
1. Introduction
Fine suspended particles are ubiquitous in streams and rivers. Suspended material typically includes sedimentary 
particles (Wharton et al., 2017), particulate organic matter (Johnson et al., 2018), microplastics (Li et al., 2020), 
and microbiota such as bacteria, algae, and viruses (Lenaker et  al.,  2018). Transport and deposition of fine 
suspended particles play a key role in regulating river-groundwater interactions, river morphodynamics, and 
hyporheic biogeochemistry (Boano et al., 2014). Clay particle deposition decreases streambed hydraulic conduc-
tivity by filling porespace, ultimately clogging the bed, altering patterns of porewater flow, and degrading the 
benthic and hyporheic ecosystem (Brunke, 1999; Brunke & Gonser, 1997; Fox et al., 2018). Clay in the stre-
ambed can also reduce bed sediment motion (Dallmann et al., 2020). The deposition of fine particulate organic 
matter drives hyporheic metabolism (Newbold et al., 2005) and plays an important role in fluvial carbon cycling 
(Brunke & Gonser,  1997; Hope et  al.,  1994). Additionally, fine sediment particles play an important role in 
the colloid-facilitated transport of sorbed metals (Droppo et al., 2014; Foster & Charlesworth, 1996), as well 
as the accumulation of contaminants in bed sediment (Arce et al., 2017; Stone & Droppo, 1994). Despite the 
importance of spatial patterns of particle deposition for hyporheic ecosystems, fluvial biogeochemical processes, 
and  river  contamination most studies of riverine fine particles focus on the water column (Drummond et al., 2019; 
Park & Hunt, 2018; Wolke et al., 2020). Considerably less effort has been put into understanding the dynamics 

Abstract Previous modeling studies of hyporheic exchange induced by moving bedforms have used a 
moving reference frame, typically corresponding to an individual moving bedform. However, this approach is 
not suitable for simulating the exchange and accumulation of immobile fine particles beneath moving bedforms, 
which commonly occurs in sand-bed streams, as both moving and stationary features must be considered. Here 
we present a novel simulation framework that may represent arbitrarily shaped, generally aperiodic mobile 
bedforms within a stationary reference frame. We combine this approach with particle tracking to successfully 
reproduce observations of clay deposition in sand beds, and the resulting development of a low-conductivity 
layer near the scour zone. We find that increased bedform celerity and filtration both lead to a shallower depth 
of clay deposition and a more compact deposition layer. While increased filtration causes more clay to deposit, 
increased celerity reduces deposition by flattening hyporheic exchange flowpaths.

Plain Language Summary Stream water flows into and out of sand ripples along the stream bed. It 
is also common for streambed sand ripples to migrate downstream due to erosion and deposition of sediment. 
Mathematical models that simulate the flow of stream water into and out of streambed ripples have typically 
done so from the perspective of a viewer who moves downstream with the ripple. This approach can be useful 
but is less suitable for representing the accumulation of material deposited by the water flowing through the 
ripple. We present a novel mathematical model that represents moving sand ripples from the perspective 
of a viewer who is standing still and watching the ripples go by. Simulation results successfully reproduce 
experimental observations of the accumulation of material deposited by water flowing through the ripple. 
Ripples that move faster deposit material at shallower depths and deposit less of the material that flows through 
the ripple. Deposited particles with a higher tendency to become trapped between streambed sand grains will 
also deposit at shallower depths. This model will provide new insights into the transport and deposition of 
contaminants that enter streams and rivers.
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of fine particle transport within the bed and the resulting spatial patterns 
of particle accumulation (e.g., Drummond et al., 2017; Harvey et al., 2012; 
Phillips et al., 2019).

A principal mechanism of fine suspended particle delivery into streambeds 
is hyporheic exchange flux (HEF), particularly advective HEF induced by 
stream bedforms (Packman & Mackay, 2003; Partington et al., 2017). Parti-
cle deposition in streambeds due to HEF induced by stationary bedforms has 
been observed in both flume experiments (Fox et al., 2018; Jin et al., 2019; 
Packman et  al.,  2000b; Rehg et  al.,  2005) and simulated using numerical 
models (Packman et  al.,  2000a; Preziosi-Ribero et  al.,  2020). However, 
many natural sand-bed streams have continuous bed sediment transport 
(Einstein, 1950; Engelund & Hansen, 1967). Bed sediment is eroded from the 
upstream (stoss) side of the bedform and redeposited on the downstream (lee) 
side, causing the bedforms to migrate downstream. During bedform move-
ment fine particles and pore water are released from the stoss side  of  the 
bedform by erosion, while surface water and suspended fine particles become 
trapped by lee-side re-deposition of bed sediment (Packman & Brooks, 2001). 
Hyporheic exchange due to the aforementioned mechanism is referred to as 
“turnover” (Elliott & Brooks, 1997).

Previous analyses of HEF under moving bedforms have employed a Lagran-
gian frame of reference that travels downstream with the bedform, starting 
with Elliott & Brooks (1997) for solutes. In recent work, the Lagrangian refer-
ence frame has been adopted by several researchers to study oxygen consump-
tion and nutrient transformation in the hyporheic zone (Kessler et al., 2015; 
Zheng et al., 2019) and marine sediments (Ahmerkamp et al., 2015). This 
approach is adequate for analyses of the fate of mobile species but is less 
suitable for tracking the accumulation of immobilized particles at a given 
location over arbitrary lengths of time.

Here we present a model that combines four key features needed to capture the 
spatiotemporal dynamics of fine particle deposition under moving bedforms: 

realistic bedform shape, the passage of a series of bedforms through a fixed frame of reference, hyporheic particle 
transport and deposition, and long-term particle accumulation that produces spatial patterns in the bed. We then 
use this model to explain coupled clay-sand dynamics that control short-term particle transport and, over longer 
timescales, yield depositional patterns commonly found in rivers.

2. Methods
We implemented a 2D model of particle deposition with moving bedforms in Python (Harris et  al.,  2020; 
Hunter, 2007; McKinney, 2010; Virtanen et al., 2020), with the bed surface specified analytically using math-
ematical functions in order to discretize natural bedform geometries. The modeling framework and processes 
captured by the model are illustrated in Figure 1. We use a Bezier curve to define the upstream face of the 
bedform and a linear function to define the downstream face (Text S1 in Supporting Information S1). Since a 
Bezier curve is a polynomial defined based on user-specified control points, this choice provides an intuitive 
way to represent arbitrary bedform shapes. The two-part function delineates the top boundary of the domain, 
which represents the sediment-water interface. At each timestep, the top boundary shape changes as bedforms are 
migrated downstream at a constant celerity.

Head is imposed along the top boundary of the domain using a sinusoidal head function (Elliott & Brooks, 1997;  
Text S2). A no-flux boundary condition is imposed along the bottom of the domain. At the left and right bound-
aries of the domain, the head at the surface is attenuated toward zero with increasing depth using an exponential 
decay function (Elliott & Brooks, 1997):

ℎ (𝑧𝑧) = ℎ (𝑧𝑧0) ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑟𝑟𝑟𝑟) (1)

Figure 1. Schematic diagram of moving-boundary model for fine particle 
transport and deposition. The model represents the passage of a series of 
bedforms, but only a single bedform is illustrated here for simplicity. The 
dashed line shows the shape of the domain top boundary (sediment-water 
interface) at time t0, while the solid line shows the boundary shape after 
migration at t1. Head within the bed at t1 is shown by the colored contours; 
bright colors are high-pressure areas, while dark colors show low-pressure 
areas. Black arrows show instantaneous hyporheic streamlines that result from 
the head gradients within the bed at t1. Circles and squares indicate particles 
that enter the bed via pumping (at the upstream face of the bedform) and 
turnover (at the downstream face of the bedform), respectively. Particles with 
a red interior are mobile in the streamwater and hyporheic porewater, while 
particles with a pink interior have been deposited. Red lines illustrate example 
flow paths followed by particles. Particle remobilization from the bed by 
scouring between t0 and t1 is represented by blue arrows.
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where h(z) is head at bed height with vertical coordinate z measured upward from the base of the bed, z0 is the 
height of the top of the bed, r is the decay rate 2π/λ, and d = (z0 – z) is the depth of z below the bed surface. 
Previous works have all utilized periodic boundary conditions along the side boundary, an unduly restrictive 
choice because the shape of hyporheic flow paths is dictated by the shape of the bed surface, which is typically 
not periodic in sand-bed rivers (McElroy & Mohrig, 2009). Exponentially attenuating the head along the side 
boundary removes the reliance on this assumption, as it relies only on the imposed head at the top of the side 
boundary without making assertions about any other point in the domain.

At each timestep, the model is treated as being at a steady state. The instantaneous system geometry is treated as 
fixed at each timestep, and the effects of sand and water compressibility are assumed to be negligible at the scale 
addressed by this model. Thus, at each timestep, the instantaneous head field in the bed is computed based on 
the bed surface geometry using the Laplace equation, which describes steady-state groundwater flow (Elliott & 
Brooks, 1997; Zheng et al., 2019):

∇2ℎ = 0 (2)

where h is hydraulic head (cm). This equation is solved using a 2D finite-difference scheme over the domain grid 
(Text S1 in Supporting Information S1). Streamlines in the bed are then computed using Darcy's law.

Porewater flow, solute transport, particle transport, and deposition within the bed are represented using a parti-
cle-tracking method. Fluid and suspended particles within the bed are propagated in each timestep in accordance 
with the instantaneous porewater velocity field obtained from the pseudo-steady velocity distributions. Particle 
deposition is represented using colloid filtration theory, following the earlier work of Packman et al. (2000a):

𝑑𝑑𝑑𝑑𝑚𝑚

𝑑𝑑𝑑𝑑
= −𝜆𝜆𝑓𝑓𝑑𝑑𝑚𝑚 (3)

where Cm is the suspended particle concentration, s is the distance traveled in the bed, and λf is the filtration 
coefficient. Consequently, the distance that an individual particle travels before depositing follows an exponential 
distribution:

𝐷𝐷 ∼ 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑠𝑠; 𝜆𝜆𝑓𝑓 ) (4)

where D is the distance traveled by the particle. The particle's probability of depositing at any location in the bed 
within a given timestep is given by the cumulative distribution function (CDF) of Equation 4:

𝐹𝐹 (𝑠𝑠) = 1 − 𝑒𝑒−𝜆𝜆𝑓𝑓 𝑠𝑠 (5)

In each timestep, each particle's displacement due to advection is computed. The advective displacement is then 
used to compute the particle's probability of depositing on that timestep using Equation 5. If the particle has 
not deposited during the current timestep, the particle is propagated by displacement due to both advection and 
dispersion. Longitudinal dispersivity αL was set to 0.063 cm (Toride et al., 1995). Transverse dispersivity was set 
to αT = 0.1αL.

Once a particle has deposited, it is assumed not to remobilize except due to bedform scour. The average particle 
residence time in the bed is greater than the average time required for bedforms to travel one wavelength down-
stream. Thus, particle transport in the bed reflects the passage of multiple bedforms (and associated porewater 
flow), and the particle tracking model incorporates the full time-history of the bed profile and hyporheic flow 
field. The number and location of particles entering the bed due to pumping are calculated using the spatial 
distribution of HEF along the stoss side of the bedform (Text S1 in Supporting Information S1). The number 
of particles entering the lee face of the bedform is simulated using the incoming flux due to turnover, which is 
calculated by the following equation:

𝑄𝑄𝑡𝑡 = 𝑐𝑐 ⋅ 𝑑𝑑𝑡𝑡 ⋅ ℎ𝑙𝑙 ⋅𝑤𝑤 ⋅ 𝜃𝜃 (6)

where Qt is the flux (cm 3/s), c is the celerity (cm/s), dt (s) is the amount of time that passes per model timestep, 
hl is the height of the lee face of the bedform, w is the width of the channel, and θ is the porosity of the sand. 
No particles are released within one bedform wavelength of the side boundaries in order to avoid any possible 
effects of the side boundary conditions (Text S2 in Supporting Information S1). The channel width w is included 
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to convert 2D flow paths computed by the model into volumetric flux across the sediment-water interface. We 
impose a constant concentration of particles in the water column, which does not change in response to particle 
exchange with the bed and deposition. This corresponds to the common case of large input of fine particles from 
upstream relative to the instantaneous exchange flux.

The modeled domain that we use in the simulations is 150 cm long. The bedforms are 25 cm long and 2.5 cm in 
height. The domain thus accommodates six bedforms (Text S2 in Supporting Information S1). The bed sediment 
below the bedforms is 20 cm thick, allowing domain height to vary from 20 to 22.5 cm. Channel width w is 30 cm 
to facilitate comparison with simulation results with the experimental observations of Teitelbaum et al. (2021). 
Stream water depth is 12 cm. The sand has a porosity of θ = 0.33, hydraulic conductivity of 0.12 cm/s, and 
D50 of 0.31 mm. The sediment bed and its properties are assumed to be homogeneous and unchanging over 
time. Thus, for example, particle erosion, sorting, and compaction is not considered. The choice of the modeled 
physical conditions is based on typical characteristics of sand material, as used by Teitelbaum et al. (2021), to 
facilitate the comparison of simulation results with the experimental observations. Because we use a wider range 
of flow conditions in the simulations than appear in Teitelbaum et al. (2021), criteria for bedform formation and 
movement were implemented to ensure that the model is used under realistic conditions (Text S3 in Supporting 
Information S1, Data Set S1).

Simulations are run at filtration coefficients of 0.1 to 0.9/cm and bedform celerities of 0.6, 6, 30, 60, and 90 cm/hr. 
For each celerity, the corresponding streamwater velocity is calculated using the relationship from Snishchenko 
and Kopaliani (1978):

𝑐𝑐 = 0.019𝑉𝑉 ⋅ 𝐹𝐹𝐹𝐹2.9 (7)

where c is bedform celerity (m/s), V is the average streamwater velocity (m/s), Fr is the Froude number (V/
(gH) 1/2), g is the gravitational constant and H is the water depth (m). We then use the physical parameters of the 
sand and the water to calculate a set of metrics to ensure that the criteria for bedform formation are fulfilled. 
Detailed calculations are represented in Text S3 in Supporting Information S1 and Data Set S1. The first crite-
rion for bedform formation is that Fr ≤ Ft (Karim, 1995). If that condition holds, D* and T* are calculated to 
test whether and what type of bedforms will form (van Rijn, 1993). It is expected that ripples will form when 
1 < D* < 10 and 0 < T* < 10. This implies that the bed will be stationary under a flow velocity of 0.1 m/s, while 
the rest of the flow conditions are expected to form ripples. Ripple wavelength and height depend on particle 
D50 (Lichtman et al., 2018; Raudkivi, 1997; Soulsby et al., 2012). Thus we used the same ripple geometry in all 
the simulations. Finally, the shear velocity, shear stress, and shields parameters are reported as parameters that 
control the movement of the bed.

3. Results and Discussion
Model validation occurred in two steps. Simulated HEF was compared to HEF measured during experiments 
under similar conditions (Fox et al., 2018; Teitelbaum et al., 2021) using linear regression. Simulated HEF was 
found to track well with experiments (y = 1.18x, r 2 = 0.96, Text S4 in Supporting Information S1). Simulated 
particle deposition profiles were also compared with the experimental observations of Teitelbaum et al. (2021) 
and found to be statistically equivalent (paired z-test, z = −5.34 × 10 −16, p > 0.05; Text S5 in Supporting Infor-
mation S1). Furthermore, simulated particle deposition profiles asymptotically converged to the pattern observed 
in experiments (Text S6 in Supporting Information S1). The deposition profile converges because of the passage 
of many bedforms: while there is a different pattern of HEF and particle transporting within each individual 
bedform, all bedforms contribute to the accumulation of particles below the scour zone.

Simulations reproduced experimental observations of both a conservative tracer and kaolinite deposition previ-
ously presented by Teitelbaum et al. (2021) (Figure 2). The distribution of the conservative tracer in the bed 
creates a conchoidally-shaped plume beneath each bedform (Figure 2b), as water and solutes enter the bed on 
the stoss side of the bedform (high pressure zone) and migrate along flow paths that eventually return to the 
stream at the low-pressure zones near the lee side of the bedform (see also Figure 1). This shape resembles the 
dye plumes that were observed during experiments (Figure 2c). The flow field imposed by the bedform migrates 
with the bedform as it moves downstream, so the solute plumes migrate with the bedforms as well (see Movie S1 
and Teitelbaum et al. [2021]). The highest concentration of the dye in the bed occurred between the heights of 
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19.5–20 cm above the model bottom, that is, just below the line of most frequent scour depth (MFSD; Figure 2a). 
For the purposes of this calculation, the bed was divided into horizontal layers of 0.5 cm depth, and particle 
concentration versus depth was expressed as a percentage of particles in a given layer.

Particle deposition resulted in accumulation primarily within a layer just below the MFSD (Figures  2d–2f, 
Movie S2). This location was also where the maximum concentration of deposited particles was found (Figure 2d). 
This deposition pattern has also been observed in various flume experiments that used kaolinite clay particles 
(Dallmann et al., 2020; Packman & Brooks, 2001; Rehg et al., 2005; Teitelbaum et al., 2021), and field measure-
ments (Harvey et al., 2012). Particle concentration decreased sharply with depth in the bed and the concentration 
dropped to zero within several cm (Figure 2d). Fewer particles are deposited at deeper locations than at shallower 
ones because particle concentration in porewater decreases exponentially with distance traveled in the bed due to 
filtration (Equation 3). At the end of each simulation, only a relatively small number of deposited particles could 
be found above the line of MFSD, that is, in the moving fraction of the bed. Particles that deposit there will neces-
sarily be resuspended by erosion after spending some time in the bed (Figure 1, Movie S2). The vertical pattern 
of particle deposition is clear evidence of the averaging effect caused by the passage of many bedforms.  This 
behavior has been observed previously (Dallmann et al., 2020; Teitelbaum et al., 2021), but our model is the first 
to show that downward particle fluxes underneath bedforms asymptotically yield a consistent depositional profile 
of fine particles below the scour zone.

After confirming that the model reproduces experimentally observed patterns, we assess how clay-sand interac-
tions (i.e., filtration) and bedform celerity influence particle deposition. Increasing the filtration coefficient causes 
the layer of deposited particles to become more compact, which can be seen most clearly in the 2D profile plots 
in Figures 3(a–3c), and is quantified using the standard deviation of deposition depth (σd, Figure 3h). Keeping 
celerity constant and varying filtration coefficient from 0.1 to 0.9/cm decreases σd by magnitudes of 1.48, 0.88, 
0.47, 0.31, and 0.24 cm for celerities 0.6, 6, 30, 60, and 90 cm/hr, respectively (Figure S1). Increased filtration 
coefficients shorten the distance within which a particle can be expected to deposit. Therefore, particles deposit 
within shorter distances and before they travel deep into the bed. This results in a more compact deposition layer.

For all celerities, increasing the filtration coefficient led to an increase and then a slight decrease in the percent-
age of particles that deposited (Figures 3g and Figure S2 and Data Set S2). The filtration coefficient for which 
maximal deposition occurred (λf max, indicated by black rectangles in Figure S2) was 0.3, 0.4, 0.4, 0.6, and 0.6/
cm for celerities 0.6, 6, 30, 60, and 90 cm/hr, respectively. Increases in deposition percentage from λf = 0.1/cm 
to λf max were 14.5%, 16.1%, 18.4%, 20.1%, and 20.0% for the same celerities. Decreases in deposition percentage 
from λf max to λf = 0.9/cm were 6.9%, 6.5%, 3.9%, 3.0%, and 1.5% for the same celerities. Increasing the filtration 

Figure 2. Comparison of particle transport simulations against experimental observations. The first row shows the 
distribution of the conservative tracer in (a) and (b) from the simulation while panel (c) shows a photograph of conservative 
dye plumes that were observed during tracer experiments in a flume. The second row shows the model results for deposited 
particles in (d) and (e) and a picture (f) from an experiment with kaolinite clay deposition under moving bedforms 
(Teitelbaum et al., 2021). Deposited clay is visible as a horizontal white layer just below the level of the troughs (f). The 
arrows between (e) and (f) represent the depth of the most frequent scour, below which most of the deposition occurs. The 
profiles in panels (a) and (d) show particle concentration by depth as a percentage of all particles shown in (b) and (e), 
respectively. Height is measured from the bottom of the model domain. The distance downstream shows the horizontal 
location within the modeling domain.
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coefficient means that the average distance that particles travel before depositing is shorter. The increase for low 
filtration coefficients (λf < λf max) occurs because more particles deposit instead of advecting out of the bed. The 
decrease for higher filtration coefficients (λf > λf max) is indicative of particles that would otherwise travel below 
the MFSD instead of depositing above it and later being scoured away.

Increasing celerity also causes the deposition layer to become more compact. σd decreases with increasing celer-
ity in all cases (Figures 3h and Figure S3). The decrease in σd is greatest for the smallest filtration coefficient 
(λf = 0.1/cm, decrease of 1.52  cm) and conversely the smallest decline in σd occurs for the largest filtration 
coefficient (λf = 0.9/cm, decrease of 0.27 cm). Increasing celerity flattens particle flow paths within the bed 
(Movie S3) restricting particles to a shallower portion of the bed, resulting in a more compact deposition layer 
(Figures 3a–3f). Flow paths flatten as a result of the migration of the flow field. This occurs due to the faster 
migration of the upwelling zone relative to the velocities of the particles within the bed, resulting in particles 
being drawn into an upwelling zone sooner than under stationary bed conditions. Unlike the filtration coefficient, 
increasing celerity decreased the percentage of particles deposited over the entire range of celerities examined 
(Figures 3g and Figure S4). The greatest decrease is found for λf = 0.1/cm, for which the percentage of particles 

Figure 3. Effects of celerity and filtration coefficient on particle deposition. All panels show results after the passage of five bedforms through the model domain. 
Panels (a)–(f) show 2D spatial distributions of particles for the slowest and fastest celerities (0.6 and 90 cm/hr). Panels (g) and (h) show phase spaces of filtration 
coefficient versus celerity in terms of percentage of particles deposited in the bed and standard deviation of deposition depth (σd).
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released decreases from 49% to 25% between celerities 0.6 and 90 cm/hr. The smallest decrease is for λf = 0.9/
cm, for which the decrease is from 56% to 44% between the same celerities.

4. Conclusions
Our results clearly show that there is an interaction between the effects of celerity and filtration coefficient on 
particle deposition and remobilization. An increase in either bedform celerity or filtration causes particles to 
deposit at shallower locations (Figures S5–S9). However, an increase in filtration coefficient causes more parti-
cles to accumulate in the deposition layer only in some cases, while an increase in celerity results in less accumu-
lation for all cases examined. The decrease in particle accumulation under increased celerity is due to the fact that 
higher celerity flattens particle flow paths, causing particles to travel less distance in the bed before flowing back 
out to the water column. Furthermore, the effect of either parameter is modulated by the other. Increasing either 
parameter causes a more compact deposition layer, but this effect is less prevalent if the other parameter value is 
high. Similarly, each parameter has a different effect on deposition rate if the other parameter value is high. These 
findings imply that when studying particle deposition in streams it is important to include measurements of both 
the bed morphodynamics and interactions between bed sediments and suspended particles (as represented here 
by the filtration coefficient).

One main consequence of particle deposition in streambeds is clogging due to clay accumulation in the bed 
(Dallmann et al., 2020; Fox et al., 2014; Shrivastava et al., 2020). The common assumption is that high-flow 
event and scours prevent clogging from being significant, however, it is clear that the compactness and depth 
of the clogging layer will affect the scour due to increased cohesion of the bed (Baas et al., 2016; Debnath & 
Chaudhuri, 2010; Molinas & Hosni, 1999; Wan, 1985). Clogging and reduction in streambed hydraulic conduc-
tivity has also been widely observed, but previous studies have not evaluated how the depth of deposition may 
influence the long-term persistence of the clogging problem (Cheng et  al.,  2013; Fetzer et  al.,  2017; Korus 
et al., 2018, 2020). Depth of deposition is also critical for evaluating the link between streambed morphodynam-
ics and water column turbidity (Bash et al., 2001; Lloyd et al., 1987; Wharton et al., 2017).

Particle deposition also has implications for the health of humans and other organisms. For example, deposited 
pathogens are released back into the water during bedform scour (Drummond et al., 2017; Rebaudet et al., 2013). 
Thus, the risk for pathogen resuspension is higher when deposition occurs at shallow depths, as when filtration 
and celerity increase. Increased depth of deposition means longer residence time in the bed (Harvey et al., 2012; 
Phillips et al., 2019; Voepel et al., 2013). Longer residence time in turn increases the chances of sediment-dwell-
ing creatures or burrowers ingesting fine particles, such as microplastics, with harmful effects (Garcia et al., 2020; 
López-Rojo et al., 2020; Wright et al., 2013).

Increased depth of deposition and residence time also have far-reaching implications for microbial respiration and 
the health of the stream ecosystem. For instance, longer residence time often means enhanced nutrient removal 
(Briggs et al., 2014; Reeder et al., 2018; Zarnetske et al., 2011). Burial of particulate organic matter has a direct 
influence on its availability, respiration rates, and metabolic hot spots (Rowland et al., 2017; Stelzer et al., 2014). 
Enhanced microbial activity and biomass growth may also influence flow paths in the bed due to clogging 
(Mendoza-Lera & Datry, 2017; Newcomer et al., 2016; Nowinski et al., 2011), and should be taken into account 
when sampling of sediment is conducted in the field.

The model presented here, adopting a stationary frame of reference, enables the quantification of fine particle 
accumulation at fixed locations in the bed, within and below the scour zone. The use of a moving boundary to 
represent the sediment-water interface enables resolving the effects of realistic, time-varying bed morphologies 
that are commonly found in sand-bed rivers (McElroy & Mohrig, 2009), including the effects of unsteadiness that 
is commonly found in systems with mixed clay-sand beds (Baas & Best, 2002).
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Data Availability Statement
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1c2754e839e1e12d73154eaff/. The Hydroshare repository can be accessed via the following DOI: https://doi.
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