Optical features of Ag/Au-WO_{3-x} plasmonic composite thin films

Yerzhan Mukhametkarimov^{*}, Nazim Gusseinov, Renata Nemkayeva, Ulantay Dosseke, Madi

Aitzhanov

Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan *E-mail: yerzhan.mukhametkarimov@kaznu.kz

Tungsten oxide (WO₃) is a wide gap semiconducting material, well known as a functional element of smart windows, electrochemical electrodes for water splitting reactions, etc. One of the ways to extend the practical application of WO₃ is the modification of its electronic properties by chemical doping and formation of composites.

In this work, plasmonic composite thin films based on tungsten oxide (WO₃) matrix and Ag/Au nanoparticles (NPs) were deposited by RF magnetron sputtering. As deposited thin films have amorphous substoichiometric WO_{3-x} matrices with isolated noble metal NPs with average sizes of about ~3 nm. The resonance absorption peak is located at 580 ± 10 nm and 430 ± 10 nm for Au and Ag doped WO_{3-x} thin films, respectively. Depending on Ag/Au ratio, composite films demonstrate tunable plasmonic resonance absorption peak.

Acknowledgement

This research was supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan Grant No. AP09258922.