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Particle radiation from black holes has an observed emission power depending on the surface
gravity κ = c4/(4GM) as

Pblack hole ∼
~κ2

6πc2
=

~c6

96πG2M2
,

while both the radiation from accelerating particles and moving mirrors (accelerating boundaries)
obey similar relativistic Larmor powers,

Pelectron =
q2α2

6πε0c3
, Pmirror =

~α2

6πc2
,

where α is the Lorentz invariant proper acceleration. This equivalence between the Lorentz invariant
powers suggests a close relation that could be used to understand black hole radiation. We show
that an accelerating mirror with a prolonged metastable acceleration plateau can provide a unitary,
thermal, energy-conserved analog model for black hole decay.
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I. INTRODUCTION

The Equivalence Principle teaches us that gravitation,
acceleration, and curvature are equivalent. Moreover we
know that external effects on quantum fields creates par-
ticles, and this ties together black hole particle produc-
tion, thermal baths observed by accelerating observers,
and moving mirror acceleration radiation, e.g. the Hawk-
ing [1], Unruh [2], and Davies-Fulling [3] effects. How-
ever, we also know that constant acceleration is insuf-
ficient: an electron sitting on a laboratory table in an
eternal constant gravitational field of the Earth will not
radiate. In the same way, an eternally exactly uniformly
accelerating accelerated boundary (moving mirror) will
not emit energy to an observer at infinity, e.g. [4].

Another aspect of great interest [5] is that asymptot-
ically static mirrors preserve unitarity and information
[6]. We explore a model that merges these two regimes
of uniform acceleration and zero acceleration and show
that this system can radiate particles for an extended
time with constant power. The system will not only pre-
serve information but emit thermal energy, conserve total
radiated energy, and emit finite total particles, without
infrared divergence. This model can serve as an analog
for complete black hole evaporation.

Related explorations are not without precedent. Black
hole evaporation has close acceleration analogs [7] includ-
ing moving mirror models [8, 9]. Asymptotic infinite ac-
celeration trajectories [10] can evolve to eternal thermal
equilibrium solutions [11]; asymptotic constant velocity

∗ michael.good@nu.edu.kz
† evlinder@lbl.gov

(zero acceleration) can give information preserving quasi-
thermal solutions describing black hole remnant models
(e.g. [12, 13]). Unitary complete black hole evapora-
tion models are characterized by asymptotic zero-velocity
mirrors (e.g. [14, 15]).

Entanglement entropy [16], and hence information, is
tied directly to the mirror trajectory [17]. However, the
distant observer detects the radiated power, not the en-
tropy. We investigate the connection between these for
complete black hole evaporation via the analog case of
uniform acceleration.

Uniform acceleration mirrors are generally thought to
emit zero energy [18, 19]. In our case, we will explore
metastable uniform acceleration, where there is an ex-
tended but finite period of constant power emission. We
will confirm that the stress is zero during this plateau
period but find that the power is not. The model pre-
sented here will preserve information, evolve to thermal
equilibrium, and conserve emitted energy, providing an
analog for a black hole that completely evaporates away
into radiation.

In Sec. II we exhibit the mirror dynamics of accelera-
tion and velocity with the desired properties, leading in
Sec. III to evolution with quantum purity (information
preservation) from the finite entanglement entropy with
a Page turnover. Section IV computes the quantum Lar-
mor power and total energy radiated, linking the mirror
parameters with black hole properties. We conclude in
Sec. V, highlighting the unitarity and thermality of the
analog models for black hole evaporation.

ar
X

iv
:2

11
1.

15
14

8v
1 

 [
gr

-q
c]

  3
0 

N
ov

 2
02

1

mailto:michael.good@nu.edu.kz
mailto:evlinder@lbl.gov


2

II. ACCELERATION & VELOCITY

We seek a mirror acceleration that dies to zero at ±∞
(to preserve information) and has a constant plateau
at some maximum acceleration (for metastable thermal
power). We can arrange the maximum to be at time
t = 0, for example. We would also like to be able to
adjust the duration of the plateau, to study the scaling.
A simple model is

α = α0 e
−(t/t?)j sgn(t) . (1)

The metastable plateau runs over |t| . t?; at t = t?
the acceleration falls to 1/e of its maximum value α0.
As a foreshadowing, we expect the power emission to
determine the black hole lifetime, Ṁ ∼ P ∼M−2, where
M is the black hole mass, so we anticipate a successful
analog model will have t? ∼M3.

We take j to be a positive even integer so that α will
die to zero for t → ±∞. Large j gives a flatter plateau
and a steeper fall off to approach zero. For example,
the acceleration plateau stays within a fraction ε of the
maximum for |t| < t?ε

1/j so for j = 4 (8) it is within
1% of maximum out to |t| < 0.32t? (0.56t?). The limit
j → ∞ gives a box function for the plateau. This ap-
proaches equilibrium emission on the plateau. The sign
flip (change in direction) in acceleration at t = 0 is so
the mirror comes back to rest (not merely inertial, but
static) at future infinity. Since power depends on α2, the
sign flip does not affect the power detected by a distant
observer. (One can easily regularize the sign flip through
use of a tanh transition without affecting the results.)

The mirror velocity v comes from the acceleration via
the rapidity η, by v = tanh η and

sinh η(t) ≡
∫ t

−∞
dt′ α(t′) = α0t?

Γ(1/j, (t/t?)j)

j
, (2)

where Γ is the incomplete Gamma function. The velocity
smoothly goes from 0 to a maximum near the speed of
light and back to 0, without changing sign. The maxi-
mum velocity will be reached at t = 0, where the incom-
plete Gamma function becomes a complete one, so

sinh η(t = 0) = α0t?
Γ(1/j)

j
≡ Q (3)

vmax =
[
1 +Q−2

]−1/2
. (4)

When j → ∞, then Q = α0t?. Note the maximum
Lorentz boost factor γmax = (1 +Q2)1/2. Figure 1 shows
the acceleration and the resulting velocity.

III. ENTROPY & UNITARITY

Before proceeding further, let us establish this is a uni-
tary analog model by observing that the entanglement
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FIG. 1. The proper acceleration (red curve) of the mirror
starts to the left (negative by convention), reaches a maximum
magnitude (1/4M as j → ∞), and has a sign (direction)
change at t = 0. The velocity (blue curve) of the (1+1)D
mirror trajectory is always to the left (by convention); the
mirror starts from zero speed, approaches the speed of light,
then finally comes to rest. Here we plot for M = 1 and j = 4.

entropy does not diverge, as expected for a mirror with
asymptotic static end states [11]. From Eq. (2),

S(t) ≡ η(t)

6
=

1

6
sinh−1

(
α0t?

Γ(1/j, (t/t?)j)

j

)
. (5)

The entropy is asymptotically zero (no divergence),
which signals purity. That is, in the limit t → ±∞,
S → 0. This ensures that every field mode reflects to the
observer. Without loss of field modes past a horizon, the
model preserves quantum information during time evo-
lution of the vacuum state [20]. Figure 2 exhibits the
expected Page curve turn-over.

entropy
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FIG. 2. Page curve turn-over of the von Neumann geometric
entanglement entropy, Eq. (5), with asymptotic zeros and no
divergence. This scalar measure of information demonstrates
the model has no information loss by construction. Here M =
1 and j = 4 as in Figure 1.

We can push this further, deriving thermodynamic
entropy from entanglement entropy in the analog con-
text. To reach the thermodynamic regime, we apply two
equilibrium limits: flatness j → ∞, and central time
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t → 0−. The value of the rapidity here is given by
sinh η? = α0t∗ = 12πM2 = 3π/(4κ2) (as seen for t∗ in
Sec. IV in the j → ∞ limit), with κ the surface gravity.
The entanglement is then

S =
2× 1

6
sinh−1(α0t?) =

1

3
sinh−1

(
3A

4

)
. (6)

In the first step, we have translated from dynamics to en-
tanglement using the rapidity-entropy relation [21] and
accounted for (3+1) dimensions [22], where the additive
modulus entanglement entropy is twice the one-sided en-
tropy of a mirror in (1+1) dimensions, S = 2(η/6). In
the second step, we have written the (3+1) dimensional
entanglement entropy in terms of the area of the analog
black hole, A = π/κ2, which illustrates thermodynamic
entropy, S = A/4, of the gravitational analog in the ge-
ometric limit A→ 0.

IV. POWER & TOTAL ENERGY

The relativistic Larmor form for power, familiar from
electrodynamics [23], also applies to the energy radiated
from accelerating mirrors [22]. In the latter case

P (t) =
~α2(t)

6πc2
, (7)

where α is the frame-invariant proper acceleration. This
measure is a good candidate for what the observer de-
tects at asymptotic infinity. It is a Lorentz invariant
corresponding to the emitted radiation from both sides
of a (1+1)D moving mirror, as well as the emitted power
for a (3+1)D moving mirror.

Thus the power for the corresponding (3+1) dimen-
sional situation of Eq. (1) is

P (t) =
~α2

0

6πc2
e−2(t/t?)

j

=
c5

G

1

6π

(
α

αPl

)2

, (8)

where here we explicitly show the “Planck power” c5/G
and “Planck acceleration” αPl ≡ c/tPl, although usually
elsewhere we work in units where ~ = c = G = 1.

Figure 3 shows the emitted power P (t) with its plateau,
increasingly in equilibrium for large values of j, and
vanishing at asymptotically early and late times. The
asymptotically zero emission signals the end of evapora-
tion, e.g. of the (analog) black hole, and a resulting finite
total energy.

To find the total energy emitted by the evaporated
(3+1)D black hole analog, one can integrate the power

over coordinate time, E =
∫ +∞
−∞ P (t) dt. The result is

E =
α2
0t?
3π

Γ(1/j)

j 21/j
, (9)

where now we have a complete Gamma function. As
j →∞, the second fraction goes to 1.

j=4; M=1

j=8; M=1

j=8; M=5/4
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FIG. 3. The acceleration plateau results in a (3+1)D power
emission exhibiting an equilibrium emission plateau, with
asymptotic finality (as t → ±∞) corresponding to complete
evaporation.

We can use this to fix t? in terms of E and α0. In
particular, in the black hole context it is natural to take
the correspondence that the total energy emitted is the
mass M of the black hole, and the acceleration during
the equilibrium emission is the surface gravity, i.e. α0 =
κ ≡ 1/(4M). This then implies that

t? =
3πE

α2
0

j 21/j

Γ(1/j)
(10)

→ 48πM3 j 21/j

Γ(1/j)
→ 48πM3 =

3π

4κ3
, (11)

The first right arrow takes the correspondence, and the
second arrow takes the j → ∞ limit. We see that as
expected from the correspondence with black hole decay,
the characteristic time scale t? ∼ M3. (In the mirror
model, the radiation does not stay thermal beyond t? so
the total decay time is not defined for j finite.) Note that
under this correspondence, Q = 12πM2 in Eq. (3). We
used this expression in Sec. III to evaluate the thermo-
dynamic entropy.

Conversely, we can write α2
0 = 3πE/t? in the limit and

find

P =
c5

G

GM

2(ct?)c2
, (12)

i.e. there is a fundamental limit in that the decay time
t? must be long enough that the Planck power is not
exceeded: one cannot radiate away the energy in shorter
than a light crossing time.

This accelerating mirror model therefore provides an
analog to the concept that a physical black hole emits
finite energy, that this energy is the total mass of the
black hole itself for complete evaporation, the evapora-
tion time ∼M3, and the entropy ∼ A/4, consistent with
surface gravity ∼ 1/(4M) in the thermodynamic limit.
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V. CONCLUSION

We present an analog model using the dynamical
Casimir effect for accelerating boundaries (mirrors) to
describe black hole complete evaporation. The approach
uses the quantum relativistic Larmor formula for Lorentz
invariant radiative power, P = ~α2/6πc2 in terms of the
proper acceleration α. The Larmor formula works equiv-
alently for (mirror) acceleration and (black hole) surface
gravity.

The accelerating boundary correspondence exhibits
the desirable characteristics of unitarity, thermality
(equilibrium emission), and energy conservation. The
finite entropy with Page turnover preserves information.
The model can thus describe a black hole that completely
evaporates away in a physically reasonable manner.

From a static state, the mirror accelerates to a veloc-
ity that can approach the speed of light (and the max-
imum rapidity is closely related to entropy, and black
hole mass), before asymptotically becoming static again.
While the specific model is of a mirror instantaneously
reversing acceleration direction, a simple (e.g. tanh) reg-
ularization works in the same way.

The metastable plateau becomes flatter, more in equi-
librium, as the superGaussian parameter j increases.
While the formal limit of equilibrium is j →∞, even for
j = 4 the plateau is flat to 1% for an extended period.
In the limit there is a clear correspondence between the
mirror acceleration and black hole surface gravity (and
hence mass), total energy radiated and black hole total

energy (mass), entropy and black hole area, and Larmor
power and Hawking power.

While for a unitary model radiation episodes must oc-
cur with both positive and negative energy fluxes (and
zero flux in the exact constant acceleration limit), the
power always remains positive. As a Lorentz invariant,
power is an interesting and mostly unstudied avenue by
which to approach the correspondence with black holes.

Future work could explore the approach to equilibrium
and the development of the particle spectrum. Conven-
tional computation of the beta Bogolyubov coefficients is
not tractable here, but the asymptotic static states guar-
antee there will be no infrared divergence (no black hole
remnant) and a finite total number of particles emitted.
Alternative attempts at the spectrum may yield insights
into the particle production and other physics of black
hole radiation.
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