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Abstract: Changes in climatic conditions are expected globally resulting in a higher rainfall intensity
and longer duration of rainfall. The increase in the rainwater infiltration into the soil contributes to
many geotechnical issues, such as excessive settlement, retaining wall failure and rainfall-induced
slope failures. These geotechnical problems could be mitigated by the improvement of the problematic
soil with the incorporation of the unsaturated soil mechanic principles. Dual-porosity soils or soils
with bimodal water retention curve (WRC) are able to retain more water during prolonged drying
and they would be able to drain out water faster during intense rainfall to maintain the slope stability.
The objective of this study is to investigate the characteristics of the unsaturated shear strength of
soil with bimodal WRC. In addition, the new mathematical equation is proposed to estimate the
unsaturated shear strength of soils with a bimodal WRC. The results of the study indicated that the
nonlinearity of the unsaturated shear strength is a function of the shape of bimodal WRC limited by
the first and second air-entry value (AEV) of dual-porosity soils. The proposed equation agreed well
with the experimental data of the unsaturated shear strength for dual-porosity soil.

Keywords: unsaturated shear strength; bimodal; water retention curve; pore-size distribution

1. Introduction

Many regions in the world have a geological profile that is characterized by a deep
groundwater table. Since the location of the groundwater table varies from 5 to 20 m un-
derneath ground surface, the vadose zone or the unsaturated soil zone cannot be neglected
for geotechnical-related issues in many parts of the world [1–6]. One such issue is slope
instability due to rainfall. Prolonged rainfall would result in an increased occurrence of
rainfall-induced slope failures and prolonged drought would adversely affect the water
content in soil and plant health [7–10]. The changes in rainfall intensity would affect the
groundwater fluctuations, which may significantly impact the quality of surface water [11].
These adverse effects of climate change could be mitigated by having a comprehensive
knowledge about hydraulic properties of unsaturated soils—bimodal water retention curve
(WRC) and permeability functions. Past studies [12–14] indicated that compacted soils
with bimodal pore size distribution (PSD) are less susceptible to changes in the external
environment (prolonged drying and intense rainfall). As a result, bimodal soils would be
beneficial for plant health, as they would be able to retain more water during prolonged
drying and for slope stability because they would be able to drain out water faster during
intense rainfall [15,16].

Soils with a bimodal grain-size distribution can exhibit bimodal characteristics in their
WRC, however, a bimodal grain-size distribution does not guarantee the bimodality of the
WRC [17–21]. Bimodality can be exhibited in the WRC and, consequently, in the perme-
ability function since the permeability function takes up the shape of the WRC [22–24]. A
bimodal PSD is highly associated with a bimodal WRC [25–27]. A bimodal PSD consists of
two pore series, the larger of the two corresponds to the macropores, while the smaller one
corresponds to the micropores [27].
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Zhai et al. [28] investigated the pore-size distribution of compacted kaolinite soil, a
type of fine-grained soil, which was compacted at three distinct water contents across the
compaction curve: dry of optimum, optimum moisture content, and wet of optimum. Only
the specimen compacted in the dry of optimum exhibits a bimodal PSD. Based on the
relations of the pores to the PSD, the inter-aggregate pores and intra-aggregate pores can be
seen as equivalent to the macropores and micropores mentioned by Satyanaga et al. [17],
respectively. The inter-aggregate pores referred to by Zhai et al. [12] correspond to the
first sub-curve of the bimodal WRC, whereas the intra-aggregate pores correspond to
the second sub-curve, very similar to the macropores referred to by Satyanaga et al. [17],
which correspond to the first sub-curve and the micropores that correspond to the second
sub-curve. The terms micropores and macropores will be used in this paper for consistency.

Shear strength of unsaturated soil is required for addressing numerous geotechnical
problems such as slope stability [29,30]. An increase in shear strength is closely related
to an increase in matric suction as governed by unsaturated shear strength angle (φb). φb

is equal to effective friction angle φ′ for matric suction up to the air-entry value (AEV)
of soil [29]. Therefore, a linear relationship between shear strength and matric suction is
normally obtained experimentally at matric suctions up to AEV. Beyond AEV, the soil
starts to become unsaturated and the shear strength envelope become non-linear and φb

is not equal to φ′ anymore but φb decreases with increasing matric suctions [31]. Beyond
residual matric suction, the shear strength of an unsaturated soil may increase, decrease or
remain constant when the matric suction increases [32].

Laboratory measurement of unsaturated shear strength is costly and time-consuming.
Hence, there are many shear strength prediction equations that use WRC with the saturated
shear strength parameters to estimate the unsaturated shear strength of soil. One of the
most widely utilized models is by correlating shear strength with pore size distribution of
soil, which actually depends on WRC [32]. Numerous research works have been performed
on bimodal soil, but those studies are generally limited to WRC and permeability of soil.
Therefore, this study investigates the characteristics of the unsaturated shear strength of soil
with bimodal WRC. In addition, the new mathematical equation is proposed to estimate
the unsaturated shear strength of soils with a bimodal WRC.

2. Investigated Soil and Methodology
2.1. Investigated Soils

In this experiment, there were two soil mixtures produced by mixing coarse kaolin and
Ottawa sand, specifically 70%Sand-30%Kaolin (70S30K) and 50%Sand-50%Kaolin (50S50K).
For each composition, specimens were prepared for WRC tests, and for saturated and
unsaturated triaxial tests. The soil mixtures were selected to avoid non-homogeneity of the
soil specimen in order to ensure the results from different specimens were comparable and
could be used to establish the characteristics of soil [33]. The specimens in this study were
prepared with water content corresponding to 90% of maximum dry density on the dry
side of optimum of the compaction curve. The specimens were then statically compacted
at 1 mm/min loading rate with 10 mm thickness per layer as described in [34], to produce
homogenous specimens. This procedure was selected to ensure the specimens used in each
laboratory testing have similar soil properties. Specifically, specimens of 100 mm in height
and 50 mm in diameter were used for multistage consolidated undrained and consolidated
drained saturated and unsaturated triaxial tests, correspondingly. Moreover, specimens of
20 mm in height and 50 mm in diameter were used for WRC measurements.

2.2. Methodology

Index properties tests were performed based on the ASTM standards (Table 1) [35–39].
The compacted soil specimens underwent a saturation process using Tempe cell until the
mass equalizes before WRC tests and shrinkage tests were conducted. WRC tests were
carried out using Tempe cell setup for matric suction from 1 kPa to 100 kPa and pressure
plate setup for matric suction from 100 kPa to 900 kPa, in accordance with procedures
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explained in ASTM D6836-16 [40] and Satyanaga et al. [41]. WRC tests using both Tempe
cell and pressure plate were conducted using the axis-translation method [42]. The ceramic
disks in Tempe cell and pressure plate setups were saturated with distilled water prior to the
test and regularly flushed to ensure they were saturated. The WRC measurement followed
a small increment of matric suction to obtain WRC with greater accuracy. Moreover, the low
matric suction (1 to 5 kPa) at the beginning of the test was controlled using a manometer set
up to ensure the accuracy of the matric suction. The specimens were weighed every 15 min
for the first 1 h at the beginning of each suction and twice a day thereafter. The matric
suction level was increased only when the mass of the specimens reached a constant value.

Table 1. ASTM standard for laboratory testing.

Laboratory Testing ASTM

Grain-size distribution ASTM D422-63 [35]
Atterberg limit ASTM D4318-00 [36]
Specific gravity ASTM D854-02 [37]

Standard Proctor ASTM D698-12e1 [38]
Unified soil classification system (USCS) ASTM D2487-00 [39]

There were two types of shear strength tests, namely, saturated and unsaturated
shear strength tests carried out in this study. Both tests were started with saturation of
the specimens in order to have a uniform initial condition. Saturation was performed by
applying cell pressure (σ3) and back pressure (uw) to the specimens. To avoid significant
swelling of specimens, a net confining pressure (σ3–uw) of 10 kPa was retained until pore-
water pressure parameter (B) was larger than 0.95, as recommended by Fredlund and
Rahardjo [28]. Multistage testing was performed by loading and unloading procedure
on each specimen. Compared to single stage testing, multistage testing consumes less
time to obtain comprehensive data. However, it should be expected that the measured
shear strength would be slightly lower than the actual, due to cumulative strain in the
specimen. So, the maximum allowable axial strain in this study is limited to 20% according
to Goh et al. [43].

The cohesion intercept (c′) and friction angle (φ′) of the specimens were obtained from
the multistage consolidated undrained triaxial tests by plotting Mohr-Coulomb failure
envelope using the peak deviator stresses acquired from the stress versus strain curves.
Firstly, the specimens were isotropically consolidated until there was no volume change in
the specimens. The specimens were then sheared under three effective confining pressures
(i.e., 25, 50, and 75 kPa) with pore-water pressure measurements at the base of specimens.
The shearing rate used was 0.05 mm/min according to Goh et al. [43].

A modified triaxial apparatus was used for multistage consolidated drained triaxial
testing to investigate shear strength of an unsaturated soil, as described by Fredlund and
Rahardjo [28]. The setup procedure was started by placing a high air-entry ceramic disk
with diameter of 50 mm on the pedestal. The specimens were then put directly on the
saturated ceramic disk. Filter paper, porous stone and top cap were positioned to the top
of the specimen while a rubber membrane was used to enclose the specimen. Eventually,
O-rings secured the membrane at the top cap and pedestal.

After saturation process, the specimen was isotropically consolidated and the consol-
idation was stopped when pore-water volume change reached equilibrium. Pore-water,
pore-air (ua), volume changes and cell pressures were set and controlled by Digital Pres-
sure and Volume Controller. Next, the shearing stage was started with a strain rate of
0.0009 mm/min, as suggested by Goh et al. [43], in order to ensure excess pore-water pres-
sure was zero, which implied that the pore-air and pore-water pressures remained the same
as those before the shearing. Eventually, the shearing stage was stopped when the deviator
stress showed a constant value. The measured parameters such as total volume changes,
displacement and load were recorded using Triax 4.0 software [43]. In this experiment, the
test was conducted under a constant net confining pressure and varying matric suctions.
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The net confining pressure (σ3–ua) was set to remain constant at 50 kPa, while the matric
suction (ua–uw) was varied from 5, 20, 30, 50, 75, 100 to 200 kPa. Therefore, from this
multistage CD test, unsaturated shear strength parameter (φb) of the specimens could
be obtained.

The laboratory testing to obtain the water retention curve and the unsaturated shear
strength is tedious and time-consuming. The duration of 1 set of the unsaturated shear
strength testing is around 6 months. The duration of 1 set of water retention curve testing
is around 3 months. Therefore, only two sets of the unsaturated shear strength testing and
two sets of water retention curve testing were performed in this study. The results from the
unsaturated shear strength testing were used to evaluate the unsaturated shear strength
data, which were estimated using the proposed equation.

3. Mathematical Equation
3.1. Applicable Theory

Various best-fitting methods for the WRC had been developed with great accuracy.
In this study, a mathematical equation (Equation (1)) from Satyanaga et al. [17] was used
for best fitting the experimental data of the bimodal WRC. This equation was used since
the parameter of this equation has a physical definition [12,23,33]. The term of physical
definition for parameters in the WRC equation refers to the ability of the parameters in the
proposed equation to represent the variables of the WRC, such as: air-entry value of soil,
inflection point of WRC, and residual suction and residual water content of soil.

θw =

[
1−

ln
(

1+ ψ
Cr

)
ln
(

1+ 106
Cr

)
][

θr +

{
(θs1 − θs2)

(
1− (β1)er f c

(
ln
(

ψa1−ψ
ψa1−ψm1

)
s1

))}

+

{
(θs2 − θr)

(
1− (β2)er f c

(
ln
(

ψa2−ψ
ψa2−ψm2

)
s2

))} ] (1)

where:

θs1 = saturated volumetric water content
θs2 = volumetric water content related to air-entry value 2
β1 = 0 when ψ ≤ ψa1; β1 = 1 when ψ > ψa1
β2 = 0 when ψ ≤ ψa2; β2 = 1 when ψ > ψa2
ψa1 = parameter related to air-entry value 1 (AEV1) (kPa) (Figure 1)
ψa2 = parameter related to air-entry value 2 (AEV2) (kPa) (Figure 1)
Cr = input parameter according to Fredlung and Xing [43] (kPa)

erfc = the complementary error function, er f c(x) =
∫ x
−∞

1√
2π

exp
(
− x2

2

)
dx

ψm1 = parameter related to suction at the inflection point 1 (Figure 1)
ψm2 = parameter related to suction at the inflection point 2 (Figure 1)
θr = parameter related to volumetric water content at residual condition (Figure 1)
s1 = parameter related to standard deviation 1 (Figure 1)
s2 = parameter related to standard deviation 2 (Figure 1)

The subscript 1 and 2 in the equation are associated with sub-curve 1 (macro pores)
and sub-curve 2 (micro pores) of dual-porosity soils, respectively. The details of explanation
of each parameter can be seen in Satyanaga et al. [17].
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Figure 1. Variables of bimodal water retention curve.

Many equations had been developed to model the unsaturated shear strength. In this
study, the mathematical equation (Equation (2)) from Goh et al. [44], was used to model the
experimental data from the unsaturated shear strength in the initial stage.

τ = c′+ (σ− ua)tan φ ′+ (ua − uw)tan φb (2)

where φ′ = φb if (ua − uw) < AEV

τ = c′+ [(σ− ua) + (ua − uw)b]tan φ ′+[(ua − uw)− AEV]bΘktan φ ′ (3)

if (ua − uw) ≥ AEV
y = 0.502 ln

(
Ip + 2.7

)
− 0.387 (4)

k = [log( ua − uw)− log( AEV)]y (5)

b = −0.245
{

ln
[

n
(

Ip + 4.4
)]}2

+ 2.114
{

ln
[

n
(

Ip + 4.4
)]}
− 3.522 (6)

where:

AEV = air-entry value of soil (kPa)
y and b = fitting parameters.
Ip = plasticity index.
n = fitting parameter from Fredlund and Xing [43] equation for fitting WRC

3.2. Proposed Equation

Many studies showed that pore size distribution (PSD) of the soil can be determined
from the differentiation of water retention curve [43,45]. In this study the PSD of the soil
mixtures was differentiated from its corresponding WRC which has been modelled using
Satyanaga et al. [17], equation. Therefore, the equation from Satyanaga et al. [17], was
differentiated to generate a PSD of the soil mixtures. The PSD equation used in this study
is presented in Equation (7).
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[
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(
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(
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(
ln
(
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)
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)))]
+[

θr2 +

(
(θs2 − θr2)

(
1− er f c

(
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(
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ψa2−ψm2

)
s2

)))]


(7)

where all parameters were taken from Equation (1) after Satyanaga et al. [17]
In this study, a new equation that can be used for a best fitting of the unsaturated

shear strength with bimodal WRC is proposed. The shear strength equation for suction
lower than AEV1 is the same as Goh et al. [44] equation. The new equation (Equation (8))
was proposed since the experimental data from the unsaturated shear strength of soil with
bimodal characteristics has unique behavior for suctions higher than AEV1. The rationale
behind the development of the new equation is simply to incorporate the characteristics of
the first sub-curve of the bimodal WRC into the equation.

The parameters related to standard deviation in the bimodal WRC (s1 and s2) have
been studied by Satyanaga et al. [17,23], Zhai et al. [12]. They concluded that the parameters
related to standard deviation can be used to estimate bimodal WRC based on grain-size
distribution. Therefore, the parameters related to standard deviation were used in the
development of the new bimodal unsaturated shear strength equation. The parameter s1
and s2 from Equation (1) are incorporated in the new shear strength equation (Equation (10))
to replace parameter “n” from Fredlund and Xing [43] model because shear strength
of bimodal soil is affected by dual-porosity characteristics of PSD within the soil. The
parameters S1 and S2 are discrete values representing the width of sub-curve 1 and sub-
curve 2 in bimodal WRC (Figure 1). The reader is referred Satyanaga et al. [17,23], and
Zhai et al. [12] for details of these parameters. In the proposed equations, the parameter
s1 is used to represent the effect of sub-curve 1 of bimodal WRC on the unsaturated shear
strength for suctions between AEV1 and AEV2. Additionally, the parameter s2 is used to
represent the effect of sub-curve 2 of bimodal WRC on the unsaturated shear strength for
suctions beyond AEV2. Void ratio and fine content are selected as the parameters in the
Equation (11) since these properties play important role in clay materials. Soil with bimodal
WRC are commonly associated with the presence of clay materials [12]. In addition, the
equation was developed to take into account the characteristics of the second sub-curve of
the bimodal WRC.

For AEV1 < matric suction < AEV2:

τ = c′+ [(σ− ua) + AEV1]tan φ ′+[(ua − uw)− AEV1]b1Θk1 tan φ ′ (8)

k1 = [log ( ua − uw)− log AEV1]
y (9)

b1 = −0.245
{

ln
[

s1
(

Ip + 4.4
)]}2

+ 2.114
{

ln
[

s1
(

Ip + 4.4
)]}
− 3.522 (10)

s1 = parameter related to geometric standard deviation 1.
For matric suctions > AEV2:

τ = c′+ (σ− ua)tan ϕ ′+ AEV2tan φb2 + [e× (ua − uw)− (0.2 + f ines)× AEV2]b2Θk2 tanφ ′ (11)

k2 = [log (ua − uw)− log AEV2]
y (12)

b2 = −0.245
{

ln
[

s2
(

Ip + 4.4
)]}2

+ 2.114
{

ln
[

s2
(

Ip + 4.4
)]}
− 3.522 (13)
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y = 0.502 ln
(

Ip + 2.7
)
− 0.387 (14)

Equations (8) and (11) were developed for the estimation of the unsaturated shear
strength of soil. The proposed equations require four (4) variables of water retention curve
and three (3) soil properties. The required variables of water retention curve include AEV1,
AEV2, s1 and s2. The required soil properties include plasticity index (Ip), void ratio (e) and
percentage of fines.

4. Results of Laboratory Testing

Figure 2 shows both 70S30K and 50S50K specimens are in the dry optimum of their
corresponding compaction curves. The maximum dry densities for specimens 70S30K and
50S50K are 1.95 Mg/m3 and 1.845 Mg/m3, respectively. The optimum water content for
specimens 70S30K and 50S50K are 9.5% and 14%, respectively. The compaction curve for
70S30K illustrates that a higher maximum dry density is observed at a lower optimum
water content as compared to 50S50K. Dry optimum of water content was selected to
improve the possibility of producing compacted sand-kaolin bimodal soils, as suggested
by Sivakumar and Wheeler [46].
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Figure 3 shows a double-humped grain size distribution for both specimens. It can
be observed that the main constituents for both specimens are medium-sized sand and
silt-sized kaolin. The soil properties of the specimens are listed in Table 2.
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Table 2. Summary of Soil Properties.

Soil Properties 70S30K 50S50K

Dry Density, γd (Mg/m3) 1.85 1.65
Water Content, w (%) 7.50 13.50

Saturated Water Content, wsat (%) 17.7 20.5
Void Ratio, e 0.43 0.64

Liquid Limit, LL (%) 27.50 38.00
Plastic Limit, PL (%) 14.76 19.72

Plasticity Index, Ip (%) 12.74 18.28
Specific Gravity, Gs 2.61 2.59

GSD–Sand (%) 73.3 50.0
GSD–Silt (%) 19.2 36.0

GSD–Clay (%) 7.5 14.0

Unified Soil Classification System
(USCS)

SC
(Clayey Sand)

CL
(Sandy Clay with

Low Plasticity)

Figures 4 and 5 depict volumes of water for different matric suctions that were calcu-
lated from mass of water divided by unit weight of water. The volume of water should
reach equilibrium before increasing matric suction to a higher value during WRC testing.
Moreover, Figures 3 and 4 show that a significant drop in volume of water does not neces-
sarily mean that the corresponding suction is the AEV of the specimen. For example, there
is a significant decrease in the volume of water between matric suction 95 and 200 kPa, but
none of them is AEV.
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Figure 4. Equalization time of soil specimen 70S30K.

Figure 6 exhibits WRC measurements that are fitted using Equation (1). The compre-
hensive fitting parameters of the equation are listed in Table 3. Table 3 shows that 70S30K
has a higher AEV in the first and second sub-curves of WRC than the respective air-entry
values of 50S50K. This can be explained by the fact that the percentage of coarse particles
for 70S30K is higher than that for 50S50K, resulting in a faster water flow out of 70S30K
than that of 50S50K. Table 3 also indicates that the Satyanaga et al. [16] equation performed
very well, as shown by R2 close to 1.
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Figure 5. Equalization time of soil specimen 50S50K.
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Figure 6. WRC of 70S30K and 50S50K.

Table 3. WRC fitting parameters based on bimodal equation proposed by Satyanaga et al. [17].

Parameters 70S30K 50S50K

θs1 0.310 0.341
θs2 0.248 0.269

ψa1 or AEV1 (kPa) 6 20
ψm1 (kPa) 10 25

s1 1.50 1.17
θr2 0.000 0.000

ψa2 or AEV2 (kPa) 50 75
ψm2 (kPa) 152 225
ψr2 (kPa) 1175 1500

s2 1.92 1.00
R2 0.9989 0.9985
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Figure 7 shows that 70S30K has two dominant pore sizes at radius 0.015 mm and
0.001 mm with frequency 0.017 and 0.057, respectively. Figure 6 also indicates that the dual
porosity structure of 50S50K is observed at pore radius 0.004 mm and 0.001 mm, having
frequencies of 0.014 and 0.111, correspondingly.
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Figure 7. Pore-size distribution curve of 70S30K and 50S50K.

Figures 8 and 9 present the stress–strain curve and pore-water pressure changes from
CU saturated triaxial testing. It demonstrates that 70S30K has a higher deviatoric stress
than 50S50K, as expected due to the higher dry density of 70S30K. Furthermore, it also
has a lower pore-water pressure during shearing as compared to 50S50K because of the
lower void ratio of 70S30K. Figure 10 presents the Mohr–Coulomb failure envelope from
the saturated shear strength test. It shows that soil specimen 70S30K has a lower effective
cohesion as compared to soil specimen 50S50K. This is attributed to a higher percentage of
sand within soil specimen 70S30K as compared to soil specimen 50S50K. Figure 11 depicts
that 70S30K can be classified as ductile material, whereas 50S50K is brittle material based
on the respective failure mechanism. This may be caused due to greater percentage of
coarse-grained particles in 70S30K. Ductile behavior is indicated by constant load upon the
failure of specimen 70S30K, whereas brittle behavior is shown by abrupt decrease of load
upon the failure of specimen 50S50K.
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Figure 8. Deviatoric stress against axial strain of soil specimen 70S30K and 50S50K from saturated
shear strength.
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Figure 9. Pore-water pressure changes against axial strain of soil specimen 70S30K and 50S50K from
saturated shear strength.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18 
 

 
Figure 10. Mohr circle of soil specimens 70S30K and 50S50K at matric suction of 0 kPa from 
saturated shear strength test. 

 
Figure 11. Deviatoric stress against axial strain circle of soil specimens 70S30K and 50S50K from 
unsaturated shear strength test. 

Cohesion intercept is attained by drawing tangent line to the Mohr Circle for different 
matric suction. Afterwards, cohesion intercept can be plotted against matric suction as 
shown in Figures 12 and 13. Equation from Goh et al. [44] and the proposed unsaturated 
shear strength equations in this study were used to estimate the unsaturated shear 
strength of soil specimens 70S30K and 50S50K. The estimated unsaturated shear strength 
from both equations were compared with the experimental data to evaluate the 
performance of the proposed unsaturated shear strength equation. The Goh et al. [44] 
model requires the use of parameter “n” from Fredlund and Xing [43] unimodal WRC 
fitting. Figure 5 shows that AEV according to Fredlund and Xing [43] model (i.e., AEV = 
15 kPa for 70S30K and AEV = 25 kPa for 50S50K) as shown in Table 4 is different with 
either AEV1 or AEV2 from equation proposed by Satyanaga et al. [17] (i.e., AEV1 = 6 kPa 
and AEV2 = 50 kPa for 70S30K and AEV1 = 20 kPa and AEV2 = 75 kPa for 50S50K), as shown 
in Table 5. This occurs due to the fact that the Fredlund and Xing [43] equation can only 
be used to best fit unimodal WRC, whereas equation proposed by Satyanaga et al. [17] 
can be used to best fit bimodal WRC. 
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Cohesion intercept is attained by drawing tangent line to the Mohr Circle for different
matric suction. Afterwards, cohesion intercept can be plotted against matric suction as
shown in Figures 12 and 13. Equation from Goh et al. [44] and the proposed unsaturated
shear strength equations in this study were used to estimate the unsaturated shear strength
of soil specimens 70S30K and 50S50K. The estimated unsaturated shear strength from
both equations were compared with the experimental data to evaluate the performance
of the proposed unsaturated shear strength equation. The Goh et al. [44] model requires
the use of parameter “n” from Fredlund and Xing [43] unimodal WRC fitting. Figure 5
shows that AEV according to Fredlund and Xing [43] model (i.e., AEV = 15 kPa for 70S30K
and AEV = 25 kPa for 50S50K) as shown in Table 4 is different with either AEV1 or AEV2
from equation proposed by Satyanaga et al. [17] (i.e., AEV1 = 6 kPa and AEV2 = 50 kPa
for 70S30K and AEV1 = 20 kPa and AEV2 = 75 kPa for 50S50K), as shown in Table 5. This
occurs due to the fact that the Fredlund and Xing [43] equation can only be used to best fit
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unimodal WRC, whereas equation proposed by Satyanaga et al. [17] can be used to best fit
bimodal WRC.
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Figure 12. Comparison between Goh et al. [44] and the proposed equation in this study for predicting
shear strength of 70S30K.

Table 6 shows that when matric suction is less than AEV1, φb is equal to φ′ because
all pores inside the specimen are within the saturated condition. When matric suction
is between AEV1 and AEV2, φb is less than φ′ since micropores are still saturated but
macropores already come into an unsaturated state as the water starts to flow out. The
relationship between shear strength and matric suction is non-linear and φb is much smaller
than φ′ for matric suctions beyond their corresponding AEV2. This can happen because
both macropores and micropores will go into an unsaturated condition and ultimately will
be in a dry state when matric suction is increased continually.
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Figure 13. Goh et al. [44] and the proposed equation in this study for predicting shear strength
of 50S50K.

Table 4. Shear strength prediction parameters based on Goh et al. [44] Equation.

Parameters 70S30K 50S50K

AEV (kPa) 15 25
Ip (%) 12.74 18.28

c′ (kPa) 8 12
φ′ (◦) 35 28

n 2 1.59
σ–ua (kPa) 0 0

y 0.987 1.141
b 0.889 0.908

Table 5. Parameters of the proposed equation for predicting bimodal unsaturated shear strength in
this study.

Parameters 70S30K 50S50K

AEV1 (kPa) 6 20
AEV2 (kPa) 50 75

s1 1.5 1.172
s2 1.919 1
b1 0.814 0.806
b2 0.447 0.428
e 0.43 0.64

fines 0.267 0.5

Table 6. φb angle for different matric suctions.

Zone Matric Suction (kPa)
70S30K 50S50K

φb (◦) φb (◦)

1 <AEV1 35 28
2 AEV1–AEV2 20 17
3 AEV2 <11 <10

5. Discussion

The saturated volumetric water content of 70S30K is lower than that of 50S50K, as
shown in Table 3. It can happen because 70S30K has a lower void ratio, which indi-
cates less amount of void to be filled with water at saturation. The experimental results
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from this study are in agreement with the previous studies from Zhai et al. [12], and
Satyanaga et al. [17,23], who stated that bimodal grain size distribution may lead to bi-
modal WRC if the soil is compacted in dry optimum with certain percentages of fine and
coarse-grained particles. There are two main constituent particles (i.e., medium-sized
sand and silt-sized kaolin) for both specimens that can be correlated to two AEVs of the
respective specimens. The AEVs and inflection points of the first and second sub-curves
of WRC for 70S30K are lower than those of 50S50K (Table 3), indicating a smaller water
storage of 70S30K as compared to that of 50S50K. This can occur since 70S30K has larger
particle sizes and lower liquid and plastic limits than those of 50S50K. Additionally, it
indicates that 70S30K has larger sizes of dominant macropore and micropore than those for
50S50K. Kelvin’s equation describes that pore sizes of soil are inversely proportional to the
ability of soil to retain water at high matric suction [27].

Furthermore, the lower saturated volumetric water content of 70S30K shows that
total amount or frequency of pores inside 70S30K are less than those inside 50S50K. At
a fully saturated state, water is equivalent to all available pores inside the specimen by
assuming water cannot penetrate into solid particles. Based on Table 3, standard deviation
of first and second sub-curves of WRC correspond to the width of the dominant macropore
and micropore sizes in PSD, respectively. In this research, lower standard deviations are
observed in WRC of 50S50K, which has a higher number of fine-grained particles. Therefore,
the greater percentages of fine contents, the more unlikely the appearance of two dominant
pore sizes in the PSD.

Mohr–Coulomb failure envelopes of both specimens (Figure 10) demonstrate that
typically 70S30K has a lower effective cohesion intercept than that of 50S50K. One of the pos-
sible reasons is that the inter-particle bonding inside 70S30K is weaker than that of 50S50K
since 70S30K has a smaller proportion of fine-grained particles. Figures 12 and 13 illustrate
that equation from Goh et al. [44] tends to significantly overestimate the measured shear
strength of both specimens especially at high matric suctions or beyond AEV2. The possible
reason is that equation from Goh et al. [44] incorporates parameters from the Fredlund and
Xing [43] equation which cannot fit the experimental data of the unsaturated shear strength
with bimodal WRC data well. Therefore, the equation from Goh et al. [44] is not applicable
to predict the shear strength of soil with bimodal WRC. The proposed shear strength
equation in this study can predict the measured data reasonably accurately, as observed in
Figures 12 and 13. For both specimens, the linear relationship between shear strength and
matric suction is observed when matric suction is less than their respective AEV2.

Table 6 indicates that φb of 70S30K is higher than that of 50S50K for the entire matric
suction range. This trend may occur due to the higher percentage of the coarse-grained
particles and the lower void ratio in 70S30K than those of 50S50K. This study was carried
out on soil, which is associated with bimodal WRC without significant volume change.
Therefore, the proposed bimodal shear strength equation in this study is not applicable to
soil with bimodal WRC with significant volume change.

In summary, the proposed bimodal shear strength equation can be used to minimize
the cost and complexity of the unsaturated shear strength testing on soil with bimodal WRC.
The outcome of this study is beneficial for geotechnical or geo-environmental engineers
who needs to design slope cover. Future works should be carried out to incorporate the
use of soil with bimodal WRC to minimize the rainwater infiltration into the slope as well
as maintain some water contents to ensure the health of the plants. Based on the bimodal
shear strength characteristics of the investigated soil in this study, the suction of soil for the
slope cover should be maintained between AEV1 and AEV2.

Previous studies by Santamarina and Fam [47], and also Jang and Santamarina [48]
indicated the influence of fine particles especially those with significant volume change on
shear strength characteristics. Other researchers [49–52] also indicated that particle shape
has an effect on the characteristics of shear strength. This study is limited to soils with
negligible volume change. No investigation was carried out on the effect of particle shape
on this study.
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6. Conclusions

From this research, several conclusions can be deducted as follows:

• Lower air-entry value and lower inflection point of soil WRC signify larger sizes of
dominant macropore and micropore in PSD of soil.

• Dual porosity structure in PSD is more unlikely if there are higher percentages of
fine-grained particles inside the soil.

• For matric suctions less than AEV1, the relationship between shear strength and matric
suction is linear and φb is the same with φ′.

• For matric suctions between AEV1 and AEV2, the relationship between shear strength
and matric suction is still linear but φb is less than φ′.

• For matric suctions beyond AEV2, the relationship between shear strength and matric
suction is non-linear and φb is much smaller than φ′.

• A new mathematical equation has been proposed to estimate the unsaturated shear
strength of soil with bimodal water retention curve. The proposed equation has been
evaluated and it is in agreement with the experimental data of the unsaturated shear
strength carried out in this study.
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