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1. Introduction

In 1993, a new class of cellular neural networks (CNNs) was introduced, called shunting inhibitory
CNNs (SICNNs) [1]. SICNNSs are based on shunting neural networks and CNNs, both of which were
applied in different branches of engineering, described in [1]. Apart from applicability of neural
networks, it is also interesting to investigate periodic and almost periodic solutions, as they are
important for analyzing the stability of biological systems [2]. In this paper, we consider SICNNs
which incorporate consequences of real-world applications, such as possible delay of system
response [3] and uncertainties. Both of these effects are modeled using time-delays and fuzziness
respectively, resulting in modified version of SICNNs, called fuzzy SICNNs (FSICNNs) with
time-delays. We aim to study existence and stability of almost periodic solutions of FSICNNSs,
continuing the study initiated in [4].

Existence and stability of different types of periodic solutions were extensively studied for CNNs,
fuzzy CNNs (FCNNs), SICNNs. For instance, sufficient conditions for existence and stability of
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periodic solutions were presented for delayed CNNs [5, 6], CNNs with time-varying delays [7],
discrete analogue of CNNs [8]. Similarly, almost periodic solutions were studied for CNNs with
distributed delays [9], time-varying delays [10, 11], time-varying delays in leakage terms [12].
Delayed CNNs with impulsive effects were studied for periodic solutions [13] and anti-periodic
solutions [14]. Using Lyapunov functionals, existence and stability criteria of periodic solutions were
shown for FCNNS with time-varying delay [15], with distributed delay [16]. Almost periodic
solutions of FCNNs were also considered, with time-varying delays [17], multi-proportional
delays [18]. Existence and stability of pseudo almost periodic solutions were studied for FCNNs with
multi-proportional delays [19], time-varying delays [20] and for quaternion-valued version with
delays [21]. Study about almost periodic solutions for SICNNs were initiated in [22]. Further,
existence of stable almost periodic solutions were analyzed for SICNNs with time-varying
delay [23,25], continuously distributed delays [24], impulse [26]. In addition, with no assumption of
Lipshitz conditions for activation function, results about almost periodic solutions were further
improved [27, 28]. Anti-periodic solutions were presented for SICNNs with different types of
delays [29-34].

Existence of periodic solutions were also studied for FSICNNs with delays [4]. However, to the
best of our knowledge, existence and stability analysis of almost periodic solutions for FSICNNs are
not studied yet. Therefore, we aim to fill this gap by presenting the study of almost periodic solutions
for FSICNNs with several delays. In particular, here we present sufficient conditions for existence
and stability of almost periodic solutions, and importantly, numerical examples confirming theoretical
findings are presented.

We will consider the description of the FSICNN in the following form.

qu(t) = _apq(t)qu(t) - Z C;(;[q(t)f(xkl(t))qu(t) + qu(t)

CueN-(p.q)
+ D BIOU M= N DEOF Gt = Ti)x (1)
CreN(p.q) CreN-(p.q)
-\ EROfCut =m0+ N\ TH @U@0
CreN(p.q) CrEN(p.q)
+ \/ HLOU, (1.1)

CreN(p.q)

where C,,, p = 1,2,...,m, q = 1,2,...,n, denote the cell at the (p, g) position of the lattice, the
r—neighborhood of C,,, is

N.(p,q) ={Cy :max{lk—plll-ql} <r, 1 <k<m, 1<1<nj,

x,q represents the activity of the cell C,, at time ¢; the positive function a,,(t) is the passive decay rate
of the cell activity; U ,,(?) is the external input whereas L,,(?) is the external bias on the (p, g)th cell; the
nonnegative functions C%. (1), D (1), E&. (1), T’ (1), and H}. () are the connection or coupling strength
of the postsynaptic activity, the fuzzy feedback MIN template, fuzzy feedback MAX template, fuzzy
feed forward MIN template, and fuzzy feed forward MAX template of the cell Cy; transmitted to the
cell Cp, at time ¢, respectively; A\ is the fuzzy AND operation whereas \/ is the fuzzy OR operation;
the function f(xy,) represents a measure of activation to the output or firing rate of the cell Cy;; and 7y

corresponds to the transmission delay along the axon of the (k, [)th cell from the (p, g)th cell.
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We consider the network (1.1) subject to initial data
qu(s) = ppq(s)a s € [-71,0], (1.2)

where p,,(s) is the real-valued continuous function and 7 = 1mkax {t1}. Let us denote g = sup g(¢) and
sksm teR

1<i<n
g = ing g(7). In this paper, we use the maximum and supremum norms given by [|x]| = max, ) |x,,l,
- te
X = {qu} € R™" and ||x|lo = sup, llx(?)ll, respectively. We use the following Bohr definition of
almost periodic functions.

Definition 1.1. /35,36] A continuous function ¥ : R — R is almost periodic if for every € > 0, there
exists a number | > O with the property that any interval of length [ of the real line contains at least
one point w for which

Wt + w) — Y@ <€, —oo<t<+oo.

2. Almost periodic solutions

In this section, we study the existence and uniqueness of almost periodic solutions to the
network (1.1). For this purpose, we shall need the following conditions.
(A1) The functions a, (), By, (1), Cye (1), Dy (1), Ef,’q(t),_H’[j;(t), T (D), Lpg(1) and U, (1) are continuous
almost-periodic functions for p,k = 1,m, g, = 1,n.
(A2) The function f(-) is Lipschitz continuous on R with Lipschitz constant L’ such that |f(x) — f(y)| <
Lx =yl
(A3) There exists a positive constant M such that |f(x)| < M.
(A4) c =mina >0, wherea = inf a,,(1).
pq P4 P4 reR

(AS) Mp < 1 where

3 (C"’ + Dy + Ef,f])

CueN(p.q) b
0 = max
(p.) a.
Set
7 Bkl 77 Skl 7 Tkl
L, + . g;(p i (BY. Upy+ T U,y + HS U,
f = max -
(P .
0
and P = .
1-Mp
(A6) (M + PL )p < 1.
Define ki ki kI kil
Upg = dpy — M Z (Cpy+ Dy + Epp) = L'p Z Cpy
CueN:(p.q) CueNy(p.q)
and

—kl —ki
vpg=L'P Y (D, +E,).
CueNr(p,q)
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From (A6), it follows that u,, > v,, > 0. Moreover, the following auxiliary lemmas will be useful
in obtaining the main results. The original version of the first lemma was proven for discontinuous
functions with discontinuities at ¢ = ¢; which can easily be generalized to a continuous case.

Lemma 2.1. [37] Let M(t) be a m X n almost periodic matrix function and suppose (Al) holds true.
Then, there exists 6 > 0 such that

o |[M(t+w)— M@ <0;

o |a,,(t+w)—a,)| <o;

e |Bj.(t +w) — By (1| < 6
o ICY(t+w) - CL ()| <6;
o Dy (t +w) = DY (D] < 6;
* |E}(t+w)— EN (N <6;
o |Hj(t +w) — Hy (D] < 6
o I (1+w) - I} (D] <6

o Ly, (t+w) - Ly, (D <6

o |UY(t+w)— U0 <6

forallp,kzl,_m, q,l=1,n.

In other words, Lemma 2.1 asserts that it is possible to choose a common almost period to several
almost periodic functions.

Lemma 2.2. [37] Let O(t, s) be a fundamental matrix of a linear system x = A(t)x, where A(t) is a
n X n almost periodic matrix. Assume that there exist K > 1 and 8 > 0 such that

D2, )l < KeP™, for t > s. 2.1)
Then, for any 6 > O there exists a relatively dense set of almost periods w of A(t) such that
1D + w, 5+ w) = Bt, $)lleo < A@)e 2, for 1> 5, 22)

where A does not depend on 7 and s. Lemma 2.2 states that ®(¢, s) is diagonally almost periodic. It
is easy to check that ®@,,(z,s) = ¢~ a4 i 3 fundamental matrix of the linear equation Xpg(t) =

—0pg(1)X,4(1), the linear part of the network (1.1). One can show that ®,,,(z, s) meets the condition (2.1)
with K =1and g = a,. Thus, for each i and j we have

o i aptd _ o= [l amtd < A ()¢5 09, (2.3)

Theorem 2.1. If the conditions (Al)—(A6) hold true, then the network (1.1) has a unique almost
periodic solution.

Proof. One can easily prove that ¢, is a unique and bounded solution of (1.1) if and only if it satisfies
the following integral equation
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Goal0) = f e Fenin( =S ) 5By (5) + Ly(s)

CueN(p.q)
O BLOU = N DS (Guls — Tu)py(s)
CueN(p.q) CueN(p.q)
=\ BSOS @uls = Ti)p(s)
CueNy(p.q)
+ N\ TEOUe+ \/ Hf,;(s)U,,q(s))ds. (2.4)
CueNH(p.q) CueN(p.q)

Let us define © to be set of almost periodic functions ¢(1) = {¢,,(1)}, p=1,--- ,m,q=1,--- ,nsuch
that ||¢||l.. < P and a nonlinear operator on & by

@@y, = [ Lo N @) + Ll

CueN(p.q)
) BLOUy) = N DL (Guls = Tu)py(s)
CueN(p.q) CueN(p.q)
=\ ES)F(@uls = Ti)pg(s)
CueN:(p.q)
v N\ U+ \/ H;;;(s)qu(s))ds
CreNy(p.q) CreNy(p.q)
Denote B B B B
> (BY +Th +HyL +30
Y P.9) a

—P4q

Let’s check that T(S) C S . For any ¢ € G, it suffices to prove that ||T¢||., < P. Indeed,

|(Tp(1)),, | < f e %" ”( D ICEONFDus)Igpg(s)]

CreNH(p.q9)
L)+ > BN+ [\ IDEOIFGuls = Ti)lgpg(5)
CueNH(p.q) CreNH(p.q)
kl
N ES O Guls = Tl ()
CueN(p.q)
b\ T\ OIS
CreNy(p.q) CueNr(p.q)
1 ~kl T pkl 17 Nkl
<—(mMP ) Ch+Ly+ D BU,+MP ) D
—Pq CreN(p.q9) CueNy(p.9) CreNy(p.g)
+MP Y BN+ Y THO,,+ > ANO pq)<MPp+9 P,
CueNH(p.q) CreN(p.g) CreNH(p.q)
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To this end, given arbitrary € > 0 consider the numbers w and 6 > 0 as in Lemma 2.1 such that

||¢>lglt + w) - ¢>(t)k|1| < 4, |apq(tk1+ w) — apq(tzll < 4, |B’1§lq(tkl+ w) — Bf,’q(tk)ll <0, |Cf,lqk(lt + w) - C%(t)l <0,

D, (t + w) — D, ()] <6, |E, (t +w)— E} (D] <6, |H,(t+w)- %t)l <0, Uﬂ(t +w) - I, (0] <6,
ki ki ki ki _ _ .

L, (t +w) — Ly, (D] <6 and |Upy(t + w) = U, (D] <6 forall p,k=1,m, gq,l = 1,nand t € R. It is easy

to see that

|(Th(t + @), — (TP, |
< f |€_ f::}) apg(wdu __ e fstupq(u)dul( Z |Cf]lq(s + w)||f(¢k1(s + a)))||¢pq(s + 0)) - ¢pq(s)|

which implies ||T¢|l, < P. Therefore, T(S) € S. Next, we show that T¢(¢) is almost periodic.

CreEN(p.q)

+ Z Ch (s + I f(Bra(s + ) = F(Br(Nppg(5)]
CueN(p.q)

O ICH (s + w) = CEIF () dpg(9)
CreN(p.q)

HLpg(s + @) = Lyg(s)l + > IBY,(s + @) = B (DU (s + )|

CueNy(p,q)

£ IBLOIU (s + @) = Upy(s)]
CueN(p.q)

+ DG+ @ Guls + @ = T)ldpg(s + @) = dpg(9)
CueNy(p.q)

N\ IDEGs + If s + @ = 7)) = F(@uls = T)dp(5)
CueN(p.q)

+ /\IDE(s + w) = DEOIFGuls = Ti)lldpg(5)
CreN(p.q)

+\ IERLGs + O @uls + © = Ti)lfpg(s + ) = fpg(5)
CueNy(p,q)

+ \/ |Ef;lq(s + O f(@u(s + w — 1)) — (s — Tl pg (5)]
CueN(p.q)

+ \/IES (s + @) = ELONF@uls = Tu)ligpg(s)
CueNy(p.q)

# N TG+ @) = TEOIWUp(s+ o)+ N\ ITEIUpg(s + @) = Upy(s)|
CueN(p.q) CueN(p.q)

+ v |H (s + w) = Hy ($)|1U pg(s + w)| + v Hy (U py (s + w) — U,,q(s)l)ds.
CueNy(p,q) CueNy(p.q)

Thus, by means of the condition (2.3) one can show that

(TPt + ),y — (TPD)) g | < 5AS),
where

Ao(8) = 2A(8) | (M + PL)p + 3 Z MP+)/+1].

CueNy(p.q)
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Hence, Ay(6) is a bounded function of 6. Now, let us choose € so that 6Ay(6) < €. Thus, we have
|TP(t + w) — TP(?)|| < € for all ¢ € R, which yields that T¢(r) is almost periodic.
Finally, for ¢, ¥ € S one can verify that

|(Z¢t(l))pq - (Zl//(t))pql
< f N TGN (5)  F ()

- L CreN(p.q)

Y ol W) g(s) — F W)Wyl
CueN(p.q)

+ 3 Dol f@uls = T)bng(s) — FWals = T p(s)]
CueN(p.q)

+ 0 Dol fWls = mi)bpg(s) = FWals = T (5)
CueN(p.q)

Y Epglf@uls = 1u)dpe(s) = FWals = T))bpg(5)
CreNy(p.q)

+ Z E];,l(ﬂf(lﬂkl(s = Ti))Ppg(s) — fWi(s — Tkz)))’pq(s)l)ds
CueN(p.q) i

Ckzeg([? 9 (Cpq + DP‘I + EP‘I
< (M + PL))—— 16 = Yllco-

—Pq

Hence, we have [|T¢(1) — Ty(H)|l < (M + PL)pl|¢p — ¥l Due to the condition (A6), we conclude that
T is contraction from & to ©. Thus, the network (1.1) admits a unique almost periodic solution. O

3. Stability

Before starting the proof of global exponential stability of almost periodic solutions, we need the
following result: according to Huang’s paper [38], the equation below has a unique positive solution «

a=u-—ve”, (3.1

where u > v > 0.

Theorem 3.1. Suppose that the conditions (Al)—(A6) are fulfilled. Then, a unique almost periodic
solution of the network (1.1) is globally exponentially stable, with convergence rate «, satisfying the
Eq (3.1).

Proof. In the previous section, we have shown that the network (1.1) has a unique almost-periodic

solution. Let us define the following norm ||x(¢) — y(?)|| = r(na>)< |x,4(f) — ypg(?)l, and for simplicity,
p4
we denote as [[x(¥) — y(@)I| = |x,4(t) — y,q(*)|. Theorem 2.1 can similarly be proven using such norm.

Consider arbitrary two solutions of the network (1.1): x(¢) = (x11(2), ..., X1,(8), . . s X1 () - . ., X (1))
and y(1) = (y11(0), ..., Y128, ., Y1 (@) . . ., Vuu()) With the initial conditions x(s) = p(s), s € [-T,0],
and y(s) = «(s), s € [T, 0], respectively.

AIMS Mathematics Volume 7, Issue 7, 11813—11828.
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d d
2O =Yl = —1xp4(8) = ¥y (D]

d
:Sign(qu(t) - ypq(t))a(qu(t) - ypq(t))
ZSign(qu(t) - ypq(t))[_apq(t)[qu(t) - ypq(t)]
- Z Ch OLf ()% (1) = f G0y pg (D]

CueN(p.q)

- /\ Dy (OLf (ua(t = T1)Xpg () = f Gt = T12))Ypg ()]
CueN(p.q)

=\ EE Ot = 1)xpg(t) = fGult = Ta))ypg(D]]
CueN(p.q)

< = g = g+ Y CHLO | F ) x540) = F )y )]

CueN(p.q)

+ /\ Df,lq(f) |f(xk1(l = Ti))Xpg (1) — f Qu(t — Tkl))ypq(t)|
CueN(p.q)

) ELOFGut = Ti)xpg(®) = FOult = Ta))ypg0)
CueN(p.q)

< - apq(t)lqu(l) - ypq(t)l
+ D OO0 =31+ D ChOlyp O xue) = FOud)

CueNy(p.q) CueN:(p.q)
kil kl
+ /\ D, DN f (aaa(t = T)l|Xpg (1) — ypg (D] + /\ D, DNy pg O f (X = T10)) = f Gt = i)
CueNy(p.q) CueNy(p,q)
+ \/ Ef,lq(f)|f(xkz(l‘ = T)|Xpg (1) = ypg(D] + \/ Ef,lq(t)|)’pq(f)||f(xk1(t = 7)) — fu(t — )l
CueNy(p,q) CueN(p.q)
—kl —u —u —u
(-au+M Y CutM Y Dyt M 3 Byt Lyl D Ty Jlipe® = 30
CueNy(p.q) CueN:(p.q) CueN:(p.q) CueN:(p.q)
—ul —u
+L 1y, (1) [ > D+ ), E,,q] et = i) = Yualt = T
CreN,(p.q) CrEN(p.q)
—k —k  —k f —kl
s( —a, +M Z (C,,+D,, +E,)+L'P Z Cpq)llx(t) —y)||
CueN-(p.q) CreNy(p.q)
—k =k
+P YT (D + B IIx(t = 1) = y(t = )l
CreN(p.q)
M =k —K —u
<- (gm MY ©Co+ D+ Ey-LP Y Cpq)llx(t) ~y0)|
CueN/(p.q) CueN(p.q)
—k —ki
+LP Y Dy +Epp) sup [Ix(s) = y(s)l. (3.2)

—7<s<
CueN(p.g) Irssst
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Above inequality is of the form

—IIX(I) YOI < —ullx(®) = y(Oll +v sup [lx(s) = y(s)ll,

where

and

CreN(p.q)

_af —kl —kl
v=L'P Z (D,, +E,,

CreN:(p.q)

—1<s<t

—k =kl =K —k
— _ _7qf
u=a, M E C,,+D,,+E,)-L'P E C,,

CueN(p.q)

).

(3.3)

Since u > v > 0, according to Halanay’s inequality, solution y(#) converges exponentially to almost
periodic solution x(#). In addition, convergence rate « is a unique solution of the following equation

4. Examples

4.1. Example 1: 3x3 lattice

a=u-—ve”

We consider FSICNN, where m = 3,n = 3 and the functions a,,(t), C,4(1), Ly, (1), Byg(t), U,y(1),

D, (1), E (1), Tpy(2), and

an(t) ap()
ax(t) axn(t)

azi(t) as()

Ciu(p)
Cr (1)
Cs1(0)

Ly (2)
L (?)
L3 (2)

Bii(t) Bi(t) Bis(1)
By (1) Bxn(t) Bx(h) | =
B3i(1) Bsn(t) Bss(1)

Un(@) Up() Us@)
Uni(t) Uxn(t) Uxn(t) | =
Us1(1) U (1) Uss()

AIMS Mathematics

a3(1)
a3(t)
az3(1)

Cia(0)
C(1)
Csy(1)

Li>(1)
Ly (1)
L3 (1)

H,, (1) are given by

cos(1) cos(1) cos(1)
1.2+sin(r V2) +22 2+cos(t2\/§) +22 2.5+sin(r V2) +22
_ cos(1) 1.5sin“(¢) cos(1)
- 2.1+si121(t\@) +22 2+sin(t V2) 22 2.8+cos(r V2) +22
sin“(7) cos(t) cos(t)
3+sin(t V2) +22 2+cos(t V2) +22 1.8—cos(r V2) +22
sinz(t) cos(1) 0.3 sin2(2)
Ci5(2) 12+sin(tV2)  14+sin(tV2)  24cos(t ¥2)
C (l) — 0.4 cos() cos(?) 0.5 cos()
13 124sin(tV2)  1.6+sin(tV2)  2+cos(V2)
C33 (l) cos(1) 0.8 cos(1) cos(1)
1.2+sin(tV2)  2.3+cos(tV2)  1.2+sin(r V2)
0.2 cos(?) 0.1 sin(?) cos(t)
L13(t) 20+sin(t\/§) 20+cos(t\f) 12+s1n(t\f)
L (t) cos(r) sin(z) 0.5 cos(t)
23 1.2+4sin(V2)  —20—cos(t V2)  20+cos(r V2)
L33 (l) —1.1 cos(#) sin(t) cos(1)
20+sin(z V2) 26—cos(f V2) 12+sin(r V2)
0.5 cos(1) cos(t) cos(t)
17+4sin(rV2)  12+sin(tV2)  12+sin(z V2)
sin(7) cos(t) sin(?)
14+sin(r V2)  12+sin(tV2)  24+cos(t V2)
cos(1) 0.2 cos(t) sin%(r)
26+sin(r V2)  12+sin(tV2)  18+cos(t V2)
0.3 + sin(r) cos(1) sin(z)
) 20+sin(r V2) 17+cos(t V2) 14+co€(t V2)
sin(z) 0 1 cos(?) sin(z
20+sin(r V2) 21+cos(t V2) 28+cos(t «f 2)
cos(?) 0.3 sin(?) cos(t
—2+sin(t V2) 25+cos(r V2) 13+sin(z \F 2)

Volume 7, Issue 7, 11813—11828.
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cos(t) 0.2 sin%(7) cos(?)
Dy1(t) Di(1) Di3(1) 2 3+sin(t xf%)) 2.3+sin((t)\/i) 1.3+sin((t)\/§)
cos(t cos(r cos(r
Dy (1) Daxn(t) Dy(r) |=| 0.2 1 2+sin(t V2) 34+ \2) 1.6+sin(t V2)
D31(t) Dz(t) Dis(t) _cos() sin”(¢) cos(t)
2+sin(r V2) 0.1 1.24sin(tV2)  2.1+cos(t V2)
0.6 cos() cos(1) 0.8 cos(1)
Ei1(0) Enn(t) E;() ’ 1.01(4;(:05(1 V2) 2+cos((t)\@) l.llﬂ-ssin(t(\)ﬁ)
cos(t cos(# . cos(t
Ey(t) Exn(t) Exn() |= 2+cos(t \2) 1.2+sin(t V2) 2+cos(t V2)
E3 t E32 t Egg t sin” (1) cos(1) cos(1)
1) 0 Ex(®) 1.2+sin(t V2) 0.1+ 22+sin(tV2)  2.3+cos(r V2)
0.1 cos(1) cos(1) 0.8 cos(?)
T1:1(t) Ti(t) Ti5(b) 2.2+sin(r V2) 1.1+si121(t V2) 2-+cos(t V2)
_ cos(1) sin“(f) cos(1)
;21 Et; ;22?3 ;23 Et; - 0.1+ 1,3(+)cos(t \@) 2.1+cos(t \/f() ) 3.2+cos((§ \/5)
t l‘ t cos(7 cos(t cos(t
i 32 33 1.2+sin(t V2) 0.04 + 2+cos(rV2)  1.2+sin(r V2)
cos(1) cos(1) sinz(t)
Hy(t) Hp(t) His() 2sint E/)i) 0.3 + 23(+;:os(:«ﬁ) 0.2+ 1.2+sin((t)\ﬁ)
_ .6 cos(r cos(t cos(t
Hy (1) Hxn(t) Hx(h) |= 2+sin(r V2) 1.2+sin(t V2) 04+ 1.8+cos(r V2)
H31(t) H3 (1) Hss(1) cos(?) cos(?) _cost)
1.2+sin(t V2) 1.8+cos(f V2) 2+sin(r V2)

In this example, we consider an activation function f,,(x) = 0.05 tanh(x), and delays 7;; = 0.5,
Tip =T, T13 = 71'/2, Ty = 7T/3, Ty = 03, T3 = 7'(/6, T31 = 71'/8, T3p = T, T33 = 71'/2 Definition of
coeflicients above implies that condition (A1) is satisfied. Conditions (A2) and (A3) are also satisfied
with L/ = M = 0.05. Conditions (A4)—(A6) are satisfied with oo = 17.2, Mp = 0.3 and (M + PL)p =
0.8 respectively. Hence, Theorems 2.1 and 3.1 hold true for this example, and this system should have
globally unique and stable almost periodic solutions. Figures 1-3 present numerical simulation of this
example, confirming theoretical results. We see that all solutions converge to each other until 7 = 0.2 s,
and these solutions are indeed almost periodic until 7 = 100 s. And lastly, thanks to approach using
Halanay’s inequality, convergence rates can also be computed. As an example, solutions for (1,2,4,5)
sets of initial conditions converge the 3" with convergence rates @ = 0.8042,0.8042,0.6863,0.878

respectively.
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Figure 1. x;,(¢), x;2(¢) until 7 = 100 s and magnified up to 0.2 s.
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Figure 2. x13(), x21(1), x25(1), x23(t), x31(2), x32(¢), until T = 100 s and magnified up to 0.2 s.

0.06,0.04, -0.05, -0.06, —0.1.
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(a) x33(¢) with the initial conditions
0.09,-0.03,0.11,0.07,0.02.

Figure 3. x33(¢) until 7 = 100 s and magnified up to 0.2 s.

4.2. Example 2: 2x2 lattice

We consider FSICNN, where m = 2,n = 2 and the functions a,,(t), Cpy(t), Ly, (1), Bpy(1), U,y(1),
D, (1), E, (1), T,(t), and H,,(t) are given by

an(®) ap() )\ cos*(f) + 0.8 | sin(?)| + 0.8
an(®) an() |\ |sin(zV3)|+0.8 0.5cos%(r)+0.8 |

( Ci(n) Cn) )_ 1 ( cos(f) + cos(t V7) + 2 | sin(t V2)| )
Co(t) Cn@® ] 60\ [sin(d)]+ cos2(tV2) |sin(®)|+ cos’(t V2)

(L“(t) le(z)) 1 ( 2sin(f) + sin(t V2) 0.3 cos(7) + cos(t V3 ))

Ly (1) Lo (1) 60\ cos() + sin(z V2) sin(?)
By(t) B\ i 0.5cos(r) + 0.6 | sin(21)|
Byi(t) Byn(t) | 60 cos>(¢) cos(?) + sin(z V6) + 2

Un() U@ | _ 1 (0.3 +sin() cos(t)
Usi(t) Uxn(t) | 60 sin(?) 0.1 +cos(t) |”

Dy(1) D) \_ 1 [ cos’(t) +|sin(t V2)| sin(t) + 1.5
Doy (1) Dxn() |~ 60 cos(f) + 3 cos(f) + 1.1 )

(En(t) En(?) )_ 1 (cos(t)+sin(t\/§)+4 cos?(?) )

Exn()) Exn® |~ 60\  cos’(t) +|sin(f)]  cos(®) + 1.5

Ti(1) Tia(r) | _ 1 [ cos(®)+ 1.1 cos(t) +cos(t V5) + 2.1
Ty(r) Txn() ) 60\ cos(t)+ 1.1 sin’(t) '

AIMS Mathematics Volume 7, Issue 7, 11813—11828.



11825

)

In this example, we consider the same activation function and delays. Similar to analysis in previous
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0.03 and (M + PL)p

present numerical simulation of this example, confirming theoretical results. We see that all solutions

0.8, Mp

example, Theorem 2.1 and 3.1 hold true with o

3.5 s, and these solutions are indeed almost periodic until 7 = 100 s.
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Figure 4. x1,(¢), x12(t), x21 (1), x22(¢) until T = 100 s and magnified up to 3.5 s.

5. Conclusions

To prove existence, uniqueness and stability of these

In this paper, we analyzed FSICNNs for uniqueness and stability of almost periodic solutions
solutions, 6 sufficient conditions are presented. Existence of unique almost periodic solutions was

which was not studied thoroughly before.

Stability part was proven using Halanay inequality

proven using Banach fixed-point theorem.

Volume 7, Issue 7, 11813—11828.
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approach. One of the advantages of using Halanay inequality is that it provided a way to compute
how fast solutions converge to each other. Lastly, numerical example was presented, where 5 sets of
initial conditions were considered, resulting in the converging and stable solutions which confirmed
our theoretical findings.
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