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Abstract. This paper considers the one-dimensional Schrödinger equation

with nonlocal nonlinearity that describes the interactions of nonlinear disper-
sive waves. We obtain some the local well-posedness and ill-posedness result

associated with this equation in the Sobolev spaces. Moreover, we prove the

existence of standing waves of this equation. As corollary, we derive the con-
ditions under which the solutions are uniformly bounded in the energy space.

1. Introduction. In this paper, we study the following Schrödinger-type equation

iut − uxx = ςDβ(|u|2u), x, t ∈ R, (1)

introduced in [4, 18] as a model for assessing the validity of weak turbulence theory
for random waves, where ς = ±1, β ∈ R and Dβ with β ∈ R is the usual Fourier
multiplier operator with the symbol |ξ|β . The parameter β controls the nonlinearity,
in particular small value of β makes the nonlinearity weaker because of a smoothing
effect in x. Equation (1) was originally derived as

iut − uxx = ς(|Dβu|2Dβu),

through a heuristic approach, later it was proved that it can be rigorously obtained
as an approximation of the fully nonlinear wave system equations [24]. When β = 0,
(1) turns into the classical Schrödinger equation

iut − uxx = ς|u|2u. (2)

Grünrock studies the local well-posdesness for (2) in [11] in alternative function
spaces below L2(R), but only in settings where the local Lipschitz dependence on
the initial data still holds. In the focusing case, (2) admits soliton and multisoliton
solutions. Moreover, it is globally well posed in L2 thanks to the conservation of the
L2-norm. The scaling-critical Sobolev index associated with (2) is −1/2. Christ,
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Colliander and Tao [6] showed that the data-to-solution map is unbounded from
Hs(R) to Hs(R) for s < −1/2. Recently, Harrop-Griffiths et al. in [12] proved
that (2) is globally well-posed for all initial data in Hs(R) with s > −1/2 in the
sense that the solution map extends uniquely from the Schwartz space to a jointly
continuous map R×Hs(R)→ Hs(R).

Equation (1) mathematically is similar to the derivative nonlinear Schrödinger
equation

iut − uxx = ςi(|u|2u)x. (3)

It is known from [20] that (3) is localy well-posed in Hs(R) for s ≥ 1/2. His
method of proof combined the gauge transform with Bourgain’s Fourier restriction
norm method. This result was shown by Biagioni and Linares [2], and Takaoka [21]
to be sharp in the sense that the flow map fails to be uniformly C0 for s < 1/2.

Analogous to (2), the − sign in (1) corresponds to the defocusing (repulsive)
problem, while the + sign corresponds to the focusing (attractive) problem. Equa-
tion (1) similar to (3) and contrary to (2) is not invariant by the pseudoconformal
transformation and no explicit blow-up solution is known for both (2) and (1). An-
other main difference between (1) and (2) is that the former one is not invariant
by a Galilean transform. An interesting property of (3) is that all these types of
derivative nonlinear Schrödinger equations are related via gauge transformations,
any result on one of the forms can a priori be transferred to the other forms, but it
seems that (1) has no such a property. Interestingly, given a solution u of (1), then

uλ(x, t) = λ1− β2 u(λx, λ2t)

is also a solution of (1). As a consequence, the scale-invariant Sobolev spaces for

(1) are Ḣsc(R) with sc = − 1
2 (1 − β). One of the aims of the current paper is to

address the question for local well-posedness of (1). We should also note that the
functionals

E(u) =

∫
R

(
|D−β/2ux|2 + ς

1

2
|u|4
)

dx

F(u) =

∫
R
|D−β/2u|2 dx

are formally motion invariants of (1).

Theorem 1.1. Let β ∈ (0, 1). Then the Cauchy problem associated with (1) is
locally well-posed in Hs(R) if s > β/2.

The local well-posedness of (1) can be extended to the case β < 0. Indeed,
when β ∈ (−1, 0), then the nonlinear term Dβ(|u|2u) can be rewritten by the Riesz
potential by

I−β ∗ |u|2u,
where I−β = Cβ |x|−1−β . By using the Hardy-Littlewood-Sobolev lemma, the frac-
tional chain rule and the Strichartz estimates for the Schödinger equation (see [16]),
one can consider a suitable ball in the space

L∞t (R;Hs(Rx)) ∩ Lqt (R;Hs
r (Rx))

to show the local-wellposedness by a contraction argument (see [16]), where Hs
r =

(1− ∂2
x)−s/2Lr. So we omit the detilas and focus on the case β ≥ 0. For b, s,∈ R,

we define the (inhomogeneous) Xs,b spaces with respect to the norm

Xs,b = {u ∈ S ′, ‖u‖Xs,b := ‖〈ξ〉s〈τ − ξ2〉bû(ξ, τ)‖L2(R2) < +∞},
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where û in this definition is the Fourier transform of u with respect to both time
and space and 〈·〉 = a+ | · |. As (1) with an initial data u(0) = u0 is related to the
integral form

u(t) = U(t)u0 − iς
∫ t

0

U(t− τ)Dβ(|u|2u)(τ)dτ,

where U is the unitary Schrödinger group of (1), then the main difficulty, by a
standard iteration argument, is to show a trilinear estimate related to this integral
form in Xs,b spaces.

It is worth pointing out there is an important relation between the mixed Lebesgue
spaces and the above Xs,b spaces, based on the Strichartz estimates for the group
U . We have that

‖U(t)u‖Lqt (R)Lpx(R) . ‖u‖L2(R2)

for all pairs (q, p) satisfying 2
q + 1

p = 1
2 with 2 ≤ p, q ≤ ∞. This leads us to

‖u‖Lqt (R)Lpx(R) . ‖u‖
X0, 1

2
+ .

This estimate can be deduced by adapting suitably the dyadic method introduced
in [22, 23] in which multilinear estimates in weighted L2(R) spaces were generally
studied.

In order to prove the trilinear estimates, related to Theorem 1.1 and the integral
for in Xs,b, we prove a bilinear estimate for (2) with the resonance function h(ξ) =
2ξ1ξ2.

Next aim in this paper is to study the ill-posedness of (1). We use the ideas
of [6]. More precisely, the strategy is to approximate the solution of the Cauchy
problem associated with (1) by the solutions of (2), and use the ill-posedness result
[6] of (2) in Hs(R). The main difficulty here lies in small dispersion analysis due to
the non-local nonlinearity.

Theorem 1.2. Let 3β−2
2(3−3β) < s < β

2 , 0 < β < 2
3 . Then the solution map of the

following initial value problem{
iut − uxx −Dβ

(
|u|2u

)
= 0,

u(0) = ϕ

fails to be locally uniformly continuous. More precisely, for 0 < δ � ε � 1 and
T > 0 arbitrary, there are two solutions u1, u2 with initial data φ1, φ2 such that

‖φ1‖Hs , ‖φ2‖Hs . ε, (4)

‖φ1 − φ2‖Hs . δ, (5)

sup
0≤t≤T

‖u1(t)− u2(t)‖Hs & ε. (6)

Finally, we study the existence of standing waves of (1). By a standing wave we
mean a solution of (1) of the form u(x, t) = e−iωtϕ(x), where ω > 0 is the standing
wave frequency. Substituting this form into (1), it transpires that ϕ must satisfy

ωD−βϕ+D2−βϕ = ±|ϕ|2ϕ. (7)

Thus one sees that the natural space to study (1) is

X = Ḣ−
β
2 (R) ∩ Ḣ1− β2 (R),

equipped with the norm

‖f‖X = ‖f‖
Ḣ−

β
2 (R)

+ ‖f‖
Ḣ1− β

2 (R)
.
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By multiplying (7) by ϕ and integrating over R, one can easily see that it does
not have any nontrivial solution in the defocusing (repulsive) case. So we study the
following case

ωD−βϕ+D2−βϕ = |ϕ|2ϕ. (8)

We use the concentration-compactness principle [17] to show the existence of the
ground states in X . We recall that the solution ϕ of (8) is called a ground state,
if ϕ minimizes the action

S = E + ωF (9)

among all non-trivial solutions of (8). The essential tools in this way is the embed-
ding X into L4(R) by showing the following Gagliardo-Nirenberg type inequality:

‖g‖L4(R) ≤ C
∥∥∥D− β2 g∥∥∥θ1

L2(R)

∥∥∥D− β2 gx∥∥∥θ2
L2(R)

for some θ1, θ2 ≥ 0 (see (35) below). We also obtain the best constant for this
inequality. Indeed, we show a profile decomposition by mimicking the proof lines of
[10, 13]. This also enables us to give another approach to study the existence of so-
lutions of (8). As an application of aforementioned Gagliardo-Nirenberg inequality,
we show the uniform bound of solutions of (1) in X .

The paper is organized as follows. In section 2, we use some useful known esti-
mates which we need in the subsequent section to show the well-posedness result.
In section 3, we prove the ill-posedness result. Finally, the existence of the standing
waves and their applications are proved in section 4.

We end this section by presenting the following convention. We use A . B to
denote the statement that A ≤ CB for some positive harmless constant C which
may vary from line to line and depend on various parameters. We use A ∼ B to
denote the statement that A . B and B . A.

2. Well-posedness. In this section, we prove our well-posedness result.
We use the following result [19, Proposition 3] to obtain the bilinear estimates.

So we need to recall the definitions and notation accordingly.
For any integer k ≥ 2, we denote Γk(Z) as the hyperplane

Γk(Z) =
{
ξ = (ξ1, . . . , ξk) ∈ Zk, ξ1 + . . .+ ξk = 0

}
with the measure ∫

Γk(Z)

f :=

∫
Zk−1

f(ξ) dξ1 . . . dξk−1,

where Z can be any abelian additive group with an invariant measure dξ. By
following the concepts introduced in [22], the [k;Z]-multiplier is a function η :
Γk(Z)→ C and the multiplier norm ‖η‖[k;Z] is the best constant such that∣∣∣∣∣∣

∫
Γk(Z)

η(ξ)

k∏
j=1

fi(ξi)

∣∣∣∣∣∣ ≤ ‖η‖[k;Z]

k∏
j=1

‖fi‖L2(Z)

holds for all test functions fi on Z.
We should review some of Tao’s notations in [22]. Any summations over capital-

ized variables such as Ni, Li and H are presumed to be dyadic. It will be convenient
for N1, N2, N3 > 0 to define the quantities Nmax ≥ Nmed ≥ Nmin which are the
maximum, median, and minimum of N1, N2, N3, respectively. Likewise, we have
Lmax ≥ Lmed ≥ Lmin if L1, L2, L3 > 0. We also adopt the following summation
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convention. Any summation of the form Lmax ∼ . . . is a sum over the three dyadic
variables L1, L2, L3 & 1. Hence, we have for instance that∑

Lmax∼H
=

∑
L1,L2,L3&1:Lmax∼H

.

Analogously, any summation of the form Nmax ∼ . . . sum over the three dyadic
variables N1, N2, N3 > 0. For example, we have∑

Nmax∼Nmed∼N
:=

∑
N1,N2,N3>0:Nmax∼Nmed∼N

.

If τ, ξ and φ(ξ) are given with τ1 + τ2 + τ3 = 0, then we write λ := τ − φ(ξ).
Similarly we have λi := τi − φ(ξi). We refer to h : Γ3(Z) → R as the resonance
function, which is defined by

h(ξ) := φ(ξ1) + φ(ξ2) + φ(ξ3) = −λ1 − λ2 − λ3. (10)

By the dyadic decomposition of each variable ξi or λi, as well as the function h(ξ),
we are led to consider ‖XN1,N2,N3;H;L1,L2,L3‖[3;R×R] , where XN1,N2,N3;H;L1,L2,L3 is

the multiplier

XN1,N2,N3;H;L1,L2,L3(ξ, τ) = χ{|h(ξ)|∼H}

3∏
j=1

χ{|ξj |∼Nj}χ{|λj |∼Lj}, (11)

where χ is the characteristic function. From the identities

ξ1 + ξ2 + ξ3 = 0

and

λ1 + λ2 + λ3 + h(ξ) = 0 (12)

on the support of the multiplier, we see that XN1,N2,N3;H;L1,L2,L3 vanishes unless

Nmax ∼ Nmed (13)

and

Lmax ∼ max(H,Lmed). (14)

The following estimates can be found in [22] (see also [19, Proposition 3])

Lemma 2.1. Let H,N1, N2, N3, L1, L2, L3 > 0 satisfy Nmax ∼ Nmed, H ∼ N2N3

and
Lmax ∼ max(H,Lmed). Then we have the following estimates.

(1)

‖XN1,N2,N3;H;L1,L2,L3
‖[3;R×R] . L

1
2

minN
1
2

min. (15)

(2)

‖XN1,N2,N3;H;L1,L2,L3
‖[3;R×R] . min

(
L1L2

N3
,
L1L3

N2

) 1
2

. (16)

(3) If L1 = Lmax and N1 ∼ N2 ∼ N3 holds, then

‖XN1,N2,N3;H;L1,L2,L3‖[3;R×R] . L
1
2

minL
1
4

med, (17)

If L1 = Lmax and N1 ∼ N2 ∼ N3 does not hold, then

‖XN1,N2,N3;H;L1,L2,L3
‖[3;R×R] .

L
1
2

minL
1
2

med

N
1
2

max

. (18)
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Lemma 2.2. If s > β
2 , 0 < β < 1 then for all u, v on R× R, we have

‖uv̄‖L2(R×R) . ‖u‖X− β2 , 12−ε‖v̄‖Xs, 12+ε , (19)

‖uv̄‖L2(R×R) . ‖u‖Xs, 12+ε‖v̄‖
X−

β
2
, 1
2
−ε . (20)

Proof. We first dispense with the estimate (19). Indeed, it suffices to show by the
Plancherel theorem that∥∥∥∥∥ 〈ξ1〉

β
2

〈ξ2〉s〈τ1 − ξ2
1〉

1
2−ε〈τ2 + ξ2

2〉
1
2 +ε

∥∥∥∥∥
[3;R×R]

. 1.

The comparison principle and orthogonality reduce our estimate to show that∑
Nmax∼Nmed∼N

∑
L1,L2,L3&1

N
β
2

1 N
−s
2

L
1
2−ε
1 L

1
2 +ε
2

× ‖XN1,N2,N3;Lmax;L1,L2,L3
‖[3;R×R] . 1 (21)

and ∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
Lmax�H

N
β
2

1 N
−s
2

L
1
2−ε
1 L

1
2 +ε
2

× ‖XN1,N2,N3;H;L1,L2,L3
‖[3;R×R] . 1.

(22)

Fix N , we first prove (22). If we have Lmax ∼ Lmed � N2N3, we apply (15).
Hence, the sum in (22) is estimated by∑

Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
Lmax�H

N
β
2

1 N
−s
2

L
1
2−ε
1 L

1
2 +ε
2

L
1
2

minN
1
2

min

.
∑

Nmax∼Nmed∼N

N
β
2

1 N
−s
2 N

1
2

min

(N2N3)
1
2−ε

.

(23)

If Nmin = N1, then we have∑
Nmax∼Nmed∼N

N−s+
β
2−

1
2 +2ε . 1,

provided s > β
2 −

1
2 .

If Nmin = N2, then∑
Nmax∼Nmed∼N

N
β
2

1 N
−s
2 N

1
2

min

(N2N3)
1
2−ε

.
∑

Nmax∼Nmed∼N
N−s+εmin N

β
2−

1
2 +ε,

if s > 0 then the estimate is certainly true for β < 1, if s ≤ 0, then the estimate is
similar to the case Nmin = N1.

If Nmin = N3, then N1 ∼ N2 ∼ N , we can obtain the desired estimate for
s > β

2 −
1
2 .

Now we show (21). We may assume Lmax ∼ N2N3.
If Lmax = L2, we apply (15), the estimate is similar to (23), we omit it.
If Lmax = L3, we apply (16), performing the L summations, then the summation

in (21) is estimated by∑
Nmax∼Nmed∼N

∑
L1,L2,L3&1

N
β
2

1 N
−s
2

L
1
2−ε
1 L

1
2 +ε
2

L
1
2
1 L

1
2
2

N
1
2

3

.
∑

Nmax∼Nmed∼N

N
β
2

1 N
−s
2 (N2N3)

ε

N
1
2

3

,
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if Nmin = N3, then (21) is true for s > β
2 , if Nmin 6= N3, then we can get (21) for

s > β
2 −

1
2 .

If Lmax = L1 and N1 ∼ N2 ∼ N3 ∼ N , then we can estimate the sum in (21) via
(17),∑
Nmax∼Nmed∼N

∑
L1,L2,L3&1

N
β
2

1 N
−s
2

L
1
2−ε
1 L

1
2 +ε
2

L
1
2

minL
1
4

med .
∑

Nmax∼Nmed∼N
N

β
2

1 N
−s
2 (N2N3)

− 1
4 +ε

. 1

for s > β
2 −

1
2 . Otherwise, (17) can be used to estimate the sum in (21)

∑
Nmax∼Nmed∼N

∑
L1,L2,L3&1

N
β
2

1 N
−s
2

L
1
2−ε
1 L

1
2 +ε
2

L
1
2

minL
1
4

med

N
1
2

max

.
∑

Nmax∼Nmed∼N

N
β
2

1 N
−s
2

L
1
4−ε
1 N

1
2

max

. 1

for s > β
2 −

1
2 .

The proof of (20) is similar to (19), we omit it.

Theorem 2.3. Let s > β
2 , for any u, v, w, then∥∥Dβ (uv̄w)
∥∥
Xs,−

1
2
+ε . ‖u‖Xs, 12+ε‖v̄‖Xs, 12+ε‖w‖Xs, 12+ε . (24)

Proof. By duality and the Plancherel theorem, it suffices to show that∥∥∥∥∥ |ξ1 + ξ2 + ξ3|β 〈ξ4〉s

〈τ4 + ξ2
4〉

1
2−ε〈ξ1〉s〈τ1 − ξ2

1〉
1
2 +ε〈ξ2〉s〈τ2 + ξ2

2〉
1
2 +ε〈ξ3〉s〈τ3 − ξ2

3〉
1
2 +ε

∥∥∥∥∥
[4;R×R]

. 1.

(25)
We estimate |ξ1 + ξ2 + ξ3| by 〈ξ4〉, then apply the inequality

〈ξ4〉s+β . 〈ξ4〉
β
2

3∑
j=1

〈ξj〉s+
β
2 .

If max
j=1,2,3

|ξj | = |ξ2|, we may minorize 〈τ2 + ξ2
2〉

1
2 +ε by 〈τ2 + ξ2

2〉
1
2−ε, and reduce

to showing that∥∥∥∥∥ 〈ξ2〉
β
2

〈ξ1〉s〈τ1 − ξ2
1〉

1
2 +ε〈τ2 + ξ2

2〉
1
2−ε
· 〈ξ4〉

β
2

〈ξ3〉s〈τ3 − ξ2
3〉

1
2 +ε〈τ4 + ξ2

4〉
1
2−ε

∥∥∥∥∥
[4;R×R]

. 1, (26)

then TT ∗ identity reduce our estimate to show that∥∥∥∥∥ 〈ξ2〉
β
2

〈ξ1〉s〈τ1 − ξ2
1〉

1
2 +ε〈τ2 + ξ2

2〉
1
2−ε

∥∥∥∥∥
[3;R×R]

. 1,

∥∥∥∥∥ 〈ξ4〉
β
2

〈ξ3〉s〈τ3 − ξ2
3〉

1
2 +ε〈τ4 + ξ2

4〉
1
2−ε

∥∥∥∥∥
[3;R×R]

. 1.

These estimates follows from (20).

If max
j=1,2,3

|ξj | = |ξ1|, we may monorize 〈τ1 − ξ2
1〉

1
2 +ε by 〈τ1 − ξ2

1〉
1
2−ε, reduce to

showing that∥∥∥∥∥ 〈ξ1〉
β
2

〈ξ2〉s〈τ1 − ξ2
1〉

1
2−ε〈τ2 + ξ2

2〉
1
2 +ε
· 〈ξ4〉

β
2

〈ξ3〉s〈τ3 − ξ2
3〉

1
2 +ε〈τ4 + ξ2

4〉
1
2−ε

∥∥∥∥∥
[4;R×R]

. 1, (27)
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then TT ∗ identity reduce our estimate to show that∥∥∥∥∥ 〈ξ1〉
β
2

〈ξ2〉s〈τ1 − ξ2
1〉

1
2−ε〈τ2 + ξ2

2〉
1
2 +ε

∥∥∥∥∥
[3;R×R]

. 1,

∥∥∥∥∥ 〈ξ4〉
β
2

〈ξ3〉s〈τ3 − ξ2
3〉

1
2 +ε〈τ4 + ξ2

4〉
1
2−ε

∥∥∥∥∥
[3;R×R]

. 1.

The first estimate is valid by (19), and the second estimate is valid by (20).
By symmetry, the estimate of max

j=1,2,3
|ξj | = |ξ3| is the same as the case max

j=1,2,3
|ξj | =

|ξ1|.

With Theorem 2.3 in our hands, the completeness of proof of Theorem 1.1 is
obtained by the standard approach and we omit it (see [6]).

3. Ill-posedness. In this section, we prove our ill-posedness result in Theorem 1.2.
Our idea is to approximate the solutions of (1) with ones of (2). For convenience
we the case ς = +1: {

iut − uxx −Dβ
(
|u|2u

)
= 0,

u(0) = ϕ
(28)

We also consider (2) correspondingly. To prove the ill-posedness result, we recall
the following result of [6, Lemma 2.1] (see also [5]).

Lemma 3.1. Let s > − 1
2 and w ∈ Hσ(R) with σ > 0. For M > 1, τ > 0, x0 ∈ R

and A > 0 let

v(x) = AeiMxu

(
x− x0

τ

)
.

(1) If s ≥ 0, then

‖v‖Hs ≤ C1|A|τ
1
2Ms‖u‖Hs

for all u,A, x0 whenever M · τ ≥ 1, where C1 is a positive constant depending
only on s.

(2) If s < 0 and σ ≥ |s|, then

‖v‖Hs ≤ C1|A|τ
1
2Ms‖u‖Hσ

for all u,A, x0 whenever M1+ s
σ ·τ ≥ 1, where C1 is a positive constant depending

only on s and σ.
(3) There exists c1 > 0 such that for each u there exists Cu <∞ such that

‖v‖Hs ≥ c1|A|τ
1
2Ms‖u‖L2

whenever τ ·M ≥ Cu.

Now we recall the ill-posedness result of [6] for (2).

Lemma 3.2. Let s < 0. The solution map of the initial value problem associated
with (2) fails to be uniformly continuous. More precisely, for 0 < δ � ε � 1 and
T > 0 arbitrary, there are two solutions v1, v2 to (2) with initial data φ1, φ2 such
that

‖φ1‖Hs , ‖φ2‖Hs . ε,

‖φ1 − φ2‖Hs . δ,

sup
0≤t≤T

‖v1(t)− v2(t)‖Hs & ε.
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Moreover we can find solutions to satisfy

sup
0≤t≤∞

‖vj(t)‖H5 . ε, j = 1, 2. (29)

Suppose that N � 1 is a large parameter that will be chosen later. Let v(s, y)
be a solution of the cubic NLS equation (2) and

(s, y) := (t, x+ 2Nt).

We are going to construct an approximate solution given by

V (t, x) = eiNxeiN2tv(s, y). (30)

Since v(s, y) is a solution of (2), we have

i∂tV − ∂2
xV −Dβ

(
|V |2V

)
= E,

where

E = eiNxeiN2t|v|2v −Dβ
(
|V |2V

)
= E2 − E1.

Lemma 3.3. Let u be a smooth solution to (28) and V be a smooth solution to the
equation

i∂tV − ∂2
xV −Dβ

(
|V |2V

)
= E

for some error function E. Let e be the solution to the inhomogeneous problem
i∂te−∂2

xe = E with e(0) = 0 and suppose that ζ(t) is a compactly supported smooth
time cut-off function such that ζ = 1 on I = [0, 1]. If ‖u(0)‖

H
β
2

+ε
, ‖V (0)‖

H
β
2

+ε
,

‖ζ(t)e‖
X
β
2

+ε, 1
2
+ε

. ε and ε is sufficiently small, then we have

‖u− V ‖
X
β
2

+ε, 1
2
+ε

. ‖u(0)− V (0)‖
H
β
2

+ε
+ ‖ζ(t)e‖

X
β
2

+ε, 1
2
+ε
.

In particular, we have

sup
0≤t≤1

‖u(t)− V (t)‖
H
β
2
. ‖u(0)− V (0)‖

H
β
2

+ ‖ζ(t)e‖
X
β
2
, 1
2
+ε
.

Proof. If we consider in the integral form for V , then we have

V (t)− e(t) = U(t)V (0)− i

∫ t

0

U(t− t′)(Dβ(|V |2V ))(t′) dt′.

We get by taking X
β
2 ,

1
2 +ε(I) norm on both sides that

‖V ‖
X
β
2

+ε, 1
2
+ε

. ‖V (0)‖
H
β
2

+ε
+ ‖ζ(t)e‖

X
β
2

+ε, 1
2
+ε

+
∥∥Dβ(|V |2V )

∥∥
X
β
2

+ε,− 1
2
+ε(I)

. ‖V (0)‖
H
β
2

+ε
+ ‖ζ(t)e‖

X
β
2

+ε, 1
2
+ε

+ ‖V ‖3
X
β
2

+ε, 1
2
+ε(I)

.

Now it reveals by the continuity argument with sufficiently small ε that ‖V ‖
X
β
2

+ε, 1
2
+ε

(I)
.

ε.
Let w := u− V . Then w satisfies the equation

i∂tw − ∂2
xw = Dβ (|w|2w + 2|w|2V + 2w|V |2 + w2V̄ + w̄V 2)− E, w(0) = u(0)− V (0).

which is written in integral form as

w(t) = U(t)w(0)− e(t)

− i

∫ t

0

U(t− t′)
(
Dβ
(
|w|2w + 2|w|2V + 2w|V |2 + w2V̄ + w̄V 2

))
(t′) dt′.
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We have by taking again X
β
2 +ε, 12 +ε(I) norm on both sides of the above equation

that

‖w‖
X
β
2

+ε, 1
2
+ε

. ‖u(0)− V (0)‖
H
β
2

+ε
+ ‖ζ(t)e‖

X
β
2

+ε, 1
2
+ε

+
∥∥|w|2w + 2|w|2V + 2w|V |2 + w2V̄ + w̄V 2

∥∥
X
β
2

+ε,− 1
2
+ε(I)

. ‖u(0)− V (0)‖
H
β
2

+ε
+ ‖ζ(t)e‖

X
β
2

+ε, 1
2
+ε

+ ‖w‖
X
β
2

+ε, 1
2
+ε(I)

(
‖w‖

X
β
2

+ε, 1
2
+ε(I)

+ ‖V ‖
X
β
2

+ε, 1
2
+ε(I)

)2

.

Finally the desired bound is deduced by the continuity argument with respect to
time provided ε is sufficiently small.

Lemma 3.4. If e is a solution of equation i∂te − ∂2
xe = E with e(0) = 0, and ζ

is the smooth time cut-off function given above, the V (t, x) in E satisfy (30) and
(29), then

‖ζ(t)e‖
X
β
2

+ε, 1
2
+ε

. εN−1+ 3β
2 +ε.

Proof. Using the Plancherel theorem we have

‖ζ(t)e1‖
X
β
2

+ε, 1
2
+ε

. ‖ζ(t)E1‖
X
β
2

+ε,− 1
2
+ε

=
∥∥∥〈τ − ξ2〉− 1

2 +ε〈ξ〉
β
2 +εζ̂(t)E1

∥∥∥
L2
τL

2
ξ

≤
∥∥∥〈ξ〉 β2 +εζ̂(t)E1

∥∥∥
L2
τL

2
ξ

=
∥∥∥ζ(t)〈ξ〉

β
2 +εÊ1(t, ξ)

∥∥∥
L2
tL

2
ξ

≤
∥∥∥〈ξ〉 β2 +εÊ1(t, ξ)

∥∥∥
L∞t L

2
x([0,1]×R)

.

A direct computation leads to that

ζ̂(t)E1(τ, ξ) = |ξ|β ζ̂|v|2v(τ +N2 − 2Nξ, ξ −N).

Let Pλ,µ be the Littlewood-Paley projection with dyadic numbers λ, µ. The fact
that ζ(t) is compactly supported yields∥∥∥ ̂Pλ,µζ|v|2v(τ, ξ)

∥∥∥
L2
τL

2
ξ

.
ε

〈λ〉K〈µ〉K

by choosing K large enough, and so∥∥∥ ̂Pλ,µζ|v|2v(τ +N2 − 2Nξ, ξ − 3N)
∥∥∥
L2
τL

2
ξ

.
ε

〈λ+N2 − 2Nξ〉K〈µ−N〉K
.

Rewriting ‖ζ(t)E1‖
X
β
2

+ε,− 1
2
+ε

by dyadic decomposition,

‖ζ(t)E1‖2
X
β
2

+ε,− 1
2
+ε

.
∑

λ,µ≥1,dyadic

〈λ− µ2〉−1+2ε〈µ〉3β

×
∥∥∥ ̂Pλ,µζ|v|2v(τ +N2 − 2Nξ, ξ − 3N)

∥∥∥
L2
τL

2
ξ

.
∑

λ,µ≥1,dyadic

〈λ− µ2〉−1+2ε〈µ〉3β ε2

〈λ+N2 − 2Nξ〉2K〈µ−N〉2K

. ε2N−2+3β+2ε.
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The estimate of ‖ζ(t)E2‖2
X
β
2
,− 1

2
+ε

is similar to ‖ζ(t)E1‖2
X
β
2
,− 1

2
+ε

. We omit it.

Now we are ready to prove our ill-posedness result.

Proof of Theorem 1.2. Let 0 < δ � ε � 1 and T > 0 be given. From Lemma 3.2
we have two global solution v1, v2 with initial data φ1, φ2, respectively, such that

‖φ1‖Hs , ‖φ2‖Hs . ε,

‖φ1 − φ2‖Hs . δ,

sup
0≤t≤T

‖v1(t)− v2(t)‖Hs & ε. (31)

sup
0≤t≤∞

‖v1(t)‖H5 , ‖v2(t)‖H5 . ε.

Define V1, V2 by

Vj(t, x) = eiNxeiN
2tvj(s, y), j = 1, 2.

And let u1, u2 be smooth solutions of (28) with initial data V1(0, x), V2(0, x), re-
spectively. Let λ � 1 be a large parameter to be chosen later. For j = 1, 2,
set

uλj := λuj(λ
2t, λx), V λj := λVj(λ

2t, λx).

Thus we have

uλj (0, x) = eiNλxV λj (0, x) = λeiNλxvj(0, λx).

Lemma 3.1 with M = Nλ, τ = λ−1 implies that if s ≥ 0,∥∥uλj (0)
∥∥
Hs

. λs+
1
2Ns ‖vj(0)‖Hs ,

while for s < 0, for sufficiently large k we obtain∥∥uλj (0)
∥∥
Hs

. λs+
1
2Ns ‖vj(0)‖Hk .

We choose λ = N
−s
s+1

2 , then∥∥uλj (0)
∥∥
Hs

. ε,
∥∥uλ1 (0)− uλ2 (0)

∥∥
Hs

. δ.

Rescaling gives∥∥uλj (t)− V λj (t)
∥∥
Hs

. λmax(s,0)+ 1
2

∥∥uj(λ2t)− Vj(λ2t)
∥∥
Hs

. λmax(s,0)+ 1
2

∥∥uj(λ2t)− Vj(λ2t)
∥∥
H
β
2

+ε
.

Induction argument on time interval up to logN
λ2 yields∥∥uj(λ2t)− Vj(λ2t)

∥∥
H
β
2

+ε
. εN−1+ 3β

2 +ε,

whenever 0 < t� logN
λ2 . Hence we have∥∥uλj (t)− V λj (t)

∥∥
Hs

. λmax(s,0)+ 1
2 εN−1+ 3β

2 +ε.

From the hypothesis s > 3β−2
2(3−3β) , it follows that∥∥uλj (t)− V λj (t)

∥∥
Hs

. ε. (32)

Applying Lemma 3.1, we have∥∥uλj (t)
∥∥
Hs
≤
∥∥uλj (t)− V λj (t)

∥∥
Hs

+
∥∥V λj (t)

∥∥
Hs

. ε+
∥∥vj(λ2t)

∥∥
Hs

. ε. (33)
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By the ill-posedness result (31), we can find a time t0 > 0 such that ‖v1(t0) −
v2(t0)‖L2 & ε. Using Lemma 3.1 we obtain∥∥∥∥V1

(
t0
λ2

)
− V2

(
t0
λ2

)∥∥∥∥
Hs

& λs+
1
2 εNs ∼ ε. (34)

Combining (32), (33) and (34), a triangle inequality shows∥∥∥∥u1

(
t0
λ2

)
− u2

(
t0
λ2

)∥∥∥∥
Hs

& ε,

for t0 � logN . Choosing λ large enough that t0
λ2 < T , we get (6). This completes

the proof.

4. Standing wave. In this section we study the existence of standing waves of
(1).

The following result is direct consequence of the Gagliardo-Nirenberg inequality.

Lemma 4.1. Let − 1
2 < β < 3

2 and 0 ≤ q ≤ q∗

2 − 1, where

q∗ =

{
2

β−1 , β > 1,

∞−, β ≤ 1,

where ∞− is any number q1 < ∞. Then there is a constant C > 0 such that for
any g ∈X ,

‖g‖L2q+2(R) ≤ C
∥∥∥D− β2 g∥∥∥1− 1

2 (β+ q
q+1 )

L2(R)

∥∥∥D− β2 gx∥∥∥ β2 + q
2(q+1)

L2(R)
. (35)

As a consequence, it follows that X is continuously embedded in L2q+2(R).

Proof. If β ≥ 0, then (35) is obtained from the following Gagliardo-Nirenberg in-
equality

‖D
β
2 g‖L2q+2(R) ≤ C ‖g‖

1− 1
2 (β+ q

q+1 )

L2(R) ‖gx‖
β
2 + q

2(q+1)

L2(R) . (36)

If − 1
2 < β ≤ 0, then we have again from the Gagliardo-Nirenberg inequality with

p > 1 that

‖g‖L2q+2(R) ≤ C‖g‖1−θLp(R)

∥∥∥D1− β2 g
∥∥∥θ
L2(R)

,

where θ =
2− p

q+1

2+(1−β)p ∈ (0, 1). Finally inequality (35) is followed from

‖g‖Lp(R) ≤ C‖D−
β
2 g‖L2(R),

with p = 2
β+1 .

Lemma 4.2. Assume that ω > 0. Equation (8) possesses no nontrivial solution
ϕ ∈X ∩ L4(R) if β ≥ 3

2 or β ≤ − 1
2 holds.

Proof. Let ϕ be a nontrivial solution of (8). First we multiply (8) by ϕ and integrate
over R to get

ω‖D−
β
2 ϕ‖2L2(R) + ‖D1− β2 ϕ‖2L2(R) = ‖ϕ‖4L4(R). (37)

Next, we multiply (8) by xϕx and integrate over R, and use the identity (see [14,
Lemma 3] and [15, Theorem 4.1])∫

R
xϕxD

αϕ dx =
α− 1

2
‖D α

2 ϕ‖2L2(R)
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to deduce that
1

2
‖ϕ‖4L4(R) + (1− β)‖D1− β2 ϕ‖2L2(R) = ω(β + 1)‖D−

β
2 ϕ‖2L2(R). (38)

Combining (37) and (38), we derive

‖D1− β2 ϕ‖2L2(R) =
2β + 1

4
‖ϕ‖4L4(R)

ω‖D−
β
2 ϕ‖2L2(R) =

3− 2β

4
‖ϕ‖4L4(R).

(39)

And the proof is deduced form (39).

Theorem 4.3. Let − 1
2 < β < 3

2 . If ϕ ∈ X be a nontrivial solution of (8), then

ϕ ∈ L1(R) ∩H∞(R) and

|ϕ(x)| = O(e−
√
ω|x|), (40)

at infinity if β ≥ 0 and |ϕ(x)| = O(|x|−1−β) if β ≤ 0.

Proof. One can observe that any nontrivial solution ϕ ∈X satisfies

ϕ = K ∗ ϕ3, (41)

where

K̂(ξ) =
|ξ|β

ω + |ξ|2
.

We note that K = DβK0, where K0(x) = (ω +D2)−1. It is known that

K0(x) ∼=
1√
ω

e−
√
ω|x|.

It is easy to see that ‖K0‖Lq(R) = ω−
1
2 (1+ 1

q ). It is known from [7] that

K(x) =
π

2
csc(

π

2
(1 + β)) cosh(

√
ωx)

+
1

2
Γ(1 + β) cos(

π

2
(1 + β))

×
(

e−
√
ω|x|−βπiγ(−β,−

√
ω|x|)− e

√
ω|x|γ(−β,

√
ω|x|),

)
where γ(·, ·) is the lower incomplete gamma function. Furthermore,

DβK0 ∈ Lq(R) (42)

for all 1 ≤ q ≤ ∞ and β ≥ 0 with β − 1/q < 1 by an interpolation. To show the
regularity of the solutions of (8), we claim that ϕ ∈ L∞(R). Actually, it is obvious
from the Sobolev inequality for th case β ≤ 1. In the case β > 1, we can use (41)
and apply the Young inequality and (42) to get ϕ ∈ Lr(R) when 2

r ≥ 5β−7; so that

ϕ ∈ L∞(R) if β < 7
5 . If we repeat this process once again, we conclude ϕ ∈ Lr(R)

when 2
r ≥ 7β − 11; so that ϕ ∈ L∞(R) for any β < 3

2 .

Now, (42) shows that ϕ ∈ H2(1− β2 )(R), so if β < 1, then ϕ ∈ H1(R). We proceed
to find from (41) that

‖D3−βϕ‖L2(R) . ‖ϕ2ϕx‖L2(R) . ‖ϕx‖L2(R) < +∞.

So ϕ ∈ H3−β(R). In the case β > 1, let L > 0 be an integer such that 1/(L+ 1) ≤
1− β

2 < 1/L < 1. Then by an iteration argument as done for the case β < 1, we can

deduce that ϕ ∈ H3−β(R). Repeating the above argument show that ϕ ∈ Hk(R)
for any k ≥ 1.
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The decay analysis follows again from the properties of the kernel associated with
(8). We show that DβK0(x) = O(exp(−

√
ω|x|)). Indeed, by using the equivalence

form of Dβ [9], we have

|DβK0(x)| =

∣∣∣∣∣p.v.
∫
R

e−
√
ω|x| − e−

√
ω|y|

|x− y|1+β
dy

∣∣∣∣∣
≤ e−

√
ω|x|

∣∣∣∣∣p.v.
∫
R

1− e
√
ω(|x|−|y|)

|x− y|1+β
dy

∣∣∣∣∣
≤ e−

√
ω|x|

(
p.v.

∫
|y|≤1

|1− e
√
ω(|x|−|x−y|)|
|y|1+β

dy

+

∫
|y|≥1

|1− e
√
ω(|x|−|x−y|)|
|y|1+β

dy

)

≤ e−
√
ω|x|

(
p.v.

∫
|y|≤1

|1− e−
√
ω|y||

|y|1+β
dy +

∫
|y|≥1

|1− e−
√
ω|y||

|y|1+β
dy

)
.

The second integral of the above expression is easily bounded. The first integral is
also bounded by using |1− exp(−

√
ω|y|)| ≤ y2.

Next we consider the case β ≤ 0. Without loss of generality, we can assume that
ω = 1. we have

|DβK0(x)− |x|−1−β | =
∣∣∣∣∫

R
e−|y|

(
1

|x− y|1+β
− 1

|x|1+β

)
dy

∣∣∣∣
Note that when |y| ≤ 2|x|, one has∣∣∣∣ 1

|x− y|1+β
− 1

|x|1+β

∣∣∣∣ . |y|
|x|2+β

and thus∣∣∣∣∣
∫
|y|≤2|x|

e−|y|
(

1

|x− y|1+β
− 1

|x|1+β

)
dy

∣∣∣∣∣ . 1

|x|2+β

∣∣∣∣∫
R

e−|y||y|dy
∣∣∣∣

.
1

|x|2+β

(
1− (1 + 2|x|)e−2|x|

)
.

On the other hand, we have in the case |y| ≥ 2|x| that∣∣∣∣ 1

|x− y|1+β
− 1

|x|1+β

∣∣∣∣ . 1

|x|1+β
,

from which we obtain that∣∣∣∣∣
∫
|y|≥2|x|

e−|y|
(

1

|x− y|1+β
− 1

|x|1+β

)
dy

∣∣∣∣∣ . 1

|x|1+β
e−2|x|.

Since e−|x| is a bounded positive solution of −u′′+u = 0, then there exist r̄, s̄, r, s ∈
R such that ur̄,s̄ and ur,s are the subsolution and supersolution of this equation,
respectively, where

ur,s(x) = |x|−1−β + r|x|−3−β + se−|x|.

We conclude from the comparison principle and the above inequalities thatDβK0(x) ≤
|x|−1−β . Finally, we obtain the result by following the ideas of [3].
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Remark 1. It is interesting to know by using the Bessel function J that

max
R

K(x) = K(0) =
π

2
√

2Γ(1/2) sin(π(β + 1)/4)
.
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Figure 1. The graphs of K with negative values of β are shown
in the left and in the right figures with both signs.

Define the functional

I(u) = ω‖D−
β
2 u‖2L2(R) + ‖D−

β
2 ux‖2L2(R)

and consider the minimization problem

Mλ = inf{I(u), u ∈X , ‖u‖4L4(R) = λ} (43)

for some λ > 0. Then if ϕ ∈X achieves the minimum, there there exists a Lagrange
multiplier θ ∈ R such that

ωD−βϕ+D2(1− β2 )ϕ = θ|ϕ|2ϕ.
An appropriate scaling of ϕ satisfies (8). By the homogeneity, these solutions also
achieve the minimum

m = m(ω, β) = inf
u∈X \{0}

I(u)

‖u‖2L4(R)

.

It is easy to see that

Mλ = m
√
λ (44)

We show that
G(ω, β) = {ϕ ∈X , I(ϕ) = m2 = ‖ϕ‖4L4(R)}

is not empty. Let {ψn} be a minimizing sequence. That is, I(ψn) → Mλ and
‖ψn‖4L4(R) → λ as n→∞. To show that G(ω, β) 6= ∅, we can apply the concentration-

compactness principle [17]. We observe first from (44) that the following strict
subadditivity condition holds:

Mλ < Mρ +Mλ−ρ (45)

for any ρ ∈ (0, λ). Next, we have from Lemma 4.1 and the fact ‖u‖4L4(R) = λ > 0

that ‖u‖2X ' I(u) ≥ C > 0, where C = C(λ, β, ω). Thus, for the minimizing
sequence {ψn}, the coercivity of I implies that {ψn} is bounded in X . So, if we
define µn = |D−βψn|2 + |D1−βψn|2, then we can assume up to a subsequence after
normalizing that

∫
R µndx = L > 0. Similar to [17], the coercivity of I, Lemma 4.1

and (45) rule out dichotomy and evanescence cases. Hence, {µn} is compact, and
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there exists {xn} ⊂ R such ϕn(x) = ψn(x + xn) has a subsequence ϕn converges
weakly to some ϕ ∈ X . We now have from the weak lower semicontinuity of I
over X that I(ϕ) ≤ limn→∞ I(ϕn) = Mλ. In addition, weak convergence in X ,
compactness of µn, and Lemma 4.1 again imply that {ϕn} converges strongly to
ϕ in L4(R). Therefore, ‖ϕ‖4L4(R) = λ. This means that I(ϕ) ≥ Mλ, and then

ϕ ∈ G(ω, β). Finally, in the case β ≤ 0, since the kernel K is positive, then by the
symmetric decreasing rearrangement we can show the existence of an even, strictly
positive, decreasing solution of (8). This summarizes in the following theorem.

Theorem 4.4. Let β ∈ (−1/2, 3/2) and ω > 0. For any minimizing sequence
{ψn} of (43), there exist the sequence {xn} ⊂ R and ϕ ∈ X such that, ψn(·+ xn)
converges weakly in X , up to a subsequence, to ϕ. Moreover, ϕ attains the minimum
I(ϕ) = Mλ with ‖ϕ‖4L4(R) = λ. Furthermore, if β ≤ 0, there exists an even, strictly

positive, decreasing solution of (8).

Remark 2. It is worth noting that because of the structure of the dispersion of (1)
in the case β > 0, the standing waves of (8) should be sign-changing. We cannot
show this claim, but our numerical computations confirm it. See Figures 2.
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Figure 2. Plots of ground states of (1) with ω = 1 and various
values of β.

Next, we show that the minima obtained in Theorem 4.4 are precisely the ground
states of (8).

Theorem 4.5. The following assertions are, up to a change of scale, equivalent.
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(i) ϕ is a ground state,
(ii) ϕ minimizes I subject to the constraint ‖ϕ‖4L4(R) = λ0 = 4M2

1 .

Proof. The proof can be obtained by modification of one of Theorem 1.2 in [8], so
we omit the details.

Next aim is to find best constant for inequality (35). It is standard that this
constant related to an equation similar to (8) with the power-law nonlinearity. As
in the present paper we have considered (1), we investigate the existence of the best
constant of

‖u‖L4(R) ≤ Cbest

∥∥∥D− β2 u∥∥∥ 3
4−

β
2

L2(R)

∥∥∥D1− β2 u
∥∥∥ β2 + 1

4

L2(R)
. (46)

However we should remark that our argument is valid for the nonlinearity |u|2qu.
It can be seen that the best constant Cbest in (35) is obtained via

C−4
best = inf

u∈X \{0}

∥∥∥D− β2 u∥∥∥3−2β

L2(R)

∥∥∥D1− β2 u
∥∥∥2β+1

L2(R)

‖u‖4L4(R)

(47)

Theorem 4.6. There exist A,$ and y in R such that the best constant Cbest in
(35) is attained at ϕ̃ ∈ X , where ϕ̃(x) = Aϕ($x + y) and ϕ is a ground state of
(8) with ω = 1. Moreover, there holds that

C4
best = (4− θ)

2β−3
2 θ−

1+β
2 d−1, (48)

where θ = 1 + 2β > 0 and

d = inf{S(u), u ∈X \ {0}, S′(u) = 0},

recalling S from (9).

To prove Theorem 4.6, we show a profile decomposition by mimicking the proof
lines of [10, 13]. This also enables us to give another approach to study the existence
of solutions of (8).

Theorem 4.7. Let {vn}n be a bounded sequence in X . Then there exist a subse-
quence of {vn}n (still denoted by the same), a family {xjn}j of sequences in R and
a sequence {V j}j of X -functions such that

(i) for every k 6= j,

lim
n→∞

|xkn − xjn| = +∞, (49)

(ii) for every ` ≥ 1 and every x ∈ R

vn(x) =
∑̀
j=1

V j(x− xjn) + v`n(x), (50)

with

lim
`→∞

lim sup
n→∞

‖v`n‖Lp(R) = 0 (51)

for every p ∈ ( 2
β+1 , q

∗).
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Moreover, we have as n→∞ that

‖vn‖
Ḣ−

β
2 (R)

= ‖v`n‖2
Ḣ−

β
2 (R)

+
∑̀
j=1

‖V j‖2
Ḣ−

β
2 (R)

+ on(1) (52)

‖vn‖2
Ḣ1− β

2 (R)
= ‖v`n‖2

Ḣ1− β
2 (R)

+
∑̀
j=1

‖V j‖2
Ḣ1− β

2 (R)
+ on(1). (53)

Proof. Since X is a Hilbert space, we denote µ(vn) is the set of functions obtained
as weak limits of subsequences of the translated vn(x + xn) with {xn}n in X .
Denote

η(vn) = sup
V ∈µ(vn)

‖V ‖X .

It is obvious that

η(vn) ≤ lim sup
n→∞

‖vn‖X .

Next, we shall prove that there exist a {V j}j of µ(vn) and a family {xjn} of sequences
of R such that (49) holds, and up to a subsequence, we can write for every ` ≥ 1
and every x ∈ R that

vn(x) = v`n(x) +
∑̀
j=1

V j(x− xjn)

such that lim`→∞ η(v`n) = 0. Moreover, (52) and (53) hold. In fact, if η(vn) = 0, we
can take V j = 0 for all j and the proof is finished, otherwise, we choose V 1 ∈ µ(vn)
such that ‖V 1‖X ≥ 1

2η(vn) > 0. There exists, from the definition of µ(vn), a

subsequence {x1
n} of R such that up to a subsequence, we have that vn(· + x1

n)
converges weakly to V 1 in X . By setting v1

n(x) = vn(x) − V 1(x − x1
n), we obtain

that v1
n(x+ x1

n) converges weakly to zero in X , and then

‖vn‖X = ‖v1
n‖2X + ‖V 1‖2X + on(1).

Now, by replacing {vn}n by {v1
n} and repeating the same process, we find V 2 ∈

µ(v1
n) and {x2

n} ⊂ R such that ‖V 2‖X ≥ 1
2η(v1

n) > 0, v1
n(x + x2

n) and v2
n(x) =

v1
n(x)− V 2(x− x2

n) converge weakly to V 2 and zero in X , respectively. Moreover,

‖v1
n‖X = ‖v2

n‖2X + ‖V 2‖2X + on(1).

Furthermore, |x1
n − x2

n| tends to infinity as n → ∞. In fact, if it is not true, then
the facts v1

n(·+ x1
n) ⇀ 0 and

v1
n(x+ x2

n) = v1
n((x+ x2

n − x1
n) + x1

n)

lead us to V 2 = 0, and consequently the contradiction η(v1
n) = 0. By an iteration

procedure with orthogonal extraction, we are able to construct the families {xjn}j ⊂
R and {V j}j ⊂ X satisfying our claims above. In addition, we have from the
convergence of the series

∑
j ‖V j‖2X that limj→∞ ‖V j‖X = 0. Hence, η(vjn) tends

to zero as j →∞. Finally we show (51). Let R > 1 and νR ∈ S such that ν̂R(ξ) = 1
if R−1 ≤ |ξ| ≤ R and supp(ν̂R) = [(2R)−1, 2R]. Then, we can write

v`n = νR ∗ v`n + (δ0 − νR) ∗ v`n,
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where δ0 is the Dirac function. Thus, we have for any p ∈ (β0, q
∗) that

‖(δ0 − νR) ∗ v`n‖Lp(R) ≤ ‖(δ0 − νR) ∗ v`n‖Ḣs(R)

≤

(∫
|ξ|≤R−1

|ξ|2s|v̂`n(ξ)|2dξ

)1/2

+

(∫
|ξ|≥R

|ξ|2s|v̂`n(ξ)|2dξ

)1/2

. R−s−
β
2 ‖v`n‖

Ḣ
− β

2 (R)
+Rs−1+ β

2 ‖v`n‖
Ḣ

1− β
2 (R)

,

where β0 = max{2, 2
β+1} and s = p−2

2p . On the other hand, the Hölder inequality

and the Sobolev embedding imply that

‖νR ∗ v`n‖Lp(R) . ‖v`n‖
β0
p

Ḣ1− β
2 (R)
‖νR ∗ v`n‖

1− β0p
L∞(R).

Now we observe from the definition of µ(n`n) that

lim sup
n→∞

‖νR ∗ v`n‖L∞(R) = sup
xn

lim sup
n→∞

|νR ∗ v`n(xn)|

and

lim sup
n→∞

‖νR ∗ v`n‖L∞(R) ≤ sup

{∣∣∣∣∫
R
νR(−x)v(x)dx

∣∣∣∣ , v ∈ µ(v`n)

}
.

But, we have from the Plancherel formula that∣∣∣∣∫
R
νR(−x)v(x)dx

∣∣∣∣ . ∥∥∥|ξ| β2 ν̂R∥∥∥
L2(R)

∥∥∥|ξ|− β2 v̂∥∥∥
L2(R)

. R
1
2 + β

2 ‖ν̂R‖
Ḣ
β
2 (R)
‖v‖

Ḣ−
β
2 (R)

≤ R 1
2 + β

2 η(v`n).

Hence we obtain for every ` ≥ 1 that

lim sup
n→∞

‖v`n‖Lp(R) ≤ R−s−
β
2 ‖v`n‖

Ḣ−
β
2 (R)

+Rs−1+ β
2 ‖v`n‖

Ḣ1− β
2 (R)

+ ‖v`n‖
Ḣ−

β
2 (R)

(
R

1
2 + β

2 η(v`n)
)1− β0

p

.

By choosing R =
(
η(v`n)

)ε− 1
2−

β
2 for some ε > 0 small enough, we have from the the

uniform boundedness {v`n}` in X and the fact lim`→∞ η(v`n) = 0 that

lim sup
n→∞

‖v`n‖Lp(R) = 0,

as n→∞. And the proof is now complete.

Proof of Theorem 4.6. One first can observe easily that the best constant in (47) is
invariant under any scaling. Then, given u ∈ X \ {0}, we can find a, b ∈ R such
that ua,b = au(bx) satisfies ‖ua,b‖

Ḣ−
β
2 (R)

= ‖ua,b‖
Ḣ1− β

2 (R)
= 1. More precisely, one

has

a =

‖u‖
1
2 + β

2

Ḣ1− β
2 (R)

‖u‖
3
2 + β

2

Ḣ−
β
2 (R)

b =
‖u‖

Ḣ1− β
2 (R)

‖u‖
Ḣ−

β
2 (R)

.

Now suppose that {vn} ⊂ X is the minimizing sequence of (47). We can also
normalize it as above, and then it is uniformly bounded in X . By Theorem 4.7
we can find a sequence {V j} ⊂ X and {xjn}j ⊂ R such that, up to a subsequence,
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(49)-(53) hold. Hence, we deduce from (51) and the facts
∑`
j=1 ‖V j‖2

Ḣ−
β
2 (R)

≤ 1

and
∑`
j=1 ‖V j‖2

Ḣ1− β
2 (R)

≤ 1 that

C4
best = lim

n→∞
‖vn‖4L4(R) ≤ lim sup

n→∞

‖∑̀
j=1

V j(· − xjn)‖L4(R) + ‖v`n‖L4(R)

4

≤ lim sup
n→∞

‖
∑̀
j=1

V j(· − xjn)‖4L4(R).

(54)

The relation (49) shows that C4
best ≤

∑`
j=1 ‖V j‖4L4(R). The definition of Cbest and

(35) imply that

1 ≤ C−4
best

∑̀
j=1

‖V j‖4L4(R) ≤ sup
j
‖V j‖θ

Ḣ−
β
2 (R)

∑̀
j=1

‖V j‖4−θ
Ḣ1− β

2 (R)
.

Hence, we obtain from the convergence of
∑
j ‖V j‖2

Ḣ−
β
2 (R)

that there is j0 ∈ N such

that ‖V j0‖
Ḣ−

β
2 (R)

= supj ‖V j‖
Ḣ−

β
2 (R)

. Therefore, 1 ≤ ‖V j0‖
Ḣ−

β
2 (R)

, and conse-

quently V j0 is only nonzero element of the sequence {V j}. Thereby, ‖V j0‖
Ḣ−

β
2 (R)

=

‖V j0‖
Ḣ1− β

2 (R)
= 1 and Cbest = ‖V j0‖L4(R). That is, V j0 is a minimizer of (47) and

its Fréchet derivative is zero. This means that V j0 satisfies

θC4
bestD

2(1− β2 )V j0 + (4− θ)D−βV j0 − 4(V j0)3 = 0.

By setting V j0(x) = Aϕ($x+ y), where y ∈ R,

A2 =
C4

4
(4− θ)1− β2 θ

β
2 , $2 =

4

θ
− 1,

one observe that ϕ satisfies (8) with ω = 1. Finally, we have from (39) that

C4
best = 4(4− θ)

2β−1
2 θ−

1+β
2 F−1(ϕ).

Finally, it is obvious that d ≤ S(ϕ) (see Theorem 4.5). On the other hand, if
S′(u) = 0 for some u ∈X \ {0}, then u is a nontrivial solution of (8). This means
that S(ϕ) ≤ S(u) and thereby S(ϕ) ≤ d. This fact combined with (39) lead us to
(48).

As an application of inequality (46), we show the uniform bound of solutions of
(1).

We recall the following calculus result that is helpful.

Lemma 4.8 ([1]). Let I := [0, T ) ⊂ R be a non-degenerated interval. Let q > 1,
a > 0, b > 0, be real constants. Define ϑ = (bq)−1/(q−1) and f(r) = a − r + brq

for r ≥ 0. Let G(t) be a continuous nonnegative function on I. If G(0) < ϑ,
a < (1− 1/q)ϑ and f ◦G ≥ 0, then G(t) < ϑ, for any t ∈ I.

Theorem 4.9. Let u0 ∈ Hs(R), s > 2, and u ∈ C([0, T );Hs(R)) be the solution of
(1), associated with the initial value u0. Then u(t) is uniformly bounded in X , for
t ∈ [0, T ), if ς = 1, or ς = −1 and one of the following conditions hold:

(i) 1 > 2β;
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(ii) 1 = 2β and

F(u0) < 2
β

1+2β F(ϕ); (55)

(iii) 1 < 2β and u0 satisfies

‖u0‖2(θ−2)

Ḣ1− β
2 (R)

F4−θ(u0) < C1,θ‖ϕ‖2(θ−2)

Ḣ1− β
2 (R)

F4−θ(ϕ), E(u0) > 0, (56)

and

Eθ−2(u0)F4−θ(u0) < C2,θEθ−2(ϕ)F4−θ(ϕ) (57)

where

C1,θ = (4− θ)4−θθθ−2

(
3− 2β
1
4 + β

2

)θ−2

, C2,θ = (θ− 2)θ−2(4− θ)4−θ
(

3− 2β

2β − 1

)θ−2

,

ϕ is a ground state solution of (8) with ω = 1. Moreover, we have, in this
case, the following bound for the solutions

‖u(t)‖2(θ−2)

Ḣ1− β
2 (R)

F4−θ(u0) < C1,θ‖ϕ‖2(θ−2)

Ḣ1− β
2 (R)

F4−θ(ϕ). (58)

Proof. We consider only the case ς = −1. The case ς = 1 will be more simpler.
Let u ∈ C([0, T );Hs(R)) be the solution of (1) with the initial data u0 ∈ Hs(R2),

s > 2. Then by using the invariants E and F, we have

2E(u0) = ‖u(t)‖2
Ḣ1− β

2
− 1

2

∫
R
u4(t)dx

≥ ‖u(t)‖2
Ḣ1− β

2
− C4

best

2
F

4−θ
2 (u0)‖u(t)‖θ

Ḣ1− β
2
,

(59)

where θ = 2β + 1. If 1 > 2β, then (59) immediately implies that ‖u(t)‖
Ḣ1− β

2

(thereby ‖u‖X ) is uniformly bounded for all t ∈ [0, T ). If 1 = 2β, then we have the
uniform bound provided

2 > C4
bestF

4−θ
2 (u0). (60)

Using (48) we see that (60) is equivalent to (55).
By (59) and Lemma 4.8, we can define G(t) = ‖u(t)‖2

Ḣ1− β
2 (R)

and f(r) = a− r+

br
θ
2 , where

a = 2E(u0) and b =
C4

best

2
F

4−θ
2 (u0).

It is deduced from Theorem 1.1 that G is continuous. Furthermore, we have from
(59) that f ◦G ≥ 0. Hence, the proof of theorem will be complete if we show that
G(0) < ϑ and a < (1− 2/θ)ϑ, where ϑθ−2 = ( 2

bθ )2. Now it is easy to check by using
(35) that G(0) < ϑ is equivalent to (56). In addition, we obtain from (39) that

E(ϕ) =
2β − 1

2(3− 2β)
F(ϕ).

Therefore, a < (1− 1/q)ϑ is equivalent to (57). Thus, we get from Lemma 4.8 that
G(t) < ϑ, and equivalently (58). Hence, it is concluded from F(u(t)) = F(u0) for
all t ∈ [0, T ) that u(t) is uniformly bounded in X for all [0, T ).
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