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ABSTRACT This paper presents an extensive study and demonstration of efficient electrothermal large-

signal GaN HEMT modeling approaches based on combined techniques of Genetic Algorithm (GA) with 

Artificial Neural Networks (ANN), and Particle Swarm optimization (PSO) with Support Vector Regression 

(SVR). Another promising Gaussian Process Regression (GPR) based large-signal modeling approach is also 

explored and presented. The GA-ANN addresses the typical problem of local minima associated with the 

backpropagation (BP) based ANN. The GA successfully aids in the determination of optimal initial values 

for BP-ANN and enables it to find a unique optimal solution after subsequent of iterations with higher rate of 

convergence. This is also achieved using PSO-SVR with lower optimization variables. The developed 

modeling techniques are demonstrated and used to simulate the gate and drain currents of a 2-mm GaN device. 

All the models are relatively simple, practical, and easy to implement. The gate and drain currents models are 

embedded in an equivalent large-signal circuit’s model and built in Advanced Design System (ADS) 

software. The implemented model is validated by large-signal measurements and very good fitting results 

have been obtained. The model also showed an accurate simulation for a nonlinear power amplifier with very 

good computational speed and convergence.  

INDEX TERMS ANN modeling, GaN HEMT, GPR modeling, large-signal modeling, SVR modeling. 

I. INTRODUCTION 

The power amplifiers employed in broadcasting and 

communication transmitter applications are high power and 

are intrinsically non-linear [1]-[7]. Therefore, in these 

applications, the GaN High Electron Mobility Transistor 

(HEMT) is becoming an optimal device [8]. This is owing to 

its ability to provide high output power at high frequency 

with excellent efficiency to meet the requirements of 

advanced broadcasting and communication systems [9]-[11]. 

The device has also higher gain with very good noise 

characteristics and is therefore a very good candidate for the 

design of low noise amplifiers and integrated GaN based 

transceivers [12]-[13]. Overall, the reliability of power 

amplifiers in wireless and broadcasting transmitters depends 

on the accuracy of the employed GaN HEMT device large-

signal models [14]. The model in essence should consider the 

parasitic effects under high frequency and self-heating under 

high power derive of operation. Another important effect is 

the surface and buffer trapping, which reduce the RF power 

of the transistor amplifiers and increase the memory effects. 

Both self-heating and trapping are frequency dependent 

phenomena and represent the source of the well-known 

memory effects [15]. These issues have strong impact on the 

GaN HEMT device performance and must be taken into 

account in their corresponding large-signal models [8].  

A number of papers have been reported in literature 

addressing large-signal modeling of GaN HEMT [16]-[30]. 

Out of these, some of them rely on robust small-signal 

modeling approach before the eventual large-signal model 

developments. In general, the commonly used modeling 

techniques include table-based, analytical, physics-based, 

and artificial neural networks (ANN) based. The table-based 

modeling [16]-[17] has lower cost in terms of the 

development and implementation but with lower speed and 

rate of convergence. This is due to its discrete nature and 

therefore leads to its poor performance at high frequency of 

operation. The analytical modeling, on the other hand, relies 

on closed-form formulations [18]-[19]. The continuous 

nature of this technique makes it faster with higher rate of 

convergence and better prediction capability. The drawback 

of this approach is it requires relatively longer time and 

substantial efforts for the optimization of the fitting 

parameters of the model. The other conventional physics-

based modeling technique provides more insight about the 

device’s physics and could be an optimal tool for design-

oriented technology development [20]-[21]. However, this 
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technique requires extra effort to collect technology-based 

information of the device and also suffers from lower speed 

of simulation and thus is not appropriate for the design of 

relatively complicated or multi-cell transistor based circuits. 

The last few years has seen emergence of learning-based 

models utilizing tools such as ANN [22]-[30]. This technique 

is promising as it is simple to develop and offers excellent 

trade-off between accuracy and simulation time. The black 

box nature of this technique reduces the cost of searching for 

proper formula and computation of the model’s parameters. 

It exhibits higher rate of convergence when compared to the 

analytical modeling and its prediction capability can also be 

improved by choosing suitable model topology and 

activation function. It is well known that the ANN based 

model "learns" the relationship between the input voltages 

and output current from the measured I-V data, and then 

efficiently predicts the current value for any input voltage 

[30]. During training, the ANN calculates the resulting 

output current at certain input voltages and compares it with 

the measured current to estimate the error, which is then 

propagated back through the system to adjust the weights for 

best fitting. This represents the typical procedure of the 

widely used Back Propagation (BP) ANN.  

 The main limitation of the back propagation (BP), as a 

gradient method, is its higher sensitivity to the initial guess 

as the solution could get stuck in local minima [31]. To 

overcome this problem, more effort is needed to find proper 

initial guess (close to the global minimum), tune the model 

topology, modify the objective function, or change the 

activation function [32]-[33]. The local minima issue 

becomes more obvious in a non-linear problem of larger 

scale ANN model such as IV device’s modeling. Herein, the 

training processes need to be re-initiated many times to find 

the best fitting. Also increasing the order of the ANN to 

improve the model fitting complicates the model 

implementation in CAD software and affect the convergence 

of simulation. This aspect can be addressed by utilizing 

global optimization techniques such as genetic algorithm 

(GA) and particle swarm optimization (PSO) as they have 

been found to be very good alternatives to train neural 

networks [34]-[35].  

In this paper, an efficient and simple GA augmented ANN 

based large-signal modeling of GaN HEMT is developed and 

reported. Furthermore, there have been reports of Support 

Vector Regression (SVR) and PSO augmented SVR based 

techniques to address various behavioral modeling issues 

[36]-[41].  In this paper, SVR technique is revisited and 

adapted for large-signal modeling of GaN HEMT. To further 

improve the performance, a PSO augmented SVR based 

modelling technique is developed. Finally, Gaussian   

Process Regression (GPR) technique [42]-[44] is also 

exploited to model the drain and gate currents. The Bayesian 

approach is considered herein to model the regression-based 

problem a non-parametric modeling process. Unlike ANN 

and SVR, the GPR determines the probability distribution 

over all possible admissible functions that fits the data, which 

make it more robust against measurement errors and outlier 

measured data.  In brief, the main contributions of this paper 

are: (i) development of improved GA augmented ANN and 

PSO augmented SVR based GaN HEMT modeling 

techniques, and (ii) demonstration of GPR as a new 

promising modeling technique for GaN HEMT for the first 

time. 

The proposed modeling technique is a hybrid of “black 

box” and “equivalent circuits” approaches. The implemented 

equivalent circuit is physical relevant and could be used to 

predict some physics related behavior such as structure or 

technology induced parasitic effects. Also, the addition of 

some parameter in the model such as thermal factor and RC 

circuit could be used to predict the device performance under 

different conditions of trapping and self-heating. In general, 

the developed modeling approach could provide a very good 

alternative for both device and circuit designers. The 

equivalent circuit make it compatible with the device 

structure and could provide relevant insights about the 

device physics. On the other side the proposed black box 

approach could be applied efficiently to simulate intrinsic 

nonlinear elements with higher rate of convergence, which is 

needed for complicated circuit and sub-system design.     

The paper begins by introducing the large-signal 

equivalent circuit model in Section II and then presents the 

developed approaches in Sections III, IV and V. The three 

approaches are validated in Section VI. The transistor model 

implementation and validation are presented in Section VII 

and the conclusion is drawn in Section VIII. 

 

 

FIGURE 1.  Equivalent circuit based electro-thermal large-signal model 
for GaN HEMTs.  

II. EQUIVALENT CIRCUIT MODEL 

Figure 1 shows the implemented large-signal equivalent 

circuit model. The dotted area encompasses the intrinsic part 

of the transistor including intrinsic gate current and 

capacitance in addition to the drain-source channel current. 

The self-heating effect and its associated dispersion is 

characterized by the electro-thermal model in the sub-circuit. 
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Further details about this model are provided in the following 

sections. The trapping effect is described by the RrfCrf circuit 

in the drain side to synthesize the buffer trapping effects, 

which has stronger impact of the RF characteristic of the 

device [17]. The extrinsic part of the model includes lumped 

elements to represent the resistance, the inductance, and the 

capacitance parasitic effects. These elements are directly 

extracted from cold S-parameters measurement for the 

investigated device [17]. The intrinsic capacitances are 

extracted from the de-embedded bias-dependent S-

parameters. The respective variations with VGS and VDS are 

mimicked and modelled by simple ANN models as 

explained in the next sections.  

III. GA AUGMENTED ANN BASED MODEL  

The proposed architecture consists of two-hidden layers with 

4 nodes in each layer as shown in Fig. 2. In the proposed model 

of drain current there are in total 28 weights and 9 biases. The 

drain current IDS is modeled using the GA augmented ANN 

based model, where IDS, DC is governed by (1). 

 𝐼𝐷𝑆,𝐷𝐶 = 𝑤𝑏
3 + ∑ 𝑤𝑘 

4
𝑘=1 tanh (𝑤𝑘𝑏

2 + 

∑ 𝑤𝑘𝑗 
4
𝑗=1 𝑡𝑎𝑛ℎ (𝑤1𝑗𝑉𝐺𝑆 +  𝑤2𝑗𝑉𝐷𝑆 + 𝑤𝑏𝑗

1 ))    (1) 

Where 𝑉𝐺𝑆, and 𝑉𝐷𝑆 are extrinsic gate and drain voltages, 

respectively. The terms 𝑤1𝑗 , and 𝑤2𝑗 are input weights, 

𝑤𝑘𝑗 are the intermediate weights (between two hidden layers). 

Furthermore, 𝑤𝑏𝑗
1 , 𝑤𝑘𝑏

2  and 𝑤𝑏
3 are the input-layer, hidden- 

layer and output-layer biases, respectively. The model uses the 

non-linear 𝜓 = 𝑡𝑎𝑛ℎ ( . ) activation or threshold function at 

each layer. It is also imperative to point out that particular 

nodes utilize (2) to learn the model parameters. If the output 

of one neuron is given by k, inputs to the neuron are 𝑡1, 

𝑡2,…,𝑡𝑛, weights corresponding to each connection from 

inputs are 𝒲1, 𝒲2,…, 𝒲𝑛 and bias as 𝑝, then the equation of 

one neuron model can be formulated by (2). 

𝑘 = 𝜓 ( ∑ 𝒲𝑖
𝑛
𝑖=1 𝑡𝑖 + 𝑝).                        (2) 

Furthermore, the gate current is also modeled using 2 

hidden layers based GA augmented ANN model. Each hidden 

layer consists of 3 neurons as shown in Fig. 3. The gate current 

has exponential behavior in the tried-forward region and it is 

mainly depends on VGS. On the other hand, the drain current 

depends on both VGS and VDS and it has multiple nonlinearities 

in triode, pinch-off and forward region. The stronger nonlinear 

behavior of the drain current justify the required higher 

number of neurons. This also agrees with the reported 

analytical model in [23], which presented more complicated 

nonlinear formula for the drain current with respect to the 

exponential based formula of the gate current. The BP based 

algorithms are susceptible to initial values of weights and 

biases in order to produce fast converging and better results. 

To overcome this problem, GA augmented ANN models are 

developed. GA is well-known for its powerful exploration 

capability. The GA aids in the optimization of the initial 

weights and biases and later uses these optimal set to build the 

models [45]. The gate current is expressed in (3), where the 

terms are explained above. 

 𝐼𝐺𝑆 = 𝑤𝑏
3 + ∑ 𝑤𝑘 

3
𝑘=1 𝑡𝑎𝑛ℎ (𝑤𝑘𝑏

2 + 

∑ 𝑤𝑘𝑗 
3
𝑗=1 𝑡𝑎𝑛ℎ (𝑤1𝑗𝑉𝐺𝑆 +  𝑤2𝑗𝑉𝐷𝑆 + 𝑤𝑏𝑗

1 )) .     (3) 

This approach is developed based on the natural selection 

method. Weights and biases are the models’ parameter in case 

of ANN. Selecting the right initial values can strongly affect 

the overall efficiency of the ANN model, especially for large- 

size model with increased number of parameters. Any BP 

method starts the algorithm by randomly selecting initial value 

for the weights and biases by using appropriate probability 

distribution. However, if the search space is spacious, finding 

the right initial values to converge at global optimums is less 

probable. The GA can easily address this problem as it allows 

efficient exploration in the search space to find optimal initial 

values for the models’ parameters. This eventually drives the 

algorithm to converge at the global optimums, which 

improves the overall accuracy of the models. Two separate 

models are developed. The procedure is briefed in the flow 

chart shown in Fig. 4.  The same procedure is repeated for both 

models, i.e. both for modeling of IDS and IGS. 

 
FIGURE 2.  The proposed ANN architecture for the drain current.  

 

FIGURE 3.  The proposed ANN architecture for the gate current.  

 

The only difference is the number of variables used. A brief 

summary of the modelling process is: 

  First the training sets are prepared. The training set for 

the drain current is composed of input data of applied 

𝑉𝐺𝑆, 𝑉𝐷𝑆 and measured  𝐼𝐷𝑆 as an output parameter. The 

second model consists of the same input data but with 
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the gate current (𝐼𝐺𝑆) as output parameter. The dataset 

is further divided into training and unseen testing sets. 

Almost two-third of the entire data samples are 

implemented for training and the remaining are used for 

testing. To get this distribution, for respective𝑉𝐺𝑆, two-

third of entire 𝑉𝐷𝑆 biasing sets are included into training 

set and remaining into testing set. This process is applied 

for each model. The whole data is fed to the GA based 

algorithm to produce the optimal initial sets of weights 

and biases of the NN models.  
 

 
FIGURE 4.  The proposed GA augmented ANN-based model.  

 The optimization first generates initial population of 

1000 individuals. Each individual embodies the total 

number of variables (37 variables: 28 weights and 9 

biases for the first model and 25 variables: 18 weights 

and 7 biases for the second model). The variables are set 

within the range of -1 and 1 and are initialized randomly 

within this range.  

 The objective function or fitness function (MSE) in (4) 

is defined with the objective to minimize the squared 

difference between the predicted values and the 

measured values. If K is the total number of samples 

then:  

𝑀𝑆𝐸 =  
1

𝐾
∑ (𝐼𝑚𝑒𝑎𝑠 − 𝐼𝑝𝑟𝑒𝑑)

2𝐾
𝑗=1  .         (4) 

 Once initialized properly and, regarded as parent 

generation, each individual is fitted using the error 

equation and then the fitness value is calculated. Based 

on the fitness value, 10 % of them are rejected (in the 1st 

iteration) and the remaining individuals are passed the 

recombination and mutation stages and eventually 

render the “offspring” for this second generation. These 

candidate solutions are evaluated by calculating their 

fitness errors. Then 90% of the less error are selected. 

The rejected 10% are replaced by the best candidate of 

the last generation (parents). The new formed solutions 

represent parents for the next third generation and the 

process will repeat itself. This will continue up to the 

predefined maximum number of iteration Nmax. In our 

case Nmax is set to 500 to produce the best results 

 For the effective reproduction of the off-springs, a 

highly efficient double-edge crossover technique is 

exploited. The newly generated offspring’s values go 

through the same stages repeatedly, through a process 

called reinsertion. At the next generation, the same steps 

are re-evaluated until the termination condition is met. 

 Then GA produces optimal set of weights and biases for 

the given fitness function. 

 These determined sets are initial values and are used to 

override the BP based weights and biases. The ANN 

models are then trained and validated based on these 

initial values. 

IV. PSO AUGMENTED SVR BASED MODEL  

Support vector regression (SVR) is derived from Support 

vector machine (SVM) classification for regression-based 

problems. In general, for any regression-based problem the 

objective of the models is to minimize the squared error. 

However, in SVR, the objective is to minimize the absolute 

error term defined using certain constraints. Moreover, SVR 

allows the developer to define a certain error range [46]. The 

SVR implements linear-epsilon insensitive (ε–SVM) 

regression, which is sometimes also referred to as 𝐿1-loss. It 

is a supervised model where the user provides a training set 

consisting of predictor variables and target values. The model 

learns the optimal weights and biases by solving the 

optimization problem to produce the most effective results. 

More details about the SVR and the implanted combined 

technique of SVR and PSO are provided in Appendix A.   

V. GPR BASED MODEL  

The Gaussian process regression (GPR) models come under 

the category of nonparametric kernel-based probabilistic 

models. A brief summary of GPR is discussed in this section. 

The details are available in [47]-[48]. Also more details to 

explain the drain and gate current modeling using GPR are 

provided in Appendix B.    
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VI. THE DEVELOPED MODEL VALIDATION  

The proposed modeling approach has been applied on the DC 

IV measurements listed in Table I for a 2mm packaged GaN 

HEMT on Si substrate. 

A. GA AUGMENTED ANN MODEL VALIDATION  

The measured dataset is preprocessed before training to drive 

the range of features and output within [-1,1]. Then the models 

are trained to simulate bias dependence of the DC drain and 

gate currents. For this purpose, the topologies depicted in Figs. 

2 and 3 have been implemented and trained with the measured 

data. The well-known tan-sigmoid activation function is used 

at each layer.  

The GA is used to produce optimal initial values for the 

weights and biases. Then the models are trained using 

Levenburg-Marquardt (LM) BP algorithm [49] after 

overwriting the determined initial weights and biases. The 

MSE is recorded at randomly selected different biases to check 

the robustness of the modelled drain current and the outcome 

is given in Table II. The same for the gate current is given in 

Table III. Moreover, the measured and simulated plots for the 

drain current for a wide range of 0-48 V in Fig. 5 shows the 

overall behavior of the proposed model. The plots for the gate 

current are shown in Fig 6. It can be observed that the GA 

augmented ANN provides excellent fitting for the 

measurements. The same results are obtained with multiple 

running of the program and this validates the robustness and 

uniqueness of the obtained solutions with respect to the 

conventional BP based ANN. 

 

FIGURE 5. Measured and simulated drain current of 2-mm packaged GaN 

HEMT using GA augmented ANN model. 

TABLE I 

GATE AND DRAIN BIAS VOLTAGES OF THE DRAIN CURRENT 

                VGS(V)                 VDS(V) 

Range Step-size Range Step-size 

-8 to -2 V 0.3 0 – 12 V 0.3 V 
  12 – 48 V 2 V 

 

TABLE II 

MEAN SQUARED ERROR AT RANDOMLY SELECTED BIAS CONDITIONS (GA 

AUGMENTED ANN MODEL FOR THE DRAIN CURRENT) 

Bias IDS, DC (MSE) 

VGS = -7.4V; VDS = 3V 1.25e-5 
VGS = -5.6V; VDS = 8.4V 1.61e-5 

VGS = -1.5V; VDS = 1.5V 1.35e-5 

VGS = -0.8V; VDS = 46V 1.77e-5 
VGS = -0.6V; VDS = 34V 1.14e-5 

 

 

FIGURE 6. Measured and simulated gate current of 2-mm packaged GaN 

HEMT using GA augmented ANN model. 

TABLE III 
MEAN SQUARED ERROR AT RANDOMLY SELECTED BIAS CONDITIONS (GA 

AUGMENTED ANN MODEL FOR THE GATE CURRENT) 

Bias IGS (MSE) 

VGS = -7.4V; VDS = 3V 4.38e-7 

VGS = -5.6V; VDS = 8.4V 5.38e-7 
VGS = -1.5V; VDS = 1.5V 3.65e-7 

VGS = -0.8V; VDS = 46V 4.31e-7 

VGS = -0.6V; VDS = 34V 5.24e-7 

B. PSO AUGMENTED SVR MODEL VALIDATION 

It is imperative to note that the hyper-parameters tuning plays 

a vital role in improving the performance of the SVR based 

models. Keeping this in context, the PSO algorithm is used to 

tune the parameters. The parameters to be optimized are Box 

Constraint (𝐶), width of the tube size (𝜀), Kernel function, 

standardization of data, polynomial order, and kernel scale. 

The Gaussian kernel is chosen after comparing the 

performance of linear kernel, polynomial kernel with 

polynomial order up to 5 in terms of MSE. The Gaussian 

kernel outperformed every other kernels. The standardized 

dataset is used. Now, the models are trained using PSO to find 

the optimal values of 𝐶, 𝜀 and 𝜎.  The same measurement set 

listed in Table I is used to train and validate the model. The 

optimal parameters of SVR models are listed in Tables IV and 

V for the drain and gate currents, respectively. The models are 

again validated at randomly selected weights and biases to 

check the performance in different region of operations whose 

results are given in Tables VI-VII. The measured and 

simulated plot is drawn for a broad voltage range. It can be 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JEDS.2020.3035628,
IEEE Journal of the Electron Devices Society

6 
 

inferred from the plots shown in Figs. 7 and 8 that the models 

have shown good agreement. Around zero drain current the 

SVR has shown some deficiency. It is due to the fact that if the 

error lies within the 𝜀-insestive tube region then the SVR 

considers those observation to be by default as zero error and 

does not optimize them. This could be also observed from the 

higher MSE (see Tables VI and VII) with respect to the case 

of GA-ANN in Tables II and III.  

 
FIGURE 7. Measured and simulated drain current of 2-mm packaged GaN 

HEMT using PSO augmented SVR model. 

 

 

FIGURE 8. Measured and simulated gate current of 2-mm packaged GaN 

HEMT using PSO augmented SVR model. 

TABLE IV 
THE OPTIMAL VALUES OF HYPER PARAMETERS TO SIMULATE DRAIN 

CURRENT USING PSO ALGORITHM 

Kernel 

Function 

Box Constraint 

(𝐶) 

Epsilon 

(𝜀) 

Sigma 

(𝜎) 

Gaussian 2.97 3.46e-4 1.28 

 

TABLE V 

THE OPTIMAL VALUES OF HYPER PARAMETERS TO SIMULATE GATE 

CURRENT USING PSO ALGORITHM 

Kernel 
Function 

Box Constraint 

(𝐶) 

Epsilon 

(𝜀) 

Sigma 

(𝜎) 

Gaussian 1.23 1.99e-5 0.97 

 

TABLE VI 

MEAN SQUARED ERROR AT RANDOMLY SELECTED BIAS CONDITIONS (PSO 

AUGMENTED SVR MODEL FOR DRAIN CURRENT 

Bias IDS, DC (MSE) 

VGS = -7.4V; VDS = 3V 1.31e-4 
VGS = -5.6V; VDS = 8.4V 1.83e-4 

VGS = -1.5V; VDS = 1.5V 1.67e-4 

VGS = -0.8V; VDS = 46V 1.24e-4 
VGS = -0.6V; VDS = 34V 1.53e-4 

TABLE VII 

MEAN SQUARED ERROR AT RANDOMLY SELECTED BIAS CONDITIONS (PSO 

AUGMENTED SVR MODEL FOR GATE CURRENT) 

Bias IGS (MSE) 

VGS = -7.4V; VDS = 3V 2.28e-5 
VGS = -5.6V; VDS = 8.4V 1.74e-5 

VGS = -1.5V; VDS = 1.5V 1.58e-5 

VGS = -0.8V; VDS = 46V 1.99e-5 

VGS = -0.6V; VDS = 34V 2.89e-5 

  

C. GPR MODEL VALIDATION 

Two models, one for drain and other for gate current are 

developed. To reiterate, the GPR is a probability based non-

parametric method. Unlike other supervised methods such as 

ANN, the GPR uses Bayesian optimization to create a 

Gaussian probability distribution over all the possible results. 

Generally, the flow in ANN and SVR is that we fit the data 

and compute the parameters using the best fitted decision 

boundary. In the GPR, however, the algorithm process training 

dataset of the current to lean their probability distribution. 

Then, it can predict the current at any input voltages. The 

datasets are standardized before training. The models then 

utilize the subset of data points approximation to estimate the 

parameters of the GPR model. This method is chosen based 

on the number of samples. The models also use constant basis 

function, exact method to predict, and Quasi-Newton method 

to optimize the parameters of the GPR models. These 

parameters are chosen by comparing MSE and number of 

training samples. Moreover, the key component in GPR is 

known as Kernel function or covariance function. The 

accuracy of the GPR models are greatly dependent on the 

kernel function as the output of the model depends on the 

mean and covariance matrix. Once we have the mean and 

covariance matrix, we can easily calculate the Gaussian 

distribution associated with the data. For small-sized data, the 

GPR has proven to work well. The squared exponential kernel 

is used in this work and it is expressed by (5). 

                 𝑘(𝑡𝑖, 𝑡𝑗|𝜗) = 𝜎𝑓
2𝑒𝑥𝑝 ([

−1

2
 

(𝑡𝑖−𝑡𝑗)𝑇(𝑡𝑖−𝑡𝑗)

𝜎𝑖
2 ])           (5) 

where 𝜎𝑖 is the characteristic length scale, and 𝜎𝑓 is the signal 

standard deviation. The same training set is used to train the 

model listed in Table I. To check the robustness of the models 

the MSE tallies are computed and listed in Tables VIII and IX 

for drain and gate current, respectively. Once again, the 

measured and simulated plots in Figs. 9 and 10 show excellent 

agreement between the modelled and measured data for the 

entire range of voltages and thus validate the efficiency of the 
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proposed GPR based modeling technique. As it can be noted 

from the values of MES in Tables VIII and IX the GPR has 

comparable accuracy to the GA-ANN. However the random 

nature of the GPR could complicate model implementation in 

CAD software such as ADS. 

 

FIGURE 9. Measured and simulated drain current of 2-mm packaged GaN 

HEMT using GPR model. 

 

FIGURE 10. Measured and simulated gate current of 2-mm packaged GaN 

HEMT using GPR model 

 

Overall, the GA augmented ANN shows excellent 

agreement for both the drain and gate currents. Due to the 

simplicity of analytical formula of drain and gate current it has 

an advantage of easy implementation in ADS. Whereas the 

PSO based SVR is robust due to the uniqueness and its 

embodiment of the SRM principle.  However, it has major 

limitation for the target values which are exactly zero as it 

cannot deal with the target values which are within the 𝜀– tube 

region. On the other hand, the GPR has shown the best 

performance in terms of MSE. Unlike the SVR, it can also 

easily deal with zero target values. It is found that simulation 

time of GPR is less when compared to the PSO-SVR and GA-

ANN models. Furthermore, the GPR is very robust and the 

algorithm needs not to run many times due to the uniqueness 

of the solutions at each run. This also further clarifier in Fig. 

11, which compares simulation of the three models for the 

strong nonlinear behavior in the triode region. A brief 

comparison table of all the proposed models is given in Table 

X and a comparison of simulation time to build the entire 

model is given in Table XI. 

 
(a) 

 
(b) 

 
(c) 

FIGURE 11. Measured and simulated drain current of 2-mm packaged GaN 

HEMT using: (a) GA-ANN; (b) PSO-SVR; and (c) GPR model. 

TABLE VIII 
MEAN SQUARED ERROR AT RANDOMLY SELECTED BIAS CONDITIONS (GPR 

BASED MODEL FOR THE DRAIN CURRENT) 

Bias Ids, DC (MSE) 

VGS = -7.4V; VDS = 3V 2.14e-6 

VGS = -5.6V; VDS = 8.4V 2.07e-6 
VGS = -1.5V; VDS = 1.5V 1.55e-6 

VGS = -0.8V; VDS = 46V 1.32e-6 

VGS = -0.6V; VDS = 34V 2.77e-6 

TABLE IX 
MEAN SQUARED ERROR AT RANDOMLY SELECTED BIAS CONDITIONS (GPR 

BASED MODEL FOR THE GATE CURRENT) 

Bias IGS (MSE) 

VGS = -7.4V; VDS = 3V 1.35e-7 

VGS = -5.6V; VDS = 8.4V 1..28e-7 
VGS = -1.5V; VDS = 1.5V 1.35e-7 

VGS = -0.8V; VDS = 46V 1.89e-7 

VGS = -0.6V; VDS = 34V 1.54e-7 

VII. LARGE-SIGNAL MODEL REALIZATION AND 
VALIDATION 

As it was mentioned, self-heating and trapping effects induce 

a current dispersion that has stronger impact on the device 

performance and must be considered in the modeling process. 

The dynamic behavior of both the thermal and trapping 
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represent the main source of long-term memory effect [50]. 

This effect results in frequency-dependency of nonlinear 

characteristics of the transistor amplifier and thus it should be 

considered by the model for efficient circuit design. To 

simulate these effects, a simple approach has been followed by 

adding two RC circuits. The thermal effect is simulated by the 

dynamic electro-thermal sub-circuit (see Fig. 1) with a thermal 

constant of 1 ms [51]. Figure 12 depicts a block diagram 

representation for the electro-thermal modeling of the self-

heating effect, which  reduces the drain current under static 

and quasi-static of operation; however it has negligible 

influence when a fast envelop varying at Radio Frequency 

(RF) signal stimulates the device. When using 4G signal with 

a modulation bandwidth equal or higher than 20 MHz, the 

signal’ envelop is fast enough to prevent heating up the device 

and increasing the channel temperature; however dispersive 

and trapping effects due to the fast envelop can be trigged. 

Thus the DC drain current has to be corrected to emulate this 

dispersive behavior under RF modulated signals. The series 

RrfCrf circuit in the drain side of the equivalent circuit in Fig. 

1 is to simulate the dynamic buffer trapping, which has 

stronger impact with respect to the previously mentioned 

surface trapping. This simple approach is working well for 

simulating this effect under the considered bias condition [52] 

and it has been used here just to keep the model simplicity. An 

extended approach such as the presented on [25] could be used 

to consider the bias dependence of both surface and buffer 

trapping.     

TABLE X 

A COMPASSION TABLE OF ALL THE MODELS 

Parameters 
GA augmented 

ANN model 

PSO augmented 

SVR model 
GPR model 

Model’s 
simplicity 

Easy to 
implement in 

ADS 

Quite Difficult 
to implement in 

ADS 

Difficult to 
implement in 

ADS 

Computationa

l efficiency 

Computationa-

lly efficient 

less 

computationally 

efficient 

more 

computation-

ally efficient 

Average  

MSE 

1.88x10-5 for 

drain and  
4.47x10-7 for 

gate currents 

1.23x10-4 for 

drain and 
1.85x10-5 for 

gate currents 

1.25x10-6 for 

drain and  
1.71x10-7 for 

gate currents 

 

As can be seen in Fig. 12 the DC drain current can be modelled 

based on any of the proposed approaches namely the GA-

ANN, PSO-SVR, and GPR. It can be deduced that the model’s 

drain current output is multiplied by the drain voltage to 

calculate the DC power dissipation. This calculated power is 

then multiplied by frequency-dependent factor of 𝐾𝑇𝐻(𝜔) to 

synthesize the self-heating induced dispersion. Here, 𝐾𝑇 is a 

thermal correction factor that can be determined by comparing 

the DC and RF trans-conductance and output-conductance at 

active bias condition [17]. The term 𝐻(𝜔)  is a unity high-pass 

transfer function to account for the higher impact of self-

heating due to static and quasi-static power dissipation. 

According to the model in Fig. 12, the drain current can be 

formulated as: 

        Ids=𝐼𝑑𝑠,𝐷𝐶[1 + 𝐾𝑇𝐻𝐻𝑃(𝜔)𝑃𝑑𝑖𝑠𝑠].           (6) 

TABLE XI 

SIMULATION TIME TO BUILD THE ENTIRE MODELS 

Model 

Time required to 

build the model for 

drain current (𝑰𝑫𝑺) 

(in Seconds) 

Time required to 

build the model for 

gate current (𝑰𝑮𝑺) 

(in Seconds) 

GA augmented ANN 

model 

GA simulation time: 

235 

ANN simulation 
time: 3 

Total time: 238 

GA simulation time: 

170 

ANN simulation 
time: 2 

Total time: 172 

PSO augmented SVR 

model 

PSO simulation time: 

665 

SVR simulation time: 

25 

Total time: 690 

PSO simulation time: 

597 

SVR simulation time: 

23 

Total time: 620 

GPR model 44 35 

 

FIGURE 12. Electrothermal model of the drain current. 

As it is well know that the gate current is not frequency 

dependent and thus its value will be the quasi-the same under 

DC and RF operating conditions. Therefore, the gate current 

could be simulated using one of the GA-ANN, PSO-SVR or 

GPR model based on DC measured data. As it was presented 

in Figs. 6, 8 and 10 all models showed very good fitting to the 

measurements. As it was mentioned, the extrinsic elements of 

the equivalent circuit model of Fig. 1 have been extracted 

based on cold S-parameter measurements and using the same 

procedure reported in [17]. These extrinsic elements are then 

de-embedded from active (hot) S-parameter measurements to 

model the intrinsic transistor and deduce the values of its 

elements. The intrinsic elements Cgs and Cgd are then extracted 

by means of curve fitting of the intrinsic Y-parameters [17].  

The bias dependence of Cgs and Cgd has been simulated using 

simple single hidden layer ANN models of three neurons. Fig. 

12 shows the extracted values with the models fitting. Under 

bias conditions of the typical high efficient amplifier, Cds is 

almost constant. For that reason and to keep the simplicity the 

model, Cds is considered as a bias-independent element.   The 

equivalent circuit model of Fig. 1 with its extracted parameters 

is implemented in the Advanced Design System (ADS) 

software. The GA-ANN models of 𝐼𝐷𝑆,𝐷𝐶  and 𝐼𝐺𝑆 are 

implemented analytically using the closed-form formulations 

given in (1) and (3), respectively. The implemented model is 

validated by single-tone large-signal RF characterization 

under different bias conditions.  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JEDS.2020.3035628,
IEEE Journal of the Electron Devices Society

9 
 

 

FIGURE 13. Measured and Simulated intrinsic capacitances at VGS=-4 V. 

As it can be seen in Fig. 14, the simulation results agree well 

with the measurements. The developed model also shows a 

greater rate of convergence and a shorter simulation time with 

respect to the table-based model for the same device [17]. This 

of course should be expected because of the discrete nature of 

the table-based model as compared to the proposed continuous 

model. 

 
(a) 

 
(b) 

 
(c) 

FIGURE 14. Simulated (lines) and measured (symbols) power sweep for 
50-Ω terminated 2-mm packaged GaN HEMT at 2.35 GHz and under the 
bias conditions of: (a) VGS = -1 V and VDS = 28 V, (b) VGS = -1.6 V and VDS = 
28 V and (c) VGS = -2.5 V and VDS = 28 V.  

TABLE XI 

 EXTRINSIC ELEMENTS OF A 2-MM PACKAGED GAN HEMT  

Cgp 

(pF) 

Cdp 

(pF) 

Rg  

(Ω)  

Rd  

(Ω) 

Rs  

(Ω) 

Lg  

(nH) 

Ld  

(nH) 

Ls  

(nH) 

1.39 1.65 0.77 0.91 0.38 1.58 1.3 0.14 

 

The developed model has been also used to simulate an 

inverse class-F switching-mode power amplifier (see Fig. 15) 

based on the same considered device. This amplifier has been 

previously designed using a Table-Based (TB) model for the 

same device and the results were reported in [9]. The amplifier 

was adopted to operate at 2.35 GHz frequency. It was also well 

matched with 50-Ω source and load conditions. The amplifier 

is biased below pinch-off ate VGS = -2.5 V and VDS = 28 V. 

The amplifier was simulated in ADS using a Computer with 

3.4 GHz core i7 CPU, 16 GB RAM and 64-bit operating 

system. Fig. 15 shows simulated and measured output power, 

power-added-efficiency, and gain of the amplifier. As it can 

be seen, the model can accurately simulate the amplifier and 

efficiently predict the peak PAE. The model also showed 

faster simulation with higher rate of convergence with respect 

to the TB model in [9]. The total simulation time of the 

amplifier using the TB model is 27.5 s, while it is 9.6 s using 

the proposed model. The simulation time is reduced by nearly 

three times, which is very useful especially for simulating 

more complicated circuits such as multi-stage power 

amplifiers.  

 

FIGURE 15. ADS simulated and fabricated inverse class-F power 
amplifier.  

VII. CONCLUSION  

In this paper, efficient large-signal modeling techniques using 

machine learning based approaches are developed and 

-4 -2 0 2

0.7

0.8

0.9

1

1.1

1.2

1.3

V
gs

 (V)

C
g
s
 (

p
F

)

Measured

Fitted

-40 -30 -20 -10 0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
g

d
 (

p
F

)

V
gd

 (V)

Measured
Fitted



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JEDS.2020.3035628,
IEEE Journal of the Electron Devices Society

10 
 

implemented for GaN HEMT. The proposed approaches 

employed GA augmented ANN, PSO augmented SVR, and 

GPR based models to develop analytical electro-thermal 

models for the drain and gate currents of the GaN HEMT. The 

developed models are compared in terms of MSE and 

simulation time. All the models are validated using simulation 

plots and excellent agreement is obtained. It has been observed 

that the PSO-SVR training algorithm is negatively impacted 

by the drawback of not accounting zero target values. The GA 

augmented ANN model, owing to its simplicity, was then 

utilized for investigation and validation under single-tone 

large-signal RF excitations. In summary, the GA augmented 

ANN and GPR based models offers simple analytical 

formulation and can be therefore readily adapted in 

commercial CAD tools. It has been found that a reduction of 

around three times in simulation time with higher rate of 

convergence could be obtained using the proposed modeling 

with respect to the table-based technique. This validates the 

applicability of the proposed modeling approaches for 

simulating more complicated nonlinear circuits.     

 

FIGURE 15. Simulated (lines) and measured (symbols) power sweep 
for 50-Ω terminated invers class-F power amplifier at 2.35 GHz and 
under the bias conditions of VGS = -2.5 V and VDS = 28 V. 

VIII. APPENDIX A  

As it was mentioned, the SVR model is based on using box 

constraint or regularization parameters, which works as a 

trade-off between making the weights (||𝜔2||) small (to make 

the margin large) and ensuring that each example has 

functional margin of at least 1. In other words, it is a penalty 

factor, which penalizes the observations going beyond the 

epsilon margin range. The ε-insensitive loss function does not 

notice and overlook the error values, which are within the 

range of ε by considering them as zero. Another prominent 

attribute of SVR is the kernel trick, which in principle, 

converts the non-linear low dimension- dataset to linear high-

dimensional dataset and computes dot products to produce a 

scalar output and helps in dealing with complex problems. 

Assume 𝑡𝑛 is a multivariate set of N observations and 𝑘𝑛 is the 

corresponding response value. The objective of SVR model is 

to find 𝑓(𝑥), which does not deviate more than ε from 𝑡𝑛 for 

each training point 𝑥. The SVR formulation for a non-linear 

model is given in (7). Here, 𝜔 is the weight and 𝑝 is the bias, 

and 𝜙(𝑥) is the kernel trick or kernel matrix. 

𝑓(𝑥) = 〈𝜔, 𝜙(𝑥) 〉 + 𝑝.              (7) 

To insure that 𝑓(𝑥) is as flat as possible, find 𝑓(𝑥) with 

minimum norm value (𝜔𝑇𝜔). It can be converted as a convex 

optimization problem to minimize, which can be solved using 

Lagrange multiplier optimization technique, and to find the 

optimal hyperplane and to convert a non-convex problem to a 

convex solvable optimization problem. Generally, we define 

functional and geometric margins. By using the scaling 

constraints on weights and biases and altering the maximizing 

problem to a minimization problem we reach (8). 

                                𝛭𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ( 
1

2
 ||𝜔2||)                                   

with the constraints: 

                              ‖𝑘𝑛 − (𝑡𝑛
′ 𝜔 + 𝑝)‖ ≤ 𝜀.                                           (8) 

There is a possibility that no such term exists which follows 

the constraint defined by (8). To deal with such a situation, 

other terms known as slack variables (𝜉𝑖, 𝜉𝑖
∗) are added to the 

equation. The expression, including the slack variables, 

known as primal formula for SVR is given in (9) with subject 

to conditions in (10). The primal formula can be solved by 

converting it to a Lagrange dual problem [46].  

                 𝛭𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ( 
1

2
 ||𝜔2|| + 𝐶 ∑ (𝑛

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗))               (9) 

                 𝑘𝑛 − (〈𝜔, 𝑡𝑛 〉 + 𝑝) ≤  𝜀 + 𝜉𝑖  

                (〈𝜔, 𝑡𝑛 〉 + 𝑝) − 𝑘𝑛 ≤  𝜀 + 𝜉𝑖
∗         

                𝜉𝑖  ≥ 0   and    𝜉𝑖
∗ ≥ 0.                                                       (10) 

Then the predictive function (𝑓(𝑥)) for the nonlinear primal 

function can be completely describe in terms of support 

vectors. 

𝑓(𝑥) = ∑ (𝛼𝑛
∗𝑁

𝑛=1 − 𝛼𝑛) 𝐺(𝑡𝑛 , 𝑥  ) + 𝑝              (11) 

The terms 𝛼𝑛
∗  and 𝛼𝑛 in brackets are weight coefficients of 

support vectors, 𝑝 is the bias and 𝐺(∙) is the gram matrix. Then 

the formulations for drain current can be expressed by (12). 

Here, 𝑡𝑛 is the support vectors, 𝑁 is the number of support 

vectors, 𝜎 is the Gaussian kernel parameter and 𝑝 is the bias. 

Similarly, equation for the gate current can be formulated by 

(13).  

𝐼𝐷𝑆,𝐷𝐶 = ∑(𝛼𝑛
∗ − 𝛼𝑛)

𝑁

𝑛=1

 

                𝑒𝑥𝑝 (
(𝑡𝑛−{[𝑉𝐷𝑆,𝑉𝐺𝑆]})𝑇(𝑡𝑛−{[𝑉𝐷𝑆,𝑉𝐺𝑆]})

2𝜎2 ) + 𝑝             (12) 

𝐼𝐺𝑆 = ∑(𝛼𝑛
∗ − 𝛼𝑛)

𝑁

𝑛=1

 

𝑒𝑥𝑝 (
(𝑡𝑛−{[𝑉𝐷𝑆,𝑉𝐺𝑆]})𝑇(𝑡𝑛−{[𝑉𝐷𝑆,𝑉𝐺𝑆]})

2𝜎2 ) + 𝑝               
(13) 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JEDS.2020.3035628,
IEEE Journal of the Electron Devices Society

11 
 

  One of the main reasons of degradations of the SVR’s 

predictive ability is the inappropriate selection of the 

parameters. Different parameters affect the performance in 

different ways and hence it is important to tune and optimize 

the central parameters to improve the predictive ability of the 

model. This paper makes use of PSO to tune the parameters. 

The PSO comes under the category of global optimization 

techniques and thus is not susceptible to local solutions but 

more inclined towards the global solutions of a given 

optimization problem. It is fast and computationally less 

intensive as opposed to complex methods such as GA and 

therefore works excellently when optimization of fewer 

parameters is envisaged. As discussed earlier, the box 

constraint (𝐶) is an essential parameter, which directly 

supervises the overfitting and under fitting of the model. For a 

large value of 𝐶 it will lead the model to overfit and for very 

small value of 𝐶 it will lead the model to underfit, so finding a 

middle value is very crucial. The 𝜀-insesitive loss function, 

defines the margin of tolerance. This directly influences the 

number of support vectors. As per (11), the output of the SVR 

model is mainly dependent on the quantity and quality of the 

support vectors. So, optimizing the error value is of utmost 

importance. Moreover, selecting the right kernel for the 

problem greatly influences the overall accuracy. For SVR, 

there are many kernels available such as Gaussian kernel, 

linear kernel, and polynomial kernel. It is also possible to 

design a custom kernel function to deal with the specific 

problems. However, Gaussian kernel is used in the current 

work. Here, two models are developed, one to simulate drain 

current and the second to depict the gate current. Both models 

utilize the principle of SVR and make use of PSO to optimize 

the models’ parameters. The box constraint (𝐶) and kernel 

scale or sigma are initialized randomly and set to traverse 

within the range of [10-3, 103] for both the models. The  𝜀-

insesitive loss function, is also chosen randomly and allowed 

to take values between [10-5, 105] for the drain current and [10-

6, 106] for the gate current. This process is repeated many times 

until the optimal values of these terms are obtained. In fact, the 

PSO is a model developed by understanding the social 

behavior of birds flocking or fish schooling [37], where each 

particle possesses its own position and velocity. All the 

particles share a common objective either to seek food or avoid 

predators or to find the adaptable environmental parameters. 

In order to accomplish the objective each particle adjust their 

own positions and velocities which can be mathematically 

explained. Moreover, they also keep track of the best position 

explored by them. These local and best position together 

decide the velocity of each particle. 

The proposed methods are briefly described in the flow 

chart of Fig. 15, and can be summarized as follows:  

 The training of PSO starts by feeding the measured data 

containing inputs and output to the algorithm. Upon 

receiving the data, the algorithm creates initial 

population of particles (100 particles). Each particle 

contains 3 variables for the parameters 𝐶,  𝜀 and 𝜎.  

 

FIGURE 15.  The proposed PSO augmented SVR-based model. 

 

These variables are assigned random values within the 

above-mentioned ranges.  

 The next step is the evaluation of fitness function. Its 

value is calculated using (4). Based on the fitness value, 

the local best position of individual particle is set. 

Moreover, by comparing the positions of the particles, 

the global best position is determined. Local best 

position and global best position continue to be updated 

after each successful iteration until the termination 

condition is met.  

 Each particle updates its velocity based on individual 

best position and global best position. The velocity of 

each particle is updated using (14) and (15).  

𝑣𝑛+1=𝑤 ∗ 𝑣𝑛 + 𝑐1 ∗ 𝑟1 ∗ (𝑋𝐿𝐵 − 𝑥𝑛) + 𝑐2 ∗ 𝑟2 ∗
                           (𝑋𝐺𝐵 − 𝑥𝑛)                                               (14) 

𝑥𝑛+1=𝑥𝑛 + 𝑣𝑛+1                   (15) 
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where, 𝑟1 and 𝑟2 between 0 and 1 preferably obtained 

using stochastic methods. 𝑣𝑛+1 is the updated velocity 

and 𝑣𝑛 is the previous or memory velocity. Similarly, 

𝑥𝑛+1 is the updated position and  𝑥𝑛 is the previous or 

memory position.  𝑋𝐿𝐵 and 𝑋𝐺𝐵 are the local best and 

global best positions, respectively. The terms 𝑤, 𝑐1 and 

𝑐2 are the inertia weight factor, self-confidence factor, 

and swarm confidence factor. The inertia factor is 

calculated using (16). 

𝑤=𝑤𝑚𝑎𝑥 − (
(𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛)

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
∗ 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛).   (16) 

Here, 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛 are the maximum and minimum 

range for the inertia factor values. These values can be 

greatly altered by the internal features associated with 

the processes used to update the velocity. 

 The updated velocity is then used to update the new 

local best and global best positions. This process is 

repeated for each particle, at each generation, until the 

process stops by the termination condition set by the 

user. In our case, the algorithm runs for 250 iterations. 

 After the termination condition is reached, the algorithm 

provides the optimal set of the three above listed 

parameters. These values are then used to build the SVR 

model. The model is trained and validated in a later 

section.   

IX. APPENDIX B  

As it was mentioned, GPR models come under the category of 

nonparametric kernel-based probabilistic models. Assume the 

training set, 𝒟 = {𝑡𝑗,   𝑦𝑗}, 𝑗 = 1,2,3, … , 𝑚, where the feature 

matrix 𝑡𝑗 ∈ ℝ𝑑, the target matrix 𝑦𝑗 ∈ ℝ, from an unknown 

distribution. A GPR model assumes a Gaussian process 

apriori, which can be characterized in terms of mean, 𝑚(𝑡) 

and covariance function, 𝑘(𝑡, 𝑡′) as follows: 

𝑓(𝑡) ∼ 𝐺𝑃(𝑚(𝑡), 𝑘(𝑡, 𝑡′)) .                    (17) 

 Furthermore, a linear regression model of GPR problem can 

be formulated by incorporating the noise or error information 

as expressed in (18). Here, 𝜀 ∼ 𝑁(0, 𝜎2) that is 𝜀 is 

independently and identically distributed (𝑖. 𝑖. 𝑑. ) Gaussian 

noise with mean zero and variance 𝜎2. The 𝑓(𝑡) is assumed to 

be Gaussian distribution and hence the 𝑦, the observed output, 

can form a Gaussian process expressed by (19). The term 𝛿𝑖𝑗 

is Kronecker delta function, when 𝑖 = 𝑗, 𝛿𝑖𝑗 = 1. 

Subsequently, the covariance function is expressed in (20). In 

this expression, 𝐶(𝑇, 𝑇) denotes covariance matrix of 𝑁x𝑁, 𝐼 

denotes the unit matrix of 𝑁x𝑁, 𝐾(𝑇, 𝑇) known as Gram 

matrix which denotes nuclear matrix 𝑁x𝑁, that contains 𝐾𝑖𝑗 =
𝑘(𝑡𝑖𝑡𝑗) as its elements. It can be safely stated from the 

Gaussian process that the collection of training points and test 

points are joint multivariate Gaussian distributed and their 

distribution can be expressed by (21).  Therefore, primary 

GPR equations are in (22). Here, 𝑓∗̅ in (23) is the predicted 

mean output of the GPR model on output vector.    

                                        𝑦 = 𝑓(𝑡) + 𝜀                                  (18) 

                                 𝑦 = 𝐺𝑃(𝑚(𝑡), 𝑘(𝑡, 𝑡′) + 𝜎𝑚
2 𝛿𝑖𝑗)            (19) 

                                   𝐶(𝑇, 𝑇) = 𝐾(𝑇, 𝑇) + 𝜎𝑚
2 𝐼                    (20) 

          [
𝑦
𝑓∗

] ∼ 𝑁 ([
𝜇
𝜇∗

] , [
𝐾(𝑇, 𝑇) + 𝜎𝑚

2 𝐼       𝐾(𝑇, 𝑇∗)

            𝐾(𝑇∗, 𝑇)         𝐾(𝑇∗, 𝑇∗)
]  )   (21) 

                                           𝑓∗|𝑇, 𝑦, 𝑇∗ ∼ 𝑁(𝑓∗̅, 𝛴∗
̅̅̅)                       (22)              

𝑓∗̅ = 𝜇∗ + 𝐾(𝑇∗, 𝑇)[𝐾(𝑇, 𝑇) + 𝜎𝑚
2 𝐼]−1(𝑦 − 𝜇)   (23) 

𝛴∗ = 𝐾(𝑇∗, 𝑇∗) − 𝐾(𝑇∗, 𝑇)[𝐾(𝑇, 𝑇) + 𝜎𝑚
2 𝐼]−1𝐾(𝑇, 𝑇∗). (24) 

For the gate and drain current, 𝑇 is a multivariate set of inputs 

composed of 𝑉𝐷𝑆 and 𝑉𝐺𝑆 given by (25).  

                𝑇 = {[𝑉𝐷𝑆
𝑖 , 𝑉𝐺𝑆

𝑖 ]}; 𝑖 = 1,2, … … . . , 𝑛               (25) 

where 𝑉𝐷𝑠
𝑖  and 𝑉𝐺𝑆

𝑖  are column vectors where each row defines 

a new observation and 𝑛 is the total number of observations in 

the test set. To sample a function, it first computes the 

covariance between all observations of 𝑉𝐷𝑆 and 𝑉𝐺𝑆,  denoted 

by 𝐾(𝑇, 𝑇), and usual prior mean 𝑚(𝑇) as zero. Afterwards, 

it defines the sample function (𝑓∗) as: 

                              𝑓∗ = 𝑁(0, 𝐾(𝑇, 𝑇))                                   (26) 

Suppose the training set, 𝒟𝑡 = {𝑋𝑡 , 𝑦𝑡}; where 𝑋𝑡 is the 

multivariate set of inputs composed of training observations of 

gate and drain bias voltages and 𝑦𝑡  is the drain or gate current. 

By using the standard results, the conditional distribution 

𝑝(𝑓∗|𝒟𝑡 , 𝑇) is computed using (27) and (28).  

                   𝑚(𝑇) = 𝐾(𝑇, 𝑋𝑡)[𝐾(𝑋𝑡 , 𝑋𝑡) + 𝜎𝑚
2 𝐼]−1𝑦𝑡              (27) 

𝑘𝑡(𝑇, 𝑇′) = 𝑘(𝑇, 𝑇′) − 𝑘(𝑇, 𝑋𝑡)[𝐾(𝑋𝑡 , 𝑋𝑡) +
                       𝜎𝑚

2 𝐼]−1𝑘(𝑋𝑡 , 𝑇′) .                                               (28) 

To predict 𝑓∗, it uses simply mean function given in (27) or 

sample function from the GP with this mean function and 

kernel (28) as described before. Now, the predicted 𝐼𝐷𝑠,𝐷𝐶 and 

𝐼𝐺𝑆 can be analytically calculated using (29) and (30) using the 

mean and kernel defined in (24) and (25). 

                  𝐼𝐷𝑠,𝐷𝐶 = 𝑁(𝑚(𝑇), 𝑘𝑡(𝑇, 𝑇′)                (29) 

 𝐼𝐺𝑆 = 𝑁(𝑚(𝑇), 𝑘𝑡(𝑇, 𝑇′).                (30) 
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