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Oscillations of retaining wall 
subject to Grob’s swelling pressure
Maksim Kozlov1, Aizhan Tulendinova2, Jong Kim3, Grant Ellis4 & Piotr Skrzypacz2*

The single-degree-of-freedom nonlinear problem describing the essential dynamics of an oscillating 
retaining wall based on non-quaking ground and subject to Grob’s swelling pressure is considered. 
The periodic solutions are derived using harmonic approximation. The amplitude-frequency relation 
is established by employing Lambert’s special function or alternatively using linearization of the 
nonlinear force. Analytical results are verified using numerical simulations.

List of symbols

Alphabets
A	� Dimensionless maximum deflection (–)
Ab	� sH Area of cross section of wall (m2)
B	� ln(10)cd  (1/m)
c	� 0.03 Empirically found swelling parameter (–)
d	� Thickness of clay layer (m)
E	� Modulus of elasticity of wall material (Pa)
H	� Depth of wall (m)
I	� sH

3

12  Moment of inertia of wall (m4)
L	� Height of wall (m)
s	� Width of wall (m)
X	� Dimensionless deflection of wall (–)

Greek symbols
µ1	� 1.8751040687 First positive root of the transcendental equation 1+ cosh(µ)cos(µ) = 0 (–)
ρ	� Density of wall material (kg/m3)
σ0	� Maximum swelling pressure (Pa)
ω	� Dimensionless angular frequency (–)

Retaining walls and foundations in construction are often subject to the swelling pressure caused by expansive 
soils such as clay or soft rock. This pressure can result in significant vibrations of structures and hence lead to 
damage and economical loss. Predicting the effect of swelling pressure on structures is therefore an important 
problem in mechanical and civil engineering, see1–4. Vibration analysis of retaining walls is useful in many build-
ing and construction applications. These include building vibrations induced by high-speed trains moving on 
bridges5, seismic analysis in and around earthquake zones6, and vibrations incurred in construction sites7,8. This 
analysis is critical for retaining wall structures around power plants especially nuclear. The Fukushima nuclear 
disaster in 2011 was a result of the Tōhoku earthquake and tsunami.

Vibrations of retaining walls caused by dynamic (seismic) loading were investigated analytically using linear 
approximation9. Experimental and numerical results for concrete retaining walls under low-frequency dynamic 
loading were reported in10. In this work, we present an analysis of the lumped mass model for retaining walls 
subject to the swelling pressure that obeys Grob’s semi-logarithmic law for the volumetric stress1. The periodic 
solutions are derived using harmonic approximation. The amplitude-frequency relation is established by employ-
ing Lambert’s special function or using linearization of the nonlinear force term. Analytical results are verified by 
numerical simulations. The approximations that we derive can be used to evaluate the frequency and amplitude 
of oscillations without time-consuming finite element calculations.
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This paper is organized as follows. The mathematical model for retaining walls subject to the swelling pres-
sure, the one-mode Galerkin approximation, and analytical results for the nonlinear conservative oscillator are 
presented in “Mathematical model for retaining wall subject to swelling pressure”. In “Linear approximation”, we 
study the linear model, and in “Harmonic approximations for nonlinear oscillator”, we apply harmonic ansatz to 
the nonlinear lumped mass model and derive closed-form formulas for the approximate frequency and amplitude 
of oscillations of the retaining wall. In “Comparison of approximation methods”, the effects of parameters on 
amplitude and frequency of oscillations are studied and various approximation methods are verified against a 
numerical solution. Finally, conclusions are drawn in “Conclusions”.

Mathematical model for retaining wall subject to swelling pressure

Cantilever beam subject to Grob’s swelling pressure.  Swelled soil exerts pressure (stress) on the 
retaining wall. This pressure reaches its maximum at the original undeformed position of the wall which cor-
responds to the maximum of soil compression. Deflection of the wall from its original position results in expan-
sion of soil and therefore a reduction of pressure that should asymptotically approach zero with any further 
increase of wall deflection (decrease of soil compression). A simple model satisfying this property that was 
confirmed by a series of experiments, including the combined swell-swell heave, the multi-stepped, and Hunder-
Amberg swell tests11,12, is the exponential decay

where u denotes the deflection of the retaining wall from its axial position, σs  is the present axial stress and σ0 
is the maximal stress for which swelling occurs (equilibrium stress with respect to swelling). The decay rate is 
given by

where d is the thickness of swelled soil layer (compression is equal to u/d) and c is the experimentally fitted 
swelling parameter (see Fig. 1). Transverse deformations are not allowed in the abovementioned swelling tests. 
Eq. (1) is better known in the literature as Grob’s swelling law describing the logarithmic dependence of defor-
mation on pressure1

This equation is well accepted in civil engineering areas and many applications can be found in the 
literature2,3,13,14.

Next, a small horizontal deflection of the retaining wall of length s can be described by the Euler–Bernoulli 
elastic beam equation subject to initial/boundary conditions

(1)σs = σ0e
−Bu,

(2)B =
ln(10)

cd
,

u

d
= −c · log10

(

σs

σ0

)

.

Figure 1.   Retaining wall based on the non-quaking ground.
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where  x ∈ [0, L] is the axial position and L is the height of the retaining wall, E and  ρ are the modulus of elastic-
ity and the density of the wall material, respectively. Ab = sH is the area of constant cross-section of rectangular 
cantilever and its moment of inertia is given by I = sH3

12 .
Notice that the boundary conditions correspond to the case of the cantilever beam whose base is clamped 

or fixed whereas the top end is free. The first equation in (Eq. 3) corresponds to the second Newton’s law of 
motion. The retaining wall vibrates due to its restoring elastic force and the force resulting from the swelling 
and contracting clay.

Let us introduce the dimensionless variables

and define

where uc is some predefined characteristic deflection. Then, Eq. (3) can be written as

where the tilde notation is omitted for brevity.

Mass lumped model.  Let us assume that the initial/boundary value problem given by Eq. (6) has solution 
of the form

where Yj(x) are eigenmodes of the differential operator d
4

dx4
 subject to the boundary conditions listed. To study the 

essential dynamics of the wall subject to the swelling pressure, we employ a single-mode Galerkin approximation

where Y(x) represents the first eigenmode of the cantilever beam whose base end is clamped, whereas the top 
end is free. Neglecting the higher frequency modes can yield simple yet accurate approximate solutions to many 
engineering problems15.

The scaled first eigenfunction (eigenmode) of the beam differential operator  d
4

dx4
 subject to the boundary 

conditions

is given by

where

denote Krylov’s eigenfunction for the fourth order differential operator d
4

dx4
 subject to the boundary conditions 

for the cantilever beam4,16. The spectral parameter
µ1 = 1.8751040687... is the first positive root of the transcendental equation

The scaled eigenfunction Y(x) in Eq. (8) has the following properties4

(3)







ρAbutt + EIuxxxx = sσ0e
−Bu, x ∈ (0, L), t ∈ (0, tend),

u(t, 0) = ux(t, 0) = uxx(t, L) = uxxx(t, L) = 0, t ∈ [0, tend],
u(0, x) = u0(x), ut(0, x) = 0, x ∈ (0, L),

(4)x̃ =
x

L
, ũ =

u

|uc|
, ˜t =

√

sσ0

|uc|ρAb

t,

(5)α =
|uc|EI
L4sσ0

and β = B|uc|,

(6)







utt + αuxxxx = e
−βu, x ∈ (0, 1), t ∈ (0, tend),

u(t, 0) = ux(t, 0) = uxx(t, 1) = uxxx(t, 1) = 0, t ∈ [0, tend],
u(0, x) = u0(x), ut(0, x) = 0, x ∈ (0, 1),

u(t, x) =
∞
∑

j=1

Xj(t)Yj(x),

(7)u(t, x) ≈ X(t) · Y(x),

Y(0) = Yx(0) = Yxx(1) = Yxxx(1) = 0

(8)Y(x) =
1

2

(

Y3(x,µ1)−
Y1(1,µ1)

Y2(1,µ1)
· Y4(x,µ1)

)

,

Y1(x,µ1) = cosh(µ1x)+ cos(µ1x), Y2(x,µ1) = sinh(µ1x)+ sin(µ1x),

(9)Y3(x,µ1) = cosh(µ1x)− cos(µ1x), Y4(x,µ1) = sinh(µ1x)− sin(µ1x),

(10)1+ cosh(µ) · cos(µ) = 0.

(11)Y(1) = 1,

(12)
∫ 1

0
Y2(x)dx =

1

4
,
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and

The corresponding Galerkin equation for the retaining wall model based on the non-quaking ground becomes

Applying the trapezoidal rule to the integral on the right-hand side of Eq. (15) and using Eqs.(11)– (14) yields

Substituting

leads to the conservative single-degree-of-freedom oscillator equation in the dimensionless form

where the tilde notation was dropped again for the sake of brevity, and dimensionless parameter p is defined as

In this work, the non-linear oscillator equation (17) subject to zero-initial conditions is assumed

Equations (17) and (19) constitute a zero-initial value problem for a conservative nonlinear oscillator. We 
expect a bounded periodic solution whose amplitude is a monotonically increasing function of the swelling 
parameter p. For higher values of p, the dynamics can be affected by the presence of higher-order harmonics.

Multiplying Eq. (17) by Ẋ(t) and integrating with respect to time, we get the conservation of energy

where C = p due to the initial conditions (Eq. 19). Thus,

We now show that all solutions to the initial value problem (17) and (19) are periodic.

Theorem 1  The initial value problem (17) with initial conditions (19) has a periodic non-negative solution for any 
positive lumped mass model parameters p.

Proof  We establish the proof using simple phase plane analysis, cf.,4,17–19. The solution X(t) is periodic if and only 
if the phase diagram produces a closed curve. This holds true if the continuous function

has two real roots s1,2 , and g(s) > 0 for all s between s1 and s2 . Note that g(0) = 0 , and g(s) has only one local 
maximum due to the fact that g ′

(s) = 2pe−s − 2s = 0 has only one real root s∗ due to Rolle’s theorem, and that 
g ′′(s∗) = −2pe−s∗ − 2 < 0 holds true for the positive lumped mass model parameter p, i.e., g(s) is a concave 
function on the whole real line. Hence, the existence of the second root follows from the Intermediate Value 
Theorem. Now, if we set s∗ = Xeq , the following condition is satisfied pe−Xeq = Xeq whence it follows that the 
solution to the lumped mass model is a constant X(t) = Xeq representing the stable steady state of Eq. (17). To 
show that the periodic solution X(t) is non-negative, we rewrite Eq. (21) as follows

Since the left-hand side of Eq. (23) is non-negative, it must hold true that X(t) ≥ 0. � ∎

Integrating Eq. (23), we obtain for 0 ≤ t ≤ T/2 the exact solution in the implicit form

(13)
∫ 1

0
(Y

′ ′
(x))2dx = µ4

1

∫ 1

0
Y2(x)dx,

(14)Y(x) > 0 for 0 < x ≤ 1.

(15)Ẍ(t)

∫ 1

0
Y2(x)dx + αX(t)

∫ 1

0
(Y

′ ′
(x))2dx =

∫ 1

0
Y(x)e−βX(t)Y(x)dx.

(16)Ẍ(t)+ αµ4
1X(t) = 2e−βX(t).

˜X
(

˜t
)

= βX
(

˜t
)

≈
ln(10)

cd
u
(

˜t, L
)

and ˜t =
√
αµ2

1t = µ2
1

√

EI

ρAbL
4
t

(17)Ẍ(t)+ X(t) = pe−X(t),

(18)p =
2β

µ4
1α

=
2L4sσ0B

µ4
1EI

.

(19)X(0) = 0, Ẋ(0) = 0.

(20)
1

2

(

Ẋ(t)
)2 +

1

2
X2(t)+ pe−X(t) = C

(21)Ẋ(t)
2 = 2p− X2(t)− 2pe−X(t).

(22)g(s) = 2p− s2 − 2pe−s

(23)Ẋ(t)
2 + X2(t) = 2p− 2pe−X(t).
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It follows from Eq. (23) that X2(t) ≤ 2p
(

1− e−X(t)
)

 and consequently

Therefore, the maximum deflection A satisfies

Notice that the exact value of the maximum deflection is represented by the root of the transcendental 
equation

The Taylor expansion for A = A
(

p
)

 is obtained using successive implicit differentiation with respect to p:

It follows from Eq. (27) that

and

Consequently, the maximum deflection A increases with increasing parameter p.

Remark  Equation (27) can be rewritten as

The exact solution of the above transcendental equation can be expressed in terms of the generalized Lambert 
W function W(t1, t2; z)20 as follows

This special function is introduced in20 as inverse to the mapping z  → (z − t1)(z − t2)e
z . Figure 2 pre-

sents the graph of the function W
(

−
√
2p,

√
2p; z

)

 for different values of parameter p, evaluated by solving 
eW

(

W +
√
2p
)(

W −
√
2p
)

= z numerically for W.

(24)
∫ X(t)

0

ds
√

2p− s2 − 2pe−s
= t.

(25)X(t) ≤
√

2p
(

1− e−
√
2p
)1/2

.

(26)A ≤
√

2p
(

1− e−
√
2p
)1/2

≤
√

2p.

(27)A2 = 2p− 2pe−A

(28)A = 2p− 4p2 + 20p3 − 160p4 + ....

(29)p =
A2

2
(

1− e−A
)

dA

dp
=

1

dp/dA
=

4
(

1− e−A
)2

4A− e−A
(

4A+ 2A2
) ≥ 0.

eA
(

A+
√

2p
)(

A−
√

2p
)

= −2p.

A = W
(

−
√

2p,
√

2p;−2p
)

.

Figure 2.   The generalized Lambert W function W
(

−
√
2p,

√
2p; z

)

 for parameters p = 1, …, 5. The 
corresponding solutions W

(

−
√
2p,

√
2p;−2p

)

 are indicated by asterisks.
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The solution of Eq. (27) is given by the value of W
(

−
√
2p,

√
2p; z

)

 at z = −2p . The corresponding solutions 
for various values of parameters p are indicated by asterisks. Again, the maximum deflection A increases with 
the increasing value of p. � □

In the following theorem we estimate the period of oscillation.

Theorem 2  The solution to the initial value problem (17) with initial conditions  (19) has a period

where A is the maximum deflection.

Proof  By Eqs. (24) and (29), the period of the oscillation is given by

The last integral in Eq. (30) can be approximated as follows

since

for all 0 < t < 1 and A > 0 . Therefore,

due to 
√

1−e−A

A = 1− A
4 +O

(

A2
)

 . � ∎

Remark  Since 1− t2 + e−At2 − e−At > t(1− t)A  for all A > 0 and 0 < t < 1 , one obtains T > 2π

√

1−e−A

A  . 
Computing the exact value of the improper integral in Eq. (31) for A > 0 remains an open problem. □

Linear approximation
Now, consider the linear approximation of Eq. (17)

with the corresponding energy conservation

Substituting Ẋ = 0 into the above equation one finds the amplitude of oscillations

Note that the approximate amplitude by Eq. (36) coincides with its exact value by Eq. (28) up to the first order 
with respect to the parameter p.

Substituting χ =
(

1+ 1/p
)

X − 1 into Eq. (34) one obtains the equation of harmonic oscillator

where the angular frequency is given by

Harmonic approximations for nonlinear oscillator
In the following, we construct approximate periodic solutions to the non-linear oscillator equation (17) subject 
to zero-initial conditions in Eq. (19) by substituting the harmonic ansatz

The equilibrium position is found by setting Ẍ = 0 in Eq. (17):

T = 2π

√

1− e−A

A

(

1+O
(

A2
))

= 2π

(

1−
A

4
+O

(

A2
)

)

,

(30)

T = 2

∫ A

0

ds
√

2p− s2 − 2pe−s
= 2

√

1− e−A

∫ A

0

ds√
A− s2 + e−As2 − A2e−s

= 2
√

1− e−A

∫ 1

0

dt√
1− t2 + e−At2 − e−At

.

(31)
∫ 1

0

dt√
1− t2 + e−At2 − e−At

=
π√
A

(

1+O
(

A2
))

(32)
1√

1− t2 + e−At2 − e−At
=

1+O
(

A2
)

√
t(1− t)A

(33)T = 2π

√

1− e−A

A

(

1+O
(

A2
))

= 2π

(

1−
A

4
+O

(

A2
)

)

(34)Ẍ(t)+ X(t) = p(1− X(t)).

(35)
1

2

(

Ẋ
)2 +

1

2
X2 = p

(

X −
X2

2

)

.

(36)A =
2p

1+ p
= 2p− 2p2 + 2p3 − 2p4 + ....

(37)χ̈ + ω2χ = 0,

(38)ω2 = 1+ p.

(39)X(t) ≈
A

2
· (1− cos(ωt)) = Asin2

(ω

2
t
)

.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12224  | https://doi.org/10.1038/s41598-022-15591-y

www.nature.com/scientificreports/

where  W(z) again denotes the Lambert W function20–24 which is defined as the inverse of the mapping z  → zez , 
and  W(z) solves the equation

Notice that the Lambert W function is uniquely defined for z ≥ 0 and increases monotonically. The Taylor 
expansion of the Lambert W function is given by

The maximum deflection A can be found more precisely using the method of successive approximations. Sub-
stituting Ai+1 = Ai +�A into Eq. (27) and neglecting terms that are of second order with respect to �A results in

Solving Eq. (43) with respect to �A we obtain recursive relation

The initial guess

is based on the assumption that the center of the oscillations is close to the equilibrium position (which is a 
reasonable approximation if oscillations are nearly harmonic).

In particular, the maximum deflection after the first correction is given by

Following the standard procedure, we approximate the frequency of oscillations by evaluating the derivative 
of restoring force f (X) = X − pe−X at the equilibrium25:

The above expression for frequency (referred to as the Nayfeh frequency) coincides with frequency of the 
linear oscillator in Eq. (38) up to first order with respect to p while the approximations of the maximum deflec-
tion by Eqs. (46) and (36) are identical up to second order with respect to the parameter p. Also, the expression 
for the frequency given by Eq. (47) is consistent with Eq. (33) for the period of oscillations, e.g.,

for A ≈ 2W
(

p
)

 as shown in Eq. (45).

Comparison of approximation methods
Numerical and approximate values of amplitude and frequency of oscillations vs. parameter p are presented in 
Fig. 3. Figure 3a shows the amplitude A, found by direct numerical solution of Eq. (17) ( Anumer —blue dashed 
line), linear approximation given by Eq. (36) (green dotted line), and by using the successive approximations 
by Eq. (44) ( A0—black dash-dotted line dashed line, A1—purple dash double-dot line and A2—red solid line).

In Table 1 we list relative errors for the different amplitude approximations

for two different values of p.
Figure 3b shows the trend of the frequency ω vs. parameter p, found by direct numerical solution of Eq. (17) 

( ωnum—blue dashed line), linear approximation given by Eq. (38) (green dotted line), and the Nayfeh approxi-
mation given by Eq. (47) (red solid line). In Table 2 we list relative errors for different frequency approximations

for two different values of parameter p.

(40)Xc = W
(

p
)

,

(41)W(z)eW(z) = z.

(42)W(z) = z − z2 +
3

2
z3 −

8

3
z4 +

125

24
z5 + O(z6).

(43)A2
i + 2�AAi = 2p

(

1− e−Ai e−�A
)

.

(44)Ai+1 =
Ai

2
+

p

Ai
+W

(

−
exp

(

−p/Ai

)

2

)

.

(45)A0 = 2Xc = 2W
(

p
)

(46)A = W
�

p
�

+
p

2W
�

p
� +W



−
exp

�

− p

2W(p)

�

2



.

(47)ω2 =
df

dX

∣

∣

∣

∣

X=Xc

= 1+W
(

p
)

.

T =
2π

ω
≈

2π
√

1+ A
2

= 2π

(

1−
A

4
+O

(

A2
)

)

ε =
|A− Anum|

Anum

δ =
|ω − ωnum|

ωnum
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Figure 3.   Numerical and approximate analytical values of maximum deflection (a) and frequency (b) vs. 
parameter p. 

Table 1.   Relative error for different approximations of amplitude.

p Linear A0 A1 A2

1.67 ε = 23× 10
−2 ε = 59× 10

−3 ε = 24× 10
−4 ε = 19× 10

−3

25 ε = 72× 10
−2 ε = 33× 10

−2 ε = 83× 10
−3 ε = 94× 10

−5

Table 2.   Relative error for different approximations of angular frequency.

p Linear Nayfeh

1.67 δ = 22× 10
−2 δ = 5× 10

−3

25 δ = 19× 10
−1 δ = 35× 10

−3

Figure 4.   Numerical and approximate analytical solutions for the horizontal displacement of the tip 
of the cantilever wall u(t, L) vs. time t  with (a) L = 2.54 m and (b) L = 5 m, d = 4.572 m, E = 20,700 MPa, 
I = 0.0249739 m, ρ = 2000kg/m3 , s = 0.762 m, h = 0.3404 m, c = 0.03, and σ0=1 MPa.
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In Fig. 4 we present numerical and approximate analytical solutions for the horizontal deflection of the 
tip of the cantilever wall u(t, L) vs. time t with the following set of parameters L = 2.54 m (Fig. 4a) and L = 5 m 
(Fig. 4b), d = 4.572 m, E = 20,700 MPa, I = 0.0249739 m, ρ = 2000kg/m3 , s = 0.762 m, H = 0.3404 m, c = 0.03, 
and σ0=1 MPa. For this set of parameters, the values of the dimensionless parameter p are 1.6663 and 25 for 
L = 2.54 m and L = 5 m, respectively. The numerical solution is represented by the blue dashed line. The red solid 
line corresponds to the harmonic solution given by Eq. (39) with the recursively found maximum deflection A2 
(Eq. 44) and frequency ω found by Nayfeh approximation [Eq. (47)]. The solution to the linear model [Eq. (38) 
for frequency and Eq. (36) for the maximum deflection] is represented by green dotted lines.

Observe that while the approximation of amplitude A2 can be found recursively and remains accurate even 
in the highly nonlinear regime shown in Fig. 4b, the Nayfeh approximation of frequency or period is not very 
precise because higher harmonics significantly affect dynamics in this regime.

Conclusions
This paper presented a simple approach to obtain approximate periodic solutions to the nonlinear oscillator 
describing the retaining wall dynamics subject to swelling pressure. The equation of the nonlinear conservative 
oscillator was established by using the single-mode Galerkin approach. It was shown that the zero initial value 
problem for the mass lumped model has only periodic solutions. Various approximations for frequency and 
amplitude of the periodic oscillations were verified against the numerical solution. In our forthcoming work, 
the relevance of transverse deformations of the retaining wall and its resulting oscillations under the influence 
of seismic vibrations will be investigated.

Data availability
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