f ′′(0), (11)

and where

α = 2mn− nk =
(3m− 1)n

n + 1
. (12)

This transformation proves to be useful in the mathematical analysis of the original
problem (7) and (8) and its parameters. It also provides an alternative means to obtain
numerical results. This is in contrast to the technique that was used in [6], where the authors
discuss the need for some careful treatments in determining the correct convergence for the
boundary condition on the open end (+∞) for n < 1, whereas careful treatment was also
needed when n > 1, as the solutions reach f ′′ = 0 identically at finite η (this observation
was also proved at the analytical level for a similar problem in [12]). The advantage of
using (10) and (11) in obtaining numerical solutions is that we deal with a finite domain
and do not have to consider where or when to “stop”. However, there is a problem that
arises here and has to be addressed. The problem is dealing with the singularities of the
equation. It is remarked that the singularity at the right end can be dealt with easily, since,
as was illustrated in [26], solutions approach the point (1,0) linearly for n > 1. On the other
hand, the solutions are integrable at z = 1 for 0 < n < 1, despite the fact that gradients
become infinite. In particular, the criterion for determining the values of m remains very
simple as Runge–Kutta methods (used by Matlab) are effective at that end.
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On the other hand, however, dealing with the singularity at z = 0 could lead to a seri-
ous problem on regular computing machines. This becomes more obvious when attempting
to solve the ODE for f ′′(0) = 0, which is not mathematically possible in (11) above.

Remark 2. Solving the ODE for f ′′(0) = 0 is crucial for us, as it corresponds to the cut-off values
of m, as was observed in [6,26], and as is discussed in the introduction. The cut-off values of m are
of much and particular interest in this fluid flow problem. We note that this is also a singularity of
the original ODE (7).

To circumvent this problem, it is necessary to take values of f ′′(0) approaching (very
close to) zero but the question arises of how small the values can be. Computing machines
could then give erroneous and contradictory results when solving ODE (10) and seeking to
determine the relevant parameter values that are of interest. These are typical and expected
machine errors as smaller values of f ′′(0) lead to extremely large derivatives, but also, and
more importantly, they lead to extremely small values of h(0), causing a problem that may
be more serious for larger values of n (this may not occur due to the numerical method
itself but rather due to a problem of the computing machines themselves). This problem,
however, can be overcome as follows: Integrating Equation (10) from 0 to z > 0 leads to

h′(z) = −mn(1− z2)h−1/n +
∫ z

0
(α− 2mn)µh−1/n(µ)dµ (13)

Observe that h′(0) = −mn/ f ′′(0) so that the initial conditions on both sides of the
equation cancel out. Now, let ε(z) =

∫ z
0 (α− 2mn)µh−1/n(µ)dµ represent the error in the

computation of h′(z) in (13) above. We then have

h′(z) = −mn(1− z2)h−1/n + ε(z) (14)

Consider the case where α− 2mn < 0 and let −δ > 0 be the maximum of the absolute
error (−ε(µ)) within the interval, which in this case happens to be at the right end, i.e.,
δ = ε(z). It then follows that(

−(mn− δ)z− mnz3

3

) n
n+1

< h(z) <
(
−mnz− mnz3

3

) n
n+1

(15)

Hence the error can be controlled. For example, an upper bound for the error due
to the z3 term can be determined by utilizing a classical Taylor-series approximation, and
where the overall error obtained in h′(z) is bounded by:

|ε(z)| < (α− 2mn)(δ−mn)−1/(n+1)
∫ z

0
µn/(n+1)dµ

− mn
3(n + 1)

(α− 2mn)(δ−mn)−
n−2
n+1

∫ z

0
µ(3n+2)/(n+1)dµ

≤ (α− 2mn)(δ−mn)−1/(n+1) (n + 1)
(2n + 1)

z(2n+1)/(n+1)

− mn
3(n + 1)

(α− 2mn)(δ−mn)−
n−2
n+1

(n + 1)
(4n + 3)

z(4n+3)/(n+1).

This is now required to be less than the desired error δ, which will give a value of z
that can represent the starting point (away from the singularity) to solve the ODE with
initial conditions h(z), h′(z). It should be noted that when z is small enough the second
term may be neglected. In all cases, however, the following can be used to find an initial
estimate for z: (

(α− 2mn)(δ−mn)−
1

(n+1) · n + 1
2n + 1

)
z(2n+1)/(n+1) = δ (16)
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Once z has been determined, the values of h′(z) and h(z) as well as the errors in
measuring them, can be determined using (14) and (15) above. Note that both compu-
tations/approximations are overestimates. It should also be noted that the error in h(z)
remains much smaller than that in h′(z), as can be seen by the equations above (and since h
is an integration of h′ taken here over a small interval).

3. Cut-Off Values for m

As discussed in the introduction, there is a cut-off value of m, say m0, where solutions
only exist for m ≥ m0, and do not exist for m < m0. Determining the cut-off values m0
analytically is a very interesting and important new result, which we shall obtain; the
cut-off values m0 can be determined analytically. This was performed numerically in [6] for
certain values of n over a limited range. We shall obtain numerical computations for m0
over a wide range of n, and also derive a mathematical formula that provides the values of
m0 (in terms of n) with relatively high accuracy.

It is remarked here that the graphs in [6] may suggest that for n > 1 there may be a
minimum value of |m0| for all n, with some focal point at some m > m0 where all graphs
intersect. In fact, this can be shown to be false by contradiction. Suppose it were true,
then there would be some m0 = M < 0 where solutions exist for all n, but then, from (15),
we would have h as an increasing function on (0,1) for large n. This, in turn, implies that
a solution where h(1) = 0 could not exist, constituting a contradiction. This shows that
m0 → 0 as n→ ∞. In fact, assuming m0 < − κ

np (κ > 0) for large n leads to a contradiction,
similar to the one above, whenever p < 1.

On the other hand, assume m0 < − κ
n . This would imply that the solution gradient

is h′(z0) ≈ κ at some very small z0 > 0. At the same time, we would have h(z0) ≈ 0. In
fact, at the point where z =

√
−m, the two terms in the governing Equation (10) become

comparable and almost equal for m very close to zero. Therefore, if we take z0 proportional
to
√
−m, or say z0 = (−m)p for some p > 1/2 but close to 1/2, then the second term in

(10) becomes negligible with m very close to zero and large n. We can then use the estimate
h′(z) ≈ κ + αz2/2 on (z0, 1) leading to h(1) ≈ κ + α/6. In particular, if κ > 1/6 then it
must be that h(1) > 0, so that h(1) = 0 could not be satisfied and a solution would not
exist. (A mathematically precise classical ε-δ argument can be made here, but we choose to
omit it and focus on what is more relevant to us from the practical viewpoint). We have
shown that

Proposition 1. A solution to (7) and (8) does not exist whenever

m < m0 = − 1
6n + c

(17)

where c = c(n) is of an order less than one in n.

Remark 3. The result that we have established here for the value of m0 (for large n), as in (17),
exhibits a significant improvement from what has been observed in [26] where it was shown that a
solution does not exist for m < − 1

2n+1 .

In fact, it was found numerically that c could be approximated to a constant where the
cut-off value of m would be given as m0 ≈ − 1

6n+c . Table 1 shows some numerical values of
m0 and the corresponding values of c for different values of n, spanning over a relatively
wide range. Observe that the sequence of values of c in the table suggests a convergence to
occur, for large n, to a value around 4.33 (or some value likely greater than 4, or possibly
greater than 4.3).

This is a very useful result at the practical level. At the same time, it is a very peculiar
mathematical observation that requires further analytical study at the mathematical level.
From a practical point of view, if one uses (17) with c = 4.35 as an approximation for m0
over the wide range 50 < n < 500, then the relative error in the corresponding estimates of
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m0 would be less than 0.002%, providing accuracy up to the fifth non-zero decimal place
(or better) in most readings. Similarly, a suitable value of c can be chosen to provide the
desired accuracy for different ranges of n. The span of those ranges, however, may have to
be relatively small for smaller values of n (and if the required accuracy is relatively high).

Table 1. Smallest value of m where a solution for (7) and (8) exists .

n 5 15 30 50

m0 −0.0289496 −0.010591 −0.0054235 −0.0032856

c 4.55 4.42 4.38 4.36

n 100 150 200 500

m0 −0.00165466 −0.00110577 −0.000830331 −0.000332853

c 4.35 4.35 4.34 4.33

4. Estimating Shear Stress Versus m

We seek to derive an analytical (mathematical) relationship between f ′′(0) and m. To
that end, recall the approximations in (14) and (15) around z = 0. In particular, observe
that, if h(0) = ( f ′′(0))n 6= 0, we then have

h(z) ≈ ((h(0))
n+1

n −mnz)
n

n+1 = (( f ′′(0))(n+1) −mnz)
n

n+1 . (18)

Now, to determine a relationship between m and f ′′(0) close to the point (m0, 0),
consider the rate of change of f ′′(0) with respect to m at m = m0 (note that f ′′(0) = 0
at this cut-off value of m). We must consider a small change in m, say ∆m. To this end,
fix some z close to 0; we seek that h(z) (at that point) does not change as m changes, for
the following explanation. First, note that this shall require that ∆m be proportional to
( f ′′(0))n+1. Observe that this will then imply that the corresponding changes in h(z) and
h′(z) are, mathematically, of orders higher than 1 in ∆m. It is not difficult to see that,
past this point, the change (variation) in h over the solution interval (z, 1) should remain
within orders higher than 1 in ∆m (see Equation (10)). Thus, the overall change in h over
the interval (z, 1) will be of higher orders of ∆m. Consequently, we must have h(1) = 0
satisfying the boundary condition at the right end. We point out that the mathematical
details can be worked out with the techniques of the calculus of variations. However the
details are of an abstract mathematical nature, and would not be of direct relevance to our
main conclusions and results, so we choose to omit them.

The above discussion and mathematical arguments provide the approximate relation-
ship for f ′′(0) versus m (for m close to m0) up to orders of ∆m greater than 1:

f ′′(0) ≈ β(m−m0)
γ, γ ≈ 1

n + 1
(19)

Remark 4. Observe that the above approximation provides an exact relationship for infinitesimal
changes in the parameters. Additionally, note that h′ remains finite for z close to z = 1 for n > 1,
while it remains integrable around z = 1 for n < 1, as discussed earlier (see [26]). This shows that
the provided approximation is anticipated to be better for larger values of n (but should stay valid
for all n).

4.1. Comparison with Computed Values

We compare the shear stress ( f ′′(0)) estimates obtained via the derived approxima-
tion (19) with computed values obtained via computing machines (Matlab). Each of the
following tables include two “sample points” that are used to determine the values of β
and γ in (19) above. Tables 2 and 3 are for dilatant fluids (n > 1), while Tables 4 and 5 are
for pseudo-plastic fluids (n < 1).
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Table 2. Computed and estimated values for shear stress versus m for n = 5. The points where
f ′′(0) = 0.2 and f ′′(0) = 0.25 are taken as sample points in determining the approximation.

m −0.0289356 −0.0288963 −0.0287912 −0.0280749 −0.0256965

f ′′(0) 0.2 0.25 0.3 0.4 0.5

f ′′(0) (est.) − − 0.300 0.399 0.497

relative error − − 0.06% 0.25% 0.6%

Table 3. Computed and estimated values for shear stress versus m for n = 1.5. The points where
f ′′(0) = 0.1 and f ′′(0) = 0.15 are taken as sample points in determining the approximation.

m −0.069598 −0.065791 −0.059837 −0.051543 −0.040742

f ′′(0) 0.1 0.15 0.2 0.25 0.3

f ′′(0) (est.) − − 0.1985 0.2461 0.2931

relative error (est.) − − 0.75% 1.56% 2.3%

f ′′(0) (improved) − − 0.20004 0.24998 0.29981

relative error (impr.) − − 0.02% 0.008% 0.063%

m −0.027251 −0.010885 0 0.02 0.04

f ′′(0) 0.35 0.4 0.429002 0.476168 0.51756

f ′′(0) (est.) 0.33969 0.38607 0.41333 0.45661 0.49496

relative error (est.) 2.95% 3.48% 3.65% 4.11% 4.37%

f ′′(0) (improved) 0.34969 0.39972 0.42883 0.47639 0.51834

relative error (impr.) 0.086% 0.075% 0.04% 0.047% 0.15%

Table 4. Computed and estimated values for shear stress versus m for n = 0.8. The points where
m = −0.09 and m = −0.085 are taken as sample points in determining the approximation.

m −0.09 −0.085 −0.08 −0.075 0

f ′′(0) 0.070869 0.090022 0.10699 0.12219 0.28582

f ′′(0) (est.) - - 0.10647 0.12119 0.26861

relative error (est.) - - 0.49% 0.82% 6.0%

f ′′(0) (improved) - - 0.106954 0.12239 0.28638

relative error (impr.) - - 0.034% 0.164% 0.196%

Table 5. Computed and estimated values for shear stress versus “large” values of m for n = 0.8. The
points where m = 1.8 and m = 1.9 are taken as sample points in determining the approximation.

m 1.5 1.8 1.9 2 2.1 2.2

f ′′(0) 1.4550 1.6033 1.6503 1.6963 1.7413 1.78541

f ′′(0) (est.) 1.4554 - - 1.6963 1.7413 1.78547

relative error 0.027% - - 0.0008% 0.0017% 0.0034%

Table 2 illustrates the relatively accurate relationship (19) in estimating the values of
shear stress versus m for n = 5, and where the first two points are used as the “sample
points” to determine β and γ.
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Remark 5. We note the existence of an interesting and very useful feature here: if the formula
is adjusted/determined using two “sample points” far from the vertex to yield a new β and γ,
then its accuracy can be highly improved in that neighbourhood. For example, it is found out that
f ′′(0) = 0.726 for m = 0, but the estimated value from the formula is f ′′(0) = 0.715. However,
when using the points where f ′′(0) = 0.4 and f ′′(0) = 0.5 as sample points, then the adjusted
formula yields an estimate of f ′′(0) = 0.7249. This shows a highly significant improvement in
accuracy by ten-fold.

As for Table 3 where n = 1.5, note that we have m0 = −0.0718478. The estimated
values for f ′′(0) using (19) are shown in the table, where β and γ are determined using the
two points where f ′′(0) = 0.1 and f ′′(0) = 0.15 as sample points. Once again, a relatively
good accuracy is illustrated using the root formula (19).

Additionally, note that, as before, if we choose different sample points, then higher
accuracy is obtained within their corresponding neighbourhood. In particular, when using
the points where m = 0 and m = 0.02 to obtain the root formula, we find that the estimate
for the shear stress f ′′(0) at the point where f ′′(0) = 0.4 (to the left) is 0.4001, while the
estimate for f ′′(0) at m = 0.04 (on the right) is 0.51772. Taking a “farther” point, such
as the one where m = 0.2 (not shown in Table 3), we have f ′′(0) = 0.75028 while the
estimated value is 0.75496. However, taking the points where m = 0.16 and m = 0.18 (not
shown in the table), as sample points to determine the corresponding root formula, one
obtains an estimated value of f ′′(0) = 0.75032 at m = 0.2. This shows a highly significant
improvement (for a relatively large spacing of 0.02 in m).

Table 4 shows the comparison between the computed and estimated values of shear
stress where n = 0.8, for points close to the vertex of the root at m0 = −0.09956. Table 5,
however, shows the comparison for n = 0.8 for points that are farther away from the
vertex. Observe that the sample points are changed. Note also that even though the spacing
is larger, the approximation is (naturally) better since the points are farther away from
the vertex.

Remark 6. Observe that the computed values for γ up to four decimal places are γ = 0.1669 ≈ 1/6
for n = 5, γ = 0.4094 ≈ 1/2.5 for n = 1.5, and γ = 0.5686 ≈ 1/1.8 for n = 0.8. This is
consistent with the above approximation (19) where γ ≈ 1

n+1 . The deviation is explained by the fact
that the sample points for the measurement are not within infinitesimal distances from m0. Note
also that these approximations are better for larger values of n.

4.2. Improving the Approximation

A rather interesting phenomenon has been observed. If the ”vertex” of the root graph/
formula (19) is shifted using a different value for m0, then highly improved estimates are
obtained for f ′′(0). For example, if we shift the “vertex” for n = 1.5, so that we assume
m0 = −0.072019 (instead of −0.0718478), then highly improved estimates for f ′′(0) are
obtained. This is illustrated in Table 3 and Figure 1. We remark that the sample points
remain unchanged. Similarly, for n = 0.8, the vertex can be shifted to obtain a highly
improved approximation. Table 4 shows the highly improved estimates that are obtained
when using m0 = −0.10066 for the vertex (instead of m0 = −0.09956). This is also
illustrated in Figure 2.

This is a very peculiar and extremely useful phenomenon, as it drastically improves
the accuracy. It would be interesting and very beneficial to study this phenomenon more
thoroughly at the mathematical level in future research in the field. Even though the current
“ad hoc” trial-and-error approach in determining the new vertex is not tedious, especially
given the highly improved results, it would be very worthwhile to explore the possibility
of a mathematical formula that could determine the vertex shift in a more exact fashion.
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Figure 1. Computed values of shear stress f ′′(0) at some values of m for a dilatant fluid (n = 1.5): “*”.
Estimated values using (19): Purple. Improved values by adjusting m0 in (19): Green. (See Table 3).
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Figure 2. Computed values of shear stress f ′′(0) at some values of m for a pseudo-plastic fluid
(n = 0.8): “*”. Estimated values using (19): Purple. Improved values by adjusting m0 in (19): Green.
(See Table 4).

5. Conclusions

We have considered the boundary-layer flow of non-Newtonian fluids that are mod-
eled by an Ostwald-de Waele power-law rheology. A “Crocco variable” transformation
was applied where the resulting singularities were dealt with numerically, so as to establish
an efficient means to obtain accurate solutions and compute the relevant parameters. This
also helped to efficiently avoid computing machine errors at/around the singularities.
Mathematical techniques and analyses were applied to establish highly accurate explicit
relationships between the physical and mathematical parameters. In particular, a math-
ematical relationship was explicitly determined between the power-law index n and the
cut-off values of m where solutions cease to exist. A relationship between the shear stress
f ′′(0) and m was also derived.

The numerical computations provided insight into the peculiar details and “properties”
of the derived relations. In particular, it was found that modifications and adjustments
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of those relationships could lead to a highly improved accuracy. This improved accuracy
was observed both locally when working in a certain range of the parameters, as well as
for wider ranges. The improvements were very significant and therefore warrant further
study, exploration, and research, both at mathematical and practical levels. The obtained
results were also significant from the viewpoint that previous studies, such as [6], showed
the interdependence of the parameters only at a numerical graphical level, and only for
limited ranges of the parameters. It should also be noted that our results hold for both
dilatant (n > 1), as well as, pseudo-plastic fluids (n < 1).
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