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Abstract

Facial expression recognition is an active area of research in computer vision and deep
learning, which has become popular in recent decades. The results of these studies
are used in psychology, behavioral science and computer-human interaction. Emotion
recognition is a very difficult task, since it is necessary to overcome such difficulties as
the presence of a large number of images, head rotation, lighting conditions, partial
face closure (glasses, mask, hand, etc.) In this regard, in this practical study, we use
different models of Vision Transformer (ViT) to improve the accuracy of classification
on publicly available datasets of CK+ and JAFFE. The results obtained show that
we have achieved excellent accuracy values compared to state-of-the-art works using
a fewer computational resource to train.
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Chapter 1

Introduction

1.1 Overview and motivation

Face plays an important role in people’s communication. It is a reflection of a person’s

personality, his thoughts and emotions. Human communication can be divided into

two parts: verbal and nonverbal. According to a psychological study conducted

by Mehrabian [31], the nonverbal part is the most informative in social interaction.

So, the verbal part is about 7% of all information, the vocal part is 34%, and the

facial expression is 55%. For this reason, a person is the object of research in many

fields of science, such as psychology, behavioral research, computer-human interaction,

medicine.

In the last century, Ekman and Friesen [16] identified six fundamental emotions

based on an interracial study that confirms the fact that people’s emotions manifest

themselves equally regardless of culture. These fundamental emotions are anger,

sadness, surprise, happiness, disgust and fear. In addition to the six main ones,

researchers in this field consider the seventh facial expression – neutral.

1.2 Problem statements

The modern development of artificial intelligence technologies in the field of image

classification is aimed at automatic identification of images. Computers have learned
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to "understand" a person’s mood and react accordingly. And since this is not an easy

area of research due to the complexity of the nature of emotions and precise facial

features, there is still room for improvements in recognition accuracy in this area.

With the spread of machine learning, especially deep learning, researchers have

achieved significant results in emotion recognition in the last quarter of a century.

Prior to the widespread use of deep learning, traditional emotion recognition meth-

ods used shallow learning and handcrafted features (non-negative matrix factorization

(NMF) [6], Local Binary Patterns (LBP) [4], [5], Histograms of Oriented Gradients

(HOGs) [3] and sparse representation [7]). The growth of deep learning-based ap-

proaches has resulted in current indicators (for example [8], [9], [10], [11]).

1.3 Aims and objectives

Recently, impressive works on facial expression recognition have been published. How-

ever, they use traditional convolutional networks, and deep learning has rarely been

transformed. When recognizing emotions, only certain parts of the face, such as eye-

brows, eyes and mouth, carry the most information. While hair and ears are not

involved in the expression of emotions. Therefore, modern models should pay atten-

tion only to informative sections. Not so long ago, attention models were successfully

applied to FER to study significant regions. Li et al. [27] proposed a CNN with

patch-gating that combines attention at the pathway level for expression recognition

with occlusion.In expansion, attention models have been effectively connected to FER

to ponder noteworthy regions. Essentially to [27], a few strategies such as [46], [19],

[24], attention-like instruments were utilized to center on the foremost unmistakable

highlights to move forward the precision of the FER. In the work [45], a Transformer

based on the mechanism of attention was presented. The new transformer architec-

ture [45] has led to a big leap forward in the possibilities of sequential modeling in

NLP problems. The great success of transformers in NLP has aroused particular

interest from the vision community in understanding whether transformers can be a

strong competitor to the dominant architectures based on convolutional neural net-
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works (CNN) in vision tasks such as ResNet [20] and EfficientNet [43]. In this work,

different models of ViT are used, the experimental results of which surpass traditional

convolutional networks in terms of accuracy.

The aim of this study is to increase the level of accuracy of emotion recognition for

a more accurate classification when combining the mechanism of attention and the use

of a ViT model. To begin with, we will output accuracy indicators on convolutional

neural networks using pre-trained VGG, ResNet models. Next, using the attention

mechanism, we will reduce the concentration area of the model to only the necessary

parts of the face. The task of emotion recognition is currently quite relevant in various

fields of activity, such as sociology, the gaming industry, robotics and human-computer

interaction.

1.4 Key contributions

The main contributions of our work are as follows:

1. The empirical examination of several ViT models based on attention mecha-

nisms for FER.

2. Experimental results on publicly available datasets, such as JAFFE and CK+48,

show that current ViT model and its variants demonstrate a great potential in

achieving the state-of-the-art performance.

This work is organized as follows. Section 2 provides an overview of previous work

in this area. Section 3 will be devoted to the proposed structure and architecture of

the model. After that, in section 4, we will present the experimental results, describe

the datasets used in this article and compare them with modern works. In conclusion,

we will conclude the article in section 5 and consider the areas of further research.
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Chapter 2

Related works

2.1 Facial expression classification

To date, many facial expression recognition systems work automatically, classifying

by one of the 7 basic emotions: anger, sadness, surprise, happiness, disgust, neutral

and fear. Among the variety of ways of encoding emotions, the most popular is

the "Facial Action Coding System" (FACS), developed by Paul Ekman and Wallace

Friesen [17]. The scope of this standard classification of facial expressions varies from

medicine to computer animation.

In traditional methods, the stages of classification and extraction of objects are

independent. For example, Haar Cascade is an object detection algorithm used to

identify faces in an image or a real time video. The algorithm uses edge or line de-

tection features proposed by Viola and Jones in their research paper “Rapid Object

Detection using a Boosted Cascade of Simple Features” published in 2001. The first

contribution to the research was the introduction of the haar features. These features

on the image makes it easy to find out the edges or the lines in the image, or to pick

areas where there is a sudden change in the intensities of the pixels. The main advan-

tages of this method are as follows: Haar-like features are more robust to illumination

changes than color histogram; The feature-based system operates much faster than

a pixel-based system; The Integral Image allows the sum of pixel responses within a

given sub-rectangle of an image to be computed quickly; Only several accesses to the
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integral image are required to extract a Haar-like feature response; Allows real time

detection. Along with the advantages, there is also the main drawback that Haar-like

features are not invariant over rotation. This means that any object that rotates is

sensitive to angle changes will be difficult to solve using standard Haar-like features.

The local binary pattern (LBP) operator is an image operator which transforms

an image into an array or image of integer labels describing small-scale appearance

(textures) of the image. These labels directly or their statistics are used for further

analysis. The main advantages of this method are: High discriminative power; Com-

putational simplicity; Invariance to grayscale changes and good performance. The

disadvantage is also not invariant to rotations and the size of the features increases

exponentially with the number of neighbours which leads to an increase of computa-

tional complexity in terms of time and space.

In contrast, deep networks perform FER in an end-to-end way. A loss layer is

added to the end of the network to regulate the backpropagation error; after that,

the network outputs the probability of predicting each sample. To minimize the

cross entropy between the estimated class probabilities and the truth distribution,

the softmax loss function is most often used. In [44], the authors demonstrated the

advantage of using a linear support vector machine (SVM) for end-to-end learning.

Instead of cross entropy, it minimizes losses based on margin. In the same way, by

replacing the loss of softmax with the adaptation of deep neural forests (NFs), the

authors of the study [11] achieved visible results.

The use of a deep neural network as a complement to the end-to-end learning

method is used as a feature extraction tool. Further, additional independent classifiers

are applied to the extracted representations, such as a random forest or a support

vector machine [13, 39].

2.2 Convolutional neural networks with Attention

In recent years, researchers have been actively using convolutional neural networks

to detect objects and classify images. Convolutional network layers automatically
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extract representations from input images. At the initial layers, the basic image

properties are extracted, such as the edges of objects, shapes, and various colors

when working with color images. At the later layers, specific properties are extracted

depending on the data set and the task at hand. At the final stages, fully connected

layers are connected, which process the data of the previous layers and give the

result inherent to one of the classes [35]. The most popular methods of emotion

classification are Haar features [50], local binary patterns (LBP) [38] and histogram

of oriented gradients (HOG) [8]. On small data sets created in the laboratory, they

show good results, however, with an increase in the amount of input data, changes

in image creation conditions (such as illumination, face pose, incomplete face image,

etc.), recognition accuracy indicators decrease.

Previously, deep convolutional neural networks turned out to be the most popular

for image classification [41]. The bottom line of transfer learning method is that the

properties and skills extracted from the previous task can be applied in a new task

[33]. The main goal is to apply knowledge to the target area. One of such ways of

using the pre-trained models on the ImageNet dataset [41] is applied in replacing the

last fully connected layers with layers aimed at the current task. These characteristics

are used to train classifiers such as Softmax and Long short-term memory (LSTM).

The main part of the pre-trained model remains unchanged. Next, there are two ways

to adjust the weights. The first is to train the model from scratch: with the setting of

random values of weights and further adjustment. This takes much longer, because

the number of parameters being trained increases significantly. The second method

is to use the frozen weights of the pre-trained model and adjust only the weights

on the last modified layers. This method takes less time to set up and requires less

computing resources.

The author A. Ravi in his work [35] classifies 4 methods of using transfer learning

for a target task, depending on the size and similarity with the original data set. So,

with a small set with great similarity to the original, there is a high probability of

retraining the model. With a large set with a similar to the original, it is possible

to achieve the desired results. The third option is obtained with a small data set
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with a big difference from the original. And finally, the fourth one consists of a huge

amount of input data and is very different from the original dataset. In the latter

case, a convolutional neural network can be trained from arbitrary weights, but most

researchers use established weights [22, 40, 36].

Attention has been widely employed to improve feature representations in a va-

riety of ways. For example, SENet [21] employs channel-attention, CBAM [51] adds

spatial attention, and ECANet [47] suggests an efficient channel attention to improve

SENet further. Combining CNNs with various forms of self-attention has also piqued

curiosity [4, 42, 56, 34]. To replace the convolutional layer, SASA [34] and SAN

[56] use a local-attention layer. Prior approaches, despite promising results, limited

the scope of focus to the immediate region due to its complexity. LambdaNetwork

[4] has introduced an efficient global attention model to model both content and

position-based interactions in picture classification models, significantly improving

the speed-accuracy tradeoff. In the final three bottleneck blocks of a ResNet, BoT-

Net [42] replaces spatial convolutions with global self-attention, resulting in models

that perform well on the ImageNet benchmark for image categorization. Unlike these

techniques, which combine convolution and self-attention, our work is based on a pure

self-attention network, such as ViT [14], which has lately shown considerable promise

in a variety of vision applications.

2.3 Vision Transformer

At the same time, in this work, along with transfer learning, a ViT is used. The first

application of a ViT for image classification is shown in [14]. The work of Vaswani

et al. [45] was taken as a basis, where the authors for the first time introduce the

concept of Transformers with application in natural language processing. The model

was pre-trained on the ImageNet database [12] and its indicators are superior to

modern models. Huge datasets (exceeding 100 million images) are required to train

the model and adjust the weights. In this regard, it can be concluded that the ViT

refers to models with high data consumption.
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In instance, ViT [14] is the first transformer-based image categorization approach

to match or even beat CNNs. Several researchers have attempted to invest Transform-

ers in computer vision tasks such as object identification [3], posture estimation [53],

high-resolution image synthesis [18], video instance segmentation [49], trajectory pre-

diction [5], and so on, inspired by the popularity of Transformers. When completely

trained on large-scale datasets, transformer-based algorithms have shown greater per-

formance over CNN-based methods. The first work to apply a vanilla Transformer

on photos with minor changes was ViT [14]. When trained on ImageNet [12], ViT

had poorer accuracy than ResNet, according to [14]. Because Transformers require a

considerable amount of data to generalize effectively on computer vision tasks, ViT

was first trained on big datasets and then finetuned for downstream applications.

Transformers have used the feature pyramid structure seen in CNNs. For pixel-level

dense prediction, Wang et al. [48] suggested Pyramid Vision Transformer (PVT),

which can operate as the feature extraction backbone without convolutions. Several

publications [9], [52], [29] advocated blending convolutional layers into Transformers,

which enhanced the performance of pure Transformers even more. We propose to

use Transformers directly for FER, inspired by the vanilla Transformer and these

great Transformer-variants. As far as we know, no effort has attempted to capture

the correlations between deep characteristics in order to recognize face expressions.

We use Transformers to simulate the self-attention mechanism’s lengthy dependencies

between input sequences. In the event of occlusions or alternative postures for FER,

such self-attention allows the model to disregard the information-deficient regions and

detect the expressions from a global perspective.
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Chapter 3

Methodology

In this chapter, we will present the proposed method in four sections: architecture

overview, data preprocessing and augmentation, a CNN-based approach, and an at-

tention mechanism for the FER.

3.1 Architecture Overview

The proposed solution consists of two components: a pre-trained model and a con-

volutional attention network for classifying emotions. The standard procedure for

determining facial expressions is shown by the flowcharts in the figure 3-1. The first

stage of the input image is the preprocessing stage, which includes face alignment,

data augmentation and face normalization. The second step is to extract features

from the image. Deep learning tries to capture high-level abstractions via hierarchi-

cal structures comprised of numerous nonlinear transformations and representations

[25]. After extracting the features, the final stage is the classification of the image

according to one of the basic emotion categories.

3.2 Data preprocessing and augmentation

The preprocessing stage is necessary to bring the input data to a single form. It’s

no secret that many images obtained in a natural environment contain irrelevant
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Figure 3-1: The general pipeline of facial expression recognition systems.

information, such as the rotation of the head pose, different lighting levels and back-

ground. For this reason, preprocessing is a standard technique in the field of emotion

recognition.

To ensure generalizability, deep neural networks, and even more so a ViT, require

a large amount of training data. The number of images in many datasets is not

enough for training. In this regard, data generation technique is applied. In this

work, the operations of horizontal and vertical flipping, rotation and transformation

at the pixel level are applied. The combination of various operations creates a larger

amount of data [55], [26].

3.3 CNN-based approaches

In a classical convolutional neural network, the neurons of the previous layer are

connected to the next one. Each compound forms certain weights. The architecture

of deep learning is an array (set) of weights. When training a model from scratch,

random values are set to weights and recognition accuracy starts with insignificant

numbers. To save time and take into account the limited computing capabilities of

the hardware, transfer learning is used in this work. The transfer learning technique is

a popular method of building models in a timesaving way where learning starts from

patterns that have already been learned [32, 54]. The repurposing of pre-trained

models avoid straining from the sketch that requires a lot of data and leverages the

huge computational efforts. In other words, transfer learning reuses the knowledge

through pre-trained models [37] that have been trained on a large benchmark dataset

for a similar kind of problem.
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If there is not enough data training the model gives little accuracy. This fact is

explained by the lack of strong regularization.

The opposite situation occurs with large databases. Experiments show that re-

training on significant sets overshadows inductive bias. Also, the results are impressive

when shifting to tasks with fewer outputs. In our case, there are 7 classes of emotion

expression.

The approach based on convolutional neural networks uses such pre-trained models

as VGG19 and ResNet50. We use the SVM classifier to achieve our goals. The

structure of the VGG19 model consists of 19 convolutional and fully connected layers

divided into 5 groups. The output of each of them is used to evaluate the best features.

As with any linear classifier, this model has updatable weights and biases. The total

number of trained parameters exceeds 20 million. By default, the input parameters

of the image are 48x48 RGB, but we change the size to 224x224.

In turn, ResNet50 consists of 50 layers. We replaced the output layers of the

original model with an alignment layer and added 3 fully connected layers. The last

softmax layer contains 7 output classes. Most of the pre-trained model was frozen,

while the remaining part was subjected to training. We used Adam as an optimizer,

with a learning coefficient of 0.0005 and a bucket size of 10, the number of epochs

was 50.

As mentioned earlier, transfer learning is notable for using skills and knowledge

from previous tasks to apply to new tasks [33]. With the freezing of most layers,

fewer parameters are retrained, which allows us to spend less time on training and

save computing resources.

3.4 Attention mechanisms for FER

It is a well-known fact that not all parts of the face take the same part in the formation

of emotions. Potential areas of emotion formation can be called special areas, such as

the mouth, eyebrows, eyes. Based on this conclusion, we have built a self-attention

model that pays attention only to the important regions of the face.
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Attention mechanisms are increasingly used to model sequences, since they do not

depend on the distances in the input and output sequences [2], [23]. The combination

with a recurrent network remains a priority for this mechanism. The main advantage

of Transformers over a convolutional neural network is excellent results combined

with significantly less computational resources for training.

Figure 3-2: Vision Transformer model overview.

The ViT is a model for image classification that employs a Transformer-like ar-

chitecture over patches of the image. This includes the use of Multi-Head Attention,

Scaled Dot-Product Attention and other architectural features seen in the Trans-

former architecture traditionally used for Natural Language Processing.

In this work we divide a picture into fixed-size patches, linearly embed each, add

position embeddings, and feed the resultant vector sequence to a typical Transformer

encoder. To conduct classification, we employ the conventional method of inserting

an extra learnable "classification token" into the sequence. The Transformer encoder

(Figure 3-2) [14] consists of alternating layers of multiheaded self-attention (MSA) and

MLP blocks. Layernorm (LN) is applied before every block, and residual connections

after every block. The MLP contains two layers with a GELU non-linearity. Encoder

processes the input information, searches for important parts and creates attachments

for each patch of the image based on the correspondence of other patches in the whole

image.

20



In deep learning, attention may be widely viewed as a vector of importance

weights: to forecast or infer one element, such as a pixel in an image or a word

in a phrase, we estimate how strongly it is connected with other elements using the

attention vector and use the sum of their values weighted by the attention vector as

an approximation of the target.

The major component in the transformer is the unit of multi-head self-attention

mechanism. The transformer views the encoded representation of the input as a set of

key-value pairs, (K, V), both of dimension n (input sequence length); in the context

of NMT, both the keys and values are the encoder hidden states. In the decoder, the

previous output is compressed into a query (Q of dimension m) and the next output

is produced by mapping this query and the set of keys and values.

The transformer adopts the scaled dot-product attention: the output is a weighted

sum of the values, where the weight assigned to each value is determined by the dot-

product of the query with all the keys:

Figure 3-3: Scaled Dot-Product Attention [45].

Rather than only computing the attention once, the multi-head mechanism runs

through the scaled dot-product attention multiple times in parallel. The independent

attention outputs are simply concatenated and linearly transformed into the expected

dimensions. According to the paper [45], “multi-head attention allows the model to
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jointly attend to information from different representation subspaces at different

positions. With a single attention head, averaging inhibits this."

Above W are all learnable parameter matrices.

Figure 3-4: Multi-Head Attention consists of several attention layers running in par-
allel [45].

3.5 ConViT

Building on the insight of [10], we use the ConVit, a variant of the ViT [14] obtained

by replacing some of the SA layers by a new type of layer which we call gated positional

self-attention (GPSA) layers. The core idea is to enforce the “informed” convolutional

configuration in the GPSA layers at initialization, then let them decide whether to

stay convolutional or not.

The ConViT research paper [15] also builds on top of this insight and replaces the

first 10 self-attention layers of the ViT with gated positional self-attention (GPSA)

layers - which upon initialization act as convolutional layers and based on a gating

22



Figure 3-5: Architecture of the ConViT [15].

parameter can convert to self-attention layers. Doing so makes the earlier part of the

network upon initialization behave as a convolutional neural network with the option

to turn into a fully self-attention-based network based on the gating parameter which

is learned via model training.

As part of this work, we are going to be looking into the ConViT architecture in

detail and also look at how the GPSA layers are different from self-attention (SA)

layers. Recently, the success of ViT demonstrates that the transformer architecture

can be extremely powerful in data-plentiful regimes (when there is huge amounts of

data available). The ViT architecture requires pretraining on huge amounts of data

- JFT-300M or ImageNet-21k datasets. This is not always possible as practitioners

might have sufficient hardware required to perform this pretraining. On the other

hand, we know that convolutional models such as EfficientNets, can have a strong

performance on fewer data as well. For example, EfficientNet-B7 was able to achieve

84.7% top-1 accuracy without any external pretraining. The practitioner is therefore

confronted with a dilemma between using a convolutional model, which has a higher

performance floor but a lower performance ceiling, or a self-attention-based model,

which has a lower performance floor but a higher ceiling.
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3.6 CrossViT

Cross-Attention Multi-Scale Vision Transformer (CrossViT) model is primarily com-

posed of K multiscale transformer encoders where each encoder consists of two branches:

(1) L-Branch: a large (primary) branch that utilizes coarse-grained patch size (Pl)

with more transformer encoders and wider embedding dimensions, (2) SBranch: a

small (complementary) branch that operates at fine-grained patch size (Ps) with

fewer encoders and smaller embedding dimensions. Both branches are fused together

L times and the CLS tokens of the two branches at the end are used for prediction.

Figure 3-6: Architecture of the CrossViT [7].

CrossViT architecture (Figure 3-6) consists of a stack of K multi-scale transformer

encoders. Each multi-scale transformer encoder uses two different branches to process

image tokens of different sizes (Ps and Pl, Ps < Pl) and fuse the tokens at the end
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by an efficient module based on cross attention of the CLS tokens. Design includes

different numbers of regular transformer encoders in the two branches (i.e. N and M)

to balance computational costs.
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Chapter 4

Experiments and Comparison

In this chapter, we will analyze the results obtained on some publicly available

datasets and show the effectiveness of ViT over pre-trained models. First we will

give a brief description of each data set used in this work. Next, we formulate the

architecture of the model and the applied parameters. Subsequently, let’s compare

the results obtained using ViT with the results of a pre-trained convolutional neural

network model.

4.1 FER datasets

JAFFE: The Japanese Female Facial Expression (JAFFE) Dataset is one of the very

first datasets. It contains 213 images of 10 Japanese models who agreed to take part

in the experiment and expressed 7 basic emotions. The size of the images is 256x256

pixels, the image format is .tiff. Some examples of images from the JAFFE dataset

are shown in Figure 4-1.

CK+: 123 models of various ages and genders participated in The Extended

Cohn-Kanade (CK+) dataset. Although the original dataset contains a sequence of

images from neutral to peak emotion, we used a modified version of this dataset, which

uses the last 3 peak emotions of each expression. The result was a set consisting of

981 images. We assess our method’s generalization capacity using the overall sample

accuracy and confusion matrices. 6 emotions, with the exception of the neutral one,
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Figure 4-1: Emotion samples from JAFFE database

from the CK+48 dataset are shown in Figure 4-2.

Figure 4-2: Emotion samples from CK+48 database

4.2 Architecture and training parameters

In experiments with the ViT, we used the "timm" package model. The size of the

input data is set to 224x224. As described earlier, in order to increase the number

of images for training, various operations were used to increase the amount of data.

The various models used in this work have a different number of trainable parameters,

which affects the learning rate of the model.

4.3 FER accuracy with different deep models

We will now give the results of the suggested model on the aforementioned datasets.

In each scenario, we train the model on a portion of the dataset, validate it on the
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№ Model Accuracy, % Training time Params (M)

1 resnet50d 100 6m 25.6
2 vgg16 100 8m55s 138.36
3 vgg19 100 14m13s 143.67
4 convit_base 100 17m23s 86.54
5 crossvit_base 99.5 32m49s 105.03
6 vit_base_resnet50 98.51 31m42s 98.95
7 vit_base_patch16 92.04 13m56s 86.54

Table 4.1: Classification accuracy for CK+48 dataset with different models.

validation set, then report on its accuracy on the test set.

№ Model Accuracy, % Training time Params (M)

1 resnet50d 92.86 2m4s 25.6
2 vgg16 92.86 3m37s 138.36
3 vgg19 94.29 2m 143.67
4 convit_base 91.42 3m22s 86.54
5 crossvit_base 90 3m28s 105.03
6 vit_base_resnet50 95.71 6m15s 98.95
7 vit_base_patch16 97.14 4m45s 86.54

Table 4.2: Classification accuracy for JAFFE dataset with different models.

Before delving into the specifics of how the models utilized perform on various

datasets, we will go through our training approach quickly. We trained one model for

each database in our trials, although we attempted to keep the structure and hyper-

parameters consistent across models. Each model was trained on 50 epochs using

the computing resources of Google Colab Pro. For optimization, we used stochastic

gradient descents optimizer with a batch size of 10 and learning rate of 0.003 (Various

values of the batch size and learning rate were tested, and the selected coefficients

showed the best results). It took less than 10 minutes to train the pre-trained models

on the JAFFE and CK+48 datasets, since the number of images is not so large, 213

and 981 images, respectively. However, it took a little longer to train some models

of ViT, approximately 20-30 minutes. The images in the training sets are augmented

with data to train the model on a greater number of images and make the learned
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model invariant on tiny modifications.

The CK+48 dataset exceeds JAFFE in the number of images. So, the number

of training data is 781 and 143, respectively, while the tested images are 200 and

70 in each set. In turn, we would like to note some imbalance in the number of

examples of emotions in the CK+48 dataset. For example, the emotion of surprise

and happiness have 200 and 165 images, but the neutral emotion and the emotion of

fear are represented by only 43 and 60 images, respectively.

The learning curve for the CK+48 and JAFFE datasets on various pre-trained

models is shown in Figures 4-3 - 4-9. As we can observe from the experimental

curves, the training of pre-trained models on the CK48 dataset is much faster than

on the JAFFE dataset. Up to 10 epochs in the case of SK48 versus 25-30 epochs with

JAFFE. The explanation for this can be the number of images in the data set, since

CK48 exceeds JAFFE by about 5 times in volume. However, if we look at the training

of ViT models, we will see that the training is faster. This behavior is explained by

the fact that transformers require less resources compared to other models.

Figure 4-3: Training and Test accuracies of Resnet50d on CK+48 (left) and
JAFFE(right) datasets

The confusion matrices on the test set of CK+48 and JAFFE datasets are shown

in Figures4-10 - 4-13.
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Figure 4-4: Training and Test accuracies of VGG16 on CK+48 (left) and
JAFFE(right) datasets

Figure 4-5: Training and Test accuracies of VGG19 on CK+48 (left) and
JAFFE(right) datasets

Figure 4-6: Training and Test accuracies of ConViT model on CK+48 (left) and
JAFFE(right) datasets

4.4 Comparisons with state-of-the-arts

The proposed method is compared with other methods on the JAFFE database (Table

4.3). The JAFFE database is collected in a controlled laboratory environment, and
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Figure 4-7: Training and Test accuracies of CrossViT model on CK+48 (left) and
JAFFE(right) datasets

Figure 4-8: Training and Test accuracies of ViT_base_resnet50 model on CK+48
(left) and JAFFE(right) datasets

Figure 4-9: Training and Test accuracies of ViT_base_patch16 model on CK+48
(left) and JAFFE(right) datasets

all the data are frontal faces that have minor background changes. Table 4.3 shows

that the proposed ViT models have an excellent validation accuracy on JAFFE with
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Figure 4-10: Confusion matrices of resnet50d model on CK+48 (left) and
JAFFE(right) datasets

Figure 4-11: Confusion matrices of VGG19 model on CK+48 (left) and JAFFE(right)
datasets

Figure 4-12: Confusion matrices of ConViT model on CK+48 (left) and JAFFE(right)
datasets
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Figure 4-13: Confusion matrices of CrossViT model on CK+48 (left) and
JAFFE(right) datasets

97.14%. As shown in Table 4.3, Mahesh et al. [30] use a a method of concatenating

spatial pyramid Zernike moments based shape features which achieves an average ac-

curacy of 95.86%. Boughida et al. [6] propose facial expression recognition approach

based on Gabor filters and genetic algorithm and obtain an accuracy of 96.3%. Pro-

posed by Liu et al. [28] method focuses more on the facial feature extraction on the

basis of facial landmarks, helping the network extract more discriminative features

that are conducive to recognize expressions. Their method uses a Spatial Attention

Convolutional Neural Network (SACNN) to extract the pixel-level facial feature and

employs Long Short-term Memory networks with Attention mechanism (ALSTMs) to

explore the deep geometric position correlation of facial landmarks. The facial land-

marks are divided into seven groups for local-holistic geometric feature extraction

and the attention mechanism is utilized to estimate the importance of different land-

mark regions. Thus, the combination of the attention mechanism together with the

geometric correlation of the positions of facial landmarks gives the best recognition

result - 98.57%, which exceeds our method by about 1.5%.

The advantage of ViT models based on the attention mechanism is reduced train-

ing time and consumption of less computing resources.
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Approach Accuracy (%)

Mahesh et al. [30] 95.86
Boughida et al. [6] 96.3

Liu et al. [28] 98.57
Aouayeb et al. [1] 92.92

Our (vit_base_resnet50) 95.71
Our (vit_base_patch16) 97.14

Table 4.3: Comparison with state-of-the-art methods on JAFFE

4.5 Model visualization and analysis

Here we propose an approach to visualizing classification accuracy using a dimension-

ality reduction technique t-SNE.

The t-SNE - is an algorithm for dimensionality reduction. This algorithm allows

us to visualize the high-dimensional data of the facial images. The t-SNE function will

convert high dimensional data into low dimensional data. Generally, distant points

in high-dimensional space will be converted into distant embedded low-dimensional

points and nearby points in the high-dimensional space will be converted into nearby

embedded low-dimensional points. As a result, we can visualize the low-dimensional

points to find the clusters in the original high-dimensional data

Figure 4-14 shows the t-SNE 3D plot of the extracted features form the vit_base_patch16

model on JAFFE dataset. As we can see from the graph, the features extracted from

the JAFFE dataset show similar values, as a result of which the visualization of

the division into classes turned out to be not clear, where all 7 categories of facial

expressions are mixed.

Figure 4-15 shows the t-SNE 3D plot corresponding to the 768-dimensional fea-

tures from the ViT model. The features correspond to the CK+48 images. In the

case of the CK+48 dataset, which exceeds the number of JAFFE images by approx-

imately 5 times, data visualization shows slight improvements. So we see that such

classes as happiness (purple) and surprise (pink) are clearly grouped on both sides of

the graph. In the central part, the remaining 5 classes are mixed.
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Figure 4-14: t-SNE 3D plot on JAFFE dataset

Figure 4-15: t-SNE 3D plot on CK+48 dataset
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Chapter 5

Conclusion and Future directions

The attention mechanism can direct the network’s attention to critical feature infor-

mation while suppressing background disturbance. Because of its basic structure, low

complexity, and few parameters, the network in this paper can train and forecast the

model quickly and effectively. Compared to CNN, the ViT model uses multi-head

self-control without requiring image-specific biases. In addition, ViT has a higher

precision rate for a large dataset with reduced training time. We have presented the

classification results on lab-made databases (CK+48 and JAFFE) to evaluate the

performance of the selected models. The main contribution of our research is to con-

duct empirical studies with ViT models that have achieved relatively good results on

such publicly available datasets with modern facial expression recognition algorithms.

The results imply that representations gained from pre-trained networks taught for

a specific task, such as object detection, can be transferred and used for a different

task, such as facial expression recognition.

We are optimistic about the future of attention-based models and intend to apply

them to other activities. Our further research will be the use of a ViT models not

only on static images, but also on a sequence of such images taking into account the

time parameter (for example, original CK+ and Oulu-CASIA datasets). Another way

of further research is the use of ViT models on larger datasets obtained in the wild

conditions, such as FER-2013, SFEW and RAF-DB.

37



38



Bibliography

[1] Mouath Aouayeb, Wassim Hamidouche, Catherine Soladie, Kidiyo Kpalma, and
Renaud Seguier. Learning vision transformer with squeeze and excitation for
facial expression recognition. arXiv preprint arXiv:2107.03107, 2021.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[3] Josh Beal, Eric Kim, Eric Tzeng, Dong Huk Park, Andrew Zhai, and
Dmitry Kislyuk. Toward transformer-based object detection. arXiv preprint
arXiv:2012.09958, 2020.

[4] Irwan Bello. Lambdanetworks: Modeling long-range interactions without atten-
tion. arXiv preprint arXiv:2102.08602, 2021.

[5] Manoj Bhat, Jonathan Francis, and Jean Oh. Trajformer: Trajectory predic-
tion with local self-attentive contexts for autonomous driving. arXiv preprint
arXiv:2011.14910, 2020.

[6] Adil Boughida, Mohamed Nadjib Kouahla, and Yacine Lafifi. A novel approach
for facial expression recognition based on gabor filters and genetic algorithm.
Evolving Systems, 13(2):331–345, 2022.

[7] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-
attention multi-scale vision transformer for image classification. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 357–366,
2021.

[8] Junkai Chen, Zenghai Chen, Zheru Chi, Hong Fu, et al. Facial expression recog-
nition based on facial components detection and hog features. In International
workshops on electrical and computer engineering subfields, pages 884–888, 2014.

[9] Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian.
Visformer: The vision-friendly transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 589–598, 2021.

[10] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the re-
lationship between self-attention and convolutional layers. arXiv preprint
arXiv:1911.03584, 2019.

39



[11] Arnaud Dapogny and Kevin Bailly. Investigating deep neural forests for facial ex-
pression recognition. In 2018 13th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2018), pages 629–633. IEEE, 2018.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[13] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for
generic visual recognition. In International conference on machine learning,
pages 647–655. PMLR, 2014.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[15] Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio
Biroli, and Levent Sagun. Convit: Improving vision transformers with soft con-
volutional inductive biases. In International Conference on Machine Learning,
pages 2286–2296. PMLR, 2021.

[16] Paul Ekman and Wallace V Friesen. Constants across cultures in the face and
emotion. Journal of personality and social psychology, 17(2):124, 1971.

[17] Paul Ekman and Wallace V Friesen. Measuring facial movement. Environmental
psychology and nonverbal behavior, 1(1):56–75, 1976.

[18] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for
high-resolution image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12873–12883, 2021.

[19] Yingruo Fan, Victor Li, and Jacqueline CK Lam. Facial expression recogni-
tion with deeply-supervised attention network. IEEE transactions on affective
computing, 2020.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[21] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7132–
7141, 2018.

[22] Brady Kieffer, Morteza Babaie, Shivam Kalra, and Hamid R Tizhoosh. Con-
volutional neural networks for histopathology image classification: Training vs.
using pre-trained networks. In 2017 Seventh International Conference on Image
Processing Theory, Tools and Applications (IPTA), pages 1–6. IEEE, 2017.

40



[23] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M Rush. Structured
attention networks. arXiv preprint arXiv:1702.00887, 2017.

[24] Jing Li, Kan Jin, Dalin Zhou, Naoyuki Kubota, and Zhaojie Ju. Atten-
tion mechanism-based cnn for facial expression recognition. Neurocomputing,
411:340–350, 2020.

[25] Shan Li and Weihong Deng. Deep facial expression recognition: A survey. IEEE
transactions on affective computing, 2020.

[26] Wei Li, Min Li, Zhong Su, and Zhigang Zhu. A deep-learning approach to facial
expression recognition with candid images. In 2015 14th IAPR International
Conference on Machine Vision Applications (MVA), pages 279–282. IEEE, 2015.

[27] Yong Li, Jiabei Zeng, Shiguang Shan, and Xilin Chen. Patch-gated cnn for
occlusion-aware facial expression recognition. In 2018 24th International Con-
ference on Pattern Recognition (ICPR), pages 2209–2214. IEEE, 2018.

[28] Chang Liu, Kaoru Hirota, Junjie Ma, Zhiyang Jia, and Yaping Dai. Facial
expression recognition using hybrid features of pixel and geometry. Ieee Access,
9:18876–18889, 2021.

[29] Zhouyong Liu, Shun Luo, Wubin Li, Jingben Lu, Yufan Wu, Shilei Sun, Chunguo
Li, and Luxi Yang. Convtransformer: A convolutional transformer network for
video frame synthesis. arXiv preprint arXiv:2011.10185, 2020.

[30] Vijayalakshmi GV Mahesh, Chengji Chen, Vijayarajan Rajangam, Alex
Noel Joseph Raj, and Palani Thanaraj Krishnan. Shape and texture aware
facial expression recognition using spatial pyramid zernike moments and law’s
textures feature set. IEEE Access, 9:52509–52522, 2021.

[31] Albert Mehrabian. Communication without words. pages 193–200, 2017.

[32] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and trans-
ferring mid-level image representations using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1717–1724, 2014.

[33] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans-
actions on knowledge and data engineering, 22(10):1345–1359, 2009.

[34] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Lev-
skaya, and Jon Shlens. Stand-alone self-attention in vision models. Advances in
Neural Information Processing Systems, 32, 2019.

[35] Aravind Ravi. Pre-trained convolutional neural network features for facial ex-
pression recognition. arXiv preprint arXiv:1812.06387, 2018.

41



[36] Aravind Ravi, Harshwin Venugopal, Sruthy Paul, and Hamid R Tizhoosh. A
dataset and preliminary results for umpire pose detection using svm classification
of deep features. In 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1396–1402. IEEE, 2018.

[37] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for
image classification: A comprehensive review. Neural computation, 29(9):2352–
2449, 2017.

[38] Caifeng Shan, Shaogang Gong, and Peter W McOwan. Facial expression recog-
nition based on local binary patterns: A comprehensive study. Image and vision
Computing, 27(6):803–816, 2009.

[39] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops,
pages 806–813, 2014.

[40] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella
Nogues, Jianhua Yao, Daniel Mollura, and Ronald M Summers. Deep convolu-
tional neural networks for computer-aided detection: Cnn architectures, dataset
characteristics and transfer learning. IEEE transactions on medical imaging,
35(5):1285–1298, 2016.

[41] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[42] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel,
and Ashish Vaswani. Bottleneck transformers for visual recognition. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 16519–16529, 2021.

[43] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International conference on machine learning, pages
6105–6114. PMLR, 2019.

[44] Yichuan Tang. Deep learning using linear support vector machines. arXiv
preprint arXiv:1306.0239, 2013.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[46] Kai Wang, Xiaojiang Peng, Jianfei Yang, Debin Meng, and Yu Qiao. Region
attention networks for pose and occlusion robust facial expression recognition.
IEEE Transactions on Image Processing, 29:4057–4069, 2020.

42



[47] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua
Hu. Supplementary material for ‘eca-net: Efficient channel attention for deep
convolutional neural networks. Technical report, Tech. Rep.

[48] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang,
Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versa-
tile backbone for dense prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 568–578, 2021.

[49] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng,
Hao Shen, and Huaxia Xia. End-to-end video instance segmentation with trans-
formers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8741–8750, 2021.

[50] Jacob Whitehill and Christian W Omlin. Haar features for facs au recognition. In
7th international conference on automatic face and gesture recognition (FGR06),
pages 5–pp. IEEE, 2006.

[51] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam:
Convolutional block attention module. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[52] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and
Lei Zhang. Cvt: Introducing convolutions to vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 22–31,
2021.

[53] Sen Yang, Zhibin Quan, Mu Nie, and Wankou Yang. Transpose: Towards ex-
plainable human pose estimation by transformer. arXiv e-prints, pages arXiv–
2012, 2020.

[54] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? Advances in neural information processing
systems, 27, 2014.

[55] Zhiding Yu and Cha Zhang. Image based static facial expression recognition with
multiple deep network learning. In Proceedings of the 2015 ACM on international
conference on multimodal interaction, pages 435–442, 2015.

[56] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for
image recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10076–10085, 2020.

43




