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Abstract: This paper presents an experimental evaluation and validation of a standalone photovoltaic
(PV) renewable energy system using a perturb and observe MPPT-based voltage controller (POVC)
for application on the reduced component multilevel inverter (MLI). The objective is to verify the
effectiveness of POVC and asymmetrical MLI for real PV interconnection applications, which has
never been reported before. An asymmetrical 17-level MLI topology is selected in this research. It
requires four isolated DC sources to operate. A boost converter is deployed as one of the inputs
while isolated DC power supplies power to the others. POVC is implemented at the boost converter
to control the DC voltage from the PV panel. From the experimental results, the capability of the
POVC to produce constant voltage levels under varying conditions is proven. It is also capable of
delivering maximum power under maximum load. The full system is tested using different load
types, including nonlinear loads. The MLI produces expected outputs under all operating conditions
with efficiencies above 97%. The viability of the proposed PV system is firstly analysed through
MATLAB/Simulink simulations. The results are then evaluated experimentally.

Keywords: multilevel inverter; asymmetric; PV system; voltage feedback control

1. Introduction

Because of its abundance in nature, solar photovoltaic (PV) energy is gradually be-
coming one of the most important renewable energy sources. It is pollution-free, requires
less maintenance, and is less expensive to run [1]. In a standard PV renewable energy
power system, the inverter and DC-DC converter are essential. The system can either be
standalone or grid-connected [2,3]. The traditional two-level inverter is used in a lot of
applications. However, due to limitations such as high harmonic content, reduced output
resolution, high component stress, and lack of modularity, its applications are now limited
to smaller-scale operations [4,5]. A multilevel inverter (MLI) was later introduced as a
better alternative, with which most of the mentioned demerits are solved [6]. However,
traditional MLI topologies, such as neutral point clamped (NPC), flying capacitor (FC), and
cascaded H-Bridge (CHB), have several drawbacks in common. The demand for a higher
number of components is one of them [7]. If the number of required components can be
reduced, the overall cost of a system can also be reduced.

As a result, MLI topologies with a reduced number of components have been widely
published over the years. This newer generation of MLIs uses fewer components, such
as switches, capacitors, DC sources, and gate drivers, while maintaining similar or better
output characteristics than older MLIs. One of the earliest reduced-component MLIs is
known as the multilevel DC-link inverter (MLDCL), which makes use of an H-Bridge as
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a polarity generator [8]. It is one of the most popular methods of reducing the overall
number of switches, but the switches on the bridge need to block a very high voltage
that is equivalent to the maximum output voltage [9]. Some other topologies, such as the
T-Type and E-Type, avoid using the H-Bridge to reduce the high total blocking voltage
at the cost of a higher number of components [10,11]. An improvement to the standard
H-Bridge known as the packed H-Bridge was proposed years later [12]. It requires two
extra switches. However, with the interconnection with optimal basic units, as presented
in [13], a good balance between the number of components and total blocking voltage was
successfully achieved. MLI can also be categorised according to its DC source connection
architecture, which has its own set of benefits and drawbacks. There are MLI that require
multiple isolated DC sources, while others need only single or several shared DC sources
with capacitors. For the latter group, capacitors are needed to provide different voltage
levels to generate multilevel outputs. A capacitor voltage balancing control system will
be needed for the proper operation, which is rather complex to perform [14]. MLIs with
isolated DC sources normally do not have capacitors. In some applications, such as variable
frequency drive, isolated inputs can be harder to control. In other applications, such as
PV interconnection, where multiple PV modules can be implemented as separate sources,
isolated MLI can be simpler to implement and more advantageous [15].

The market for standalone PV energy systems is still available, especially in countries
with rural areas where is it is economically expensive to connect these areas to the utility
grid [16]. The DC-DC converter is necessary for a PV system to control the output from PV
panels before serving as the input to the inverter [17]. In a standalone system, it is crucial to
ensure the voltage at the input of the inverter is constant; otherwise, the AC output will be
unstable. However, the characteristics of PV panels depend greatly on solar irradiation and
operating temperature [18]. The standard modulation index-based DC-link voltage control
method used in traditional MLI is not suitable to be applied in newer MLI topologies since
the range for modulation index control will be smaller as the number of output levels
increases [19]. There is also very little literature discussing this matter, especially in a
standalone PV system. In some literature, a standard proportional-integral (PI) controller is
implemented for voltage regulation purposes, and some others use artificial intelligence
(AI) to auto-tune the PI controller [20,21]. Apart from tuning difficulty under dynamic
operating conditions, PI-based DC voltage controllers suffer from a narrow regulation
range since they do not have active power tracking capability where voltage regulation
is only performed based on instantaneous PV voltage operating points [22]. Constant
voltage has also been achieved by adjusting the load value, which is not practical for real
applications [23].

Another aspect to consider is the maximum power point tracking (MPPT). Since MPPT
requires a DC-DC converter [24], it is impossible to control the same converter for both
MPPT and voltage regulation. One method discussed is the use of cascaded converters in
which one converter operates for MPPT and the other for regulation [25]. Controlling the
modulation index at the inverter stage is also not recommended in modern MLI since it
can result in incorrect output with missing levels [15]. Some literature did not consider
the variation of irradiance and temperature [26]. The perturb and observe MPPT-based
voltage controller (POVC), as given in [27], is a better technique to achieve both voltage
regulation and MPPT in a standalone PV system since voltage regulation is performed
based on targetted power. Thus, active tracking is possible. However, the paper does not
include any experimental evaluation.

In this paper, the experimental analysis of the POVC is presented. The research is
further extended by connecting a boost DC-DC converter stage to an MLI for a standalone
PV power system in an effort to study their suitability to be implemented as an alternative
power source in rural areas. The POVC is used to regulate the voltage at one of the
inverter’s inputs. Under full-load conditions, POVC is employed for MPPT. Because there
is still a paucity of literature on the ability of reduced component MLI with a high number
of output levels to be connected to renewable energy sources, the isolated sources type MLI
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architecture presented in [13] is selected. The simulations are run on MATLAB/Simulink
software, and experimental hardware is built to confirm the findings.

2. System Modelling
2.1. Multilevel Inverter

The MLI topology from [13] was chosen in the proposed system, as stated in Section 1.
The topology’s structure is shown in Figure 1. The packed H-Bridge unit was the central
part of the topology, which consisted of six switches (S1, S2, S3, S4, S5, and S6). The basic
units were located on the bridge’s right and left sides. On one side, the basic unit was
positioned in the opposite direction to the basic unit on the other side. Each basic unit
contained two DC sources (V1/2 and V3/4) and two unidirectional switches (S7/8 and S9/10).
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Figure 1. Selected MLI topology.

The topology could generate 17 output levels (17 L) using the configuration of asym-
metrical sources. There were differences in the values of the DC sources in this arrangement.
The DC sources ratio should follow V1:V2:V3:V4 = 1VDC:1VDC:3VDC:3VDC. Table 1 presents
all the possible source combinations for generating the 17 L output. Although the topol-
ogy could be cascaded into as many stages as needed, this paper only considered its
17 L operation.

Table 1. Voltage source combinations for 17 L operation.

Levels Combinations Outputs

1 None 0
2 & 3 ±(V1) ±VDC
4 & 5 ±(V1 + V2) ±2VDC
6 & 7 ±(V3) ±3VDC
8 & 9 ±(V1 + V3) ±4VDC

10 & 11 ±(V1 + V2 + V3) ±5VDC
12 & 13 ±(V3 + V4) ±6VDC
14 & 15 ±(V1 + V3 + V4) ±7VDC
16 & 17 ±(V1 + V2 + V3 + V4) ±8VDC



Appl. Sci. 2022, 12, 3581 4 of 21

2.2. Blocking Voltage and Maximum Current

The selected MLI topology had considerably lower total standing voltage (TSV) com-
pared to conventional and a number of newer topologies. Because the blocking voltages
across the switches in MLI were not similar, knowing only the TSV was generally inade-
quate. Understanding these voltages can assist in the selection of suitable device models
during the design stage. First, the relationships for the blocking voltages at the central
packed H-Bridge stage are given as follows:

VBs1 = VBs2 = 2VDC (1)

VBs3 = VBs4 = 6VDC (2)

VBs5 = VBs6 = 8VDC (3)

where VBS1 to VBS6 are the blocking voltages across the switches S1 to S6. As for the basic
units on the left and right sides of the bridge, the equations for blocking voltages can be
represented as follows:

VBs7 = VBs8 = VDC (4)

VBs9 = VBs10 = 3VDC (5)

where VBS7 to VBS8 and VBS9 to VBS10 are the blocking voltages across the switches S7 to S8
and S9 to S10, respectively. From (1) to (5), switches S5 and S6 theoretically had the highest
blocking voltages, while the lowest blocking voltages were across switches S7 and S8. With
the presented equations, the TSV of the circuit was 40 VDC. The maximum current flowing
through every power switch, unlike the blocking voltage, was essentially the same as the
maximum current produced at the load.

2.3. Source Power Sharing

Since the selected MLI requires four isolated DC inputs with asymmetrical magnitudes,
the power required to be delivered by each of the inputs would also be different. The
difference was also contributed to by the switching scheme of the topology, where the
average conduction period by the sources was non-similar. In simple terms, the power
provided by a DC source was the result of multiplying the source DC voltage by the
average current flowing through it. By adding the product of current magnitudes and their
corresponding conduction times over a half-period of output, including the zero levels, the
average current could be obtained. As a result, by examining the width and magnitude of
each current level, the average current flowing through each DC source can be given as:

IV1 = IC1·100·VDC

Z
·pf (6)

IV2 = IC2·100·VDC

Z
·pf (7)

IV3 = IC3·100·VDC

Z
·pf (8)

IV4 = IC4·100·VDC

Z
·pf (9)

where IV1, IV2, IV3, and IV4 are the average source currents, IC1, IC2, IC3, and IC3 are the
summation of the product between the current magnitude and conduction period at every
output level, Z is the load impedance, and pf is the power factor. Thus, each source’s power
delivered to the load can be calculated by multiplying the average current value by the
magnitude of their respective DC source as follows:

PV1 = IV1VDC (10)

PV2 = IV2VDC (11)
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PV3 = 3IV3VDC (12)

PV4 = 3IV4VDC (13)

where PV1, PV2, PV3, and PV4 are the power delivered by the sources. Finally, with the
knowledge of the source power-sharing, the total input power, Pin can be estimated using
the following expression:

Pin = PV1 + PV2 + PV3 + PV4 (14)

2.4. System Overview

The suggested PV renewable energy system had three primary stages, which were the
PV module stage, DC-DC converter stage, and inverter stage. The inverter’s output was
directly linked to AC loads for standalone operation. The output rating of the inverter was
set at 230 Vrms, 50 Hz. Figure 2 depicts the overview of the entire proposed system. The
boost converter was only connected to one MLI input, while the other three inputs were
powered by three independent DC power sources since the selected topology shown in
Figure 1 had four isolated DC inputs; this was due to a scarcity of resources. For theoretical
validation, this arrangement was fairly adequate since a similar concept would apply if the
other sources were to be PV powered as well. The actual PV array was connected as the
input to the boost converter, and POVC was deployed as the controller.
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Figure 2. Overview of the proposed standalone PV system.

The POVC feedback controller was implemented to control the output voltage of the
boost converter. The number of PV panels was selected based on the required power to
be delivered by that particular source, based on Equations (10)–(13). A closer view of the
implemented boost converter stage with POVC is illustrated in Figure 3.
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3. Control System
3.1. Perturb and Observe-Based Voltage Controller (POVC)

To ensure the DC voltage provided to the MLI by the boost converter was constant,
POVC was deployed. This was necessary to ensure that the voltage generated by the
inverter did not deviate from the specified value. Figure 4 shows a flowchart of the
POVC operation.
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The POVC was capable of producing constant DC voltages under varying solar
irradiance, surrounding temperatures, and load levels. Its operation was principally similar
to the original P&O MPPT algorithm. However, instead of tracking for maximum power
point (MPP), the POVC would track for the targeted load power, PLref, by the addition of
two duty cycle changing loops. The targeted load power PLref was related to the reference
voltage, Vref, and load value, XL, according to the following relationship:

PLref =
Vref

2

XL
(15)

Power tracking, as in (15), was achieved by the algorithm of Figure 4 through the two
added loops where Verr was checked under different conditions of PPV. Thus, at full-load,
Vref would be equal to MPP voltage, VMPP at most, and PLref would be equal to MPP power,
PMPP. With POVC, the PV operating point would be between VPV = 0 and VPV = VMPP,
which is the regulating range of the algorithm. This means that if the power required by
any selected load fell within the range, the POVC would be able to maintain the desired
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voltage. However, the operation was also dependent on the converter gain range according
to the boost converter equation as follows:

VB =
VPV

1 − D
for VPV = 0 to VMPP (16)

Referring to Figure 4, VPV is the PV voltage that determines the range of VB in (16). In
the POVC operation, its minimum and maximum value were 0 and VMPP, respectively. It
is best to note that VMPP values vary based on solar irradiance and temperature. Thus, the
range of VB in (16) is not fixed. A lower range could be expected at lower solar irradiances
and vice versa. Based on (16), the range of VB was also affected by the duty cycle. An
example of the voltage regulating range calculation is given in the Results. Figure 5 depicts
the POVC regulating range and PLref tracking operation. First, the POVC operated as a
standard P&O MPPT algorithm to track for PMPP (P1) and continued operating at MPP
(P2) until the boost converter voltage, VB, equalled Vref. As VDC was no longer increasing
and fixed at a constant value, the POVC would then track PLref (P3). Thus, the PV power
should be maintained (by increasing PV current) to keep the PV operation at PLref (P4).
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3.2. Controller Comparison

In this section, a brief theoretical comparison was conducted between the selected
voltage control algorithm, which is the POVC, and several other voltage control techniques.
The first technique compared was the cascaded converter method, where two different
DC-DC converters are connected in series to allow both MPPT and voltage regulation
ability [25,28]. The second technique was the inverter side control method, where voltage
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regulation was achieved by modifying the modulation index of the pulse width modulation
(PWM) at the inverter side switches [29–31]. The last selected voltage control technique was
the PI-based controller, in which the PI controller was used to perform the voltage regulating
operation by taking Vref and VB as the inputs to the controller [20–22]. The comparison is
presented in Table 2. It can be concluded that the POVC had better characteristics overall
compared to the other control methods for standalone PV applications where a very high
voltage control range with power tracking ability could be achieved by using only a single
controller and DC-DC converter.

Table 2. Voltage control technique comparison.

Method Regulation
Range

Power
Tracking

Number of
Controllers Comment

Cascaded DC-DC Converter [25,28] High Yes 2 Requires 2 DC-DC converters with
separate controllers.

Inverter Side Control [29–31] Low No/Yes 1/2

Requires 2 controllers if power
tracking is to be considered. Has
lower regulating range at higher

inverter output levels.

PI-Based Controller [20–22] Low No 1 Requires different tuning at
different operating conditions.

POVC High Yes 1
Requires only a single controller

for both power tracking and
voltage regulation.

3.3. Inverter Modulation

The modulation method used in this study is the same as that proposed in the original
paper of the chosen MLI. It is a low-frequency modulation approach in which all of the
switches’ switching angles are computed beforehand. The method aims to produce an
output that resembles a sinusoid as closely as possible, with each switching angle calculated
in relation to a pure sinusoid according to the following simplified equations:

θj = sin−1
[

1
NL − 1

(2j − 1)
]

for j = 1, 2, . . .
NL − 1

2
(17)

θj = 180 − sin−1
[

1
NL − 1

(2j − 1)
]

for j =
NL − 1

2
, . . . , 2, 1 (18)

θNL = 180◦ (19)

θk = 360 − θj for j = NL − 1, . . . , 2, 1 (20)

where NL is the number of MLI output levels, θj is the switching angle position up to NL−1,
θk is the switching angle position from NL + 1 up to 2NL−1. The depiction of the expected
17 L output is displayed in Figure 6 using (17)–(20).
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4. Results and Discussion

A simulation study was first performed using Matlab/SIMULINK software to demon-
strate the functionality of the entire system. To verify the simulation study and its findings,
a hardware prototype was also developed. Various experiments were carried out on the
POVC and its integration with the MLI using a boost DC-DC converter. The output charac-
teristics of the 17 L MLI operation are likewise examined in this section. The experiment
employed a solar panel with the specifications listed in Table 3 under standard operating
conditions (STC). In the experiment, power MOSFET model GW30NC60KD was used for
all switches. The experimental setup is depicted in Figure 7.

Table 3. PV panel characteristics at STC.

Parameters Values

Power at MPP, Pmpp (W) 132.21

Voltage at MPP, Vmpp (V) 26.39

Current at MPP, Impp (A) 5.01

Open Circuit Voltage, VOC (V) 40.16

Short-Circuit Current, ISC (A) 5.614

Temperature Coefficient of VOC (%/◦C) −0.35

Temperature Coefficient of ISC (%/◦C) 0.05
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4.1. POVC Test

To begin, independent POVC tests were performed without the boost converters con-
nected to the MLI. One module of the PV panel with the specifications listed in Table 3 was
linked to a single boost converter with a switching frequency of 20 kHz in the simulation.
The temperature was maintained at a constant of 31 ◦C. With a fixed Vref of 40.66 V and a
load of 58 Ω, the POVC was first evaluated for its reaction to rapid variations in irradiance;
Figure 8 depicts the outcome. The value of 40.66 V was chosen since it is the value for
VDC, which will be addressed further in the upcoming section. The POVC successfully
maintained the desired output voltage at all times, as shown in Figure 8.
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Figure 8. Boost converter voltage (VB) vs. time under varying irradiances.

In the experimental analysis, since the actual PV module was used, it was impossible to
adjust the irradiance and temperature manually, as in the simulation. Therefore, the POVC
was tested at several different times of the day. At the irradiance of 838 W/m2, temperature
of 32 ◦C, and load of 58 Ω, the experimental results for voltage regulation, including all the
measured values, is shown in Figure 9. A complementary simulation analysis to study the
POVC start-up characteristic was conducted under the same environmental conditions to
test the theory given in Figure 5. The simulation result is given in Figure 10. By comparing
Figure 10 with Figure 5b, it can be seen that at the beginning of the operation, the POVC
tracked MPP and stayed at the MPP region for a brief moment until VB reached the targetted
Vref. Afterwards, the system proceeded into the reference power tracking stage before
finally reaching the steady-state operation at the targetted VB = Vref. Table 4 presents the
voltage regulation experimental results obtained at several other tested irradiance levels.
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Table 4. Experimental voltage regulation results at different irradiance levels.

Irradiance-Temp
(W/m2–◦C) VPV (V) IPV (A) PPV (W) VB (V) Load (Ω) PB (W) Converter

Efficiency (%)

310–30 17.55 1.711 30.03 40.66 58 28.406 94.6

495–30 12.66 2.769 35.05 40.66 53 31.268 89.21

583–31 10.94 3.264 35.69 40.65 53 31.382 87.92

704–32 9.332 3.942 36.79 40.66 53 31.227 84.89

Next, the POVC was tested under the condition where the reference value was
changed at several points during the operation. The irradiance and temperature were
set at 582 W/m2 and 31 ◦C, respectively. The selected environmental conditions and the
moment they changed were based on the experimental results. The results obtained from
both the simulation and experiment are shown in Figure 11. As can be observed, the
experimental results were highly similar to the simulation findings, supporting that the
proposed POVC was capable of accurately tracking all the specified reference values.

In terms of the voltage regulating range, as briefly described in Section 3.1, the voltage
regulating range of the boost converter was not fixed and was directly affected by the
solar irradiance and temperature. For instance, using the PV panel given in Table 3, at
the irradiance of 800 W/m2 and temperature of 31 ◦C, the theoretical maximum VB was
262.12 V if the maximum D was set at 0.9, according to (16). If the maximum allowable
value of D was limited to 0.6, the maximum boost converter voltage was only 67.03 V.
Differently; the theoretical minimum boost converter voltage would always be 0, regardless
of environmental conditions.
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4.2. MPPT Test

Lastly, the capability of the POVC to track the maximum power under full-load
operation was studied. At the Vref value of 40.66 V, the MPPT results at several different
irradiance levels are presented in Table 5. The temperature was fixed at the value of 31 ◦C.
All the maximum load values were calculated based on the theoretical maximum power at
every tested irradiance level. As shown in Table 5, decent MPPT ratios were obtained at all
irradiance levels evaluated.

Table 5. Simulated MPPT test results at different irradiance levels.

Irradiance
(W/m2)

Theoretical
PMPP (W)

Maximum
Load (Ω) VMPP (V) IMPP (A) PMPP (W) MPPT Ratio

(%)
Converter
Ratio (%)

1000 128.1 12.91 24.75 5.093 125.7 98.13 97.45

800 108.9 15.18 25.97 4.140 107.3 98.53 97.39

600 86.35 19.15 27.29 3.137 85.6 99.10 97.28

400 60.36 27.39 28.74 2.094 60.2 99.73 96.89

200 31.11 53.14 29.64 1.049 31.1 99.94 95.01
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Experimental replication of the prior simulation results was challenging to conduct
because the maximum load value for any given set of environmental conditions should
be determined. Since the irradiance and temperature are continually fluctuating, this is
nearly impossible to ascertain. Furthermore, the maximum load is frequently very low,
ranging from 10 Ω to 55 Ω, and the load bank is incapable of producing such a required
load. Thus, the POVC was operated as a normal P&O MPPT algorithm in the experimental
test. This was achieved by setting the Vref to a very high value to force the POVC to track
the maximum possible Vref value during any environmental condition. Therefore, output
voltage regulation was not considered in these tests. P–V and I–V curves were used to
illustrate the obtained MPPT experimental results, as shown in Figure 12. As can be seen,
except at the two lowest irradiances, the POVR successfully brought the PV operating point
very close to the actual MPP. It is also worth noting that the POVR’s tracking zone extended
from 0 V to VMPP. This fact strongly relates to the theory presented in Section 3.
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4.3. Full System Test

The full system tests were conducted based on the configuration depicted in Figure 2.
All the generalised parameters used in both simulation and experimental studies of the
full system are presented in Table 6. Due to the usage of an actual PV panel in the test, it
was difficult to specify any constant environmental conditions throughout any single test
because the irradiance and temperature change over time. As a result, tests were carried
out as long as the PV panel produced sufficient power to meet the load demand at a given
irradiance and temperature. The boost converter stage was connected to the input V2 of
the inverter. The Vref selected for the POVC operation is presented in the same table. All
values were selected to achieve the output peak voltage of 325.27 V, which corresponds to
230 Vrms. Figure 13 presents the experimentally generated switching signals.
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Table 6. Full system test parameters.

Parameters Values

DC Power Supply V1 (VDC) 40.66 V

POVC Reference Value for V2 (VDC) 40.66 V

DC Power Supply V3 (3VDC) 121.98 V

DC Power Supply V4 (3VDC) 121.98 V

Output Voltage (Peak) 325.28 V

Output Voltage (RMS) 230 V

Output Frequency 50 Hz

Boost Converters Switching Frequency 20 kHz
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Figure 13. Experimental switching signals.

The operation of the system was tested under two types of loads, the purely resistive
(R) load of 156 Ω and resistive-inductive load (RL) of 168 Ω, 0.33 H. All measurements
were made after the input V2 achieved its required voltage level from the boost converter.
Figure 14 shows the voltage and current waveforms produced by the inverter from both
simulation and experiment. Under the R load, both the voltage and current waveforms
were observed to be perfectly in phase with identical patterns. They differed only in
amplitude. This is due to the fact that a purely resistive load has no filtering effect, and its
linearity causes the current to duplicate the voltage waveform in accordance with Ohm’s
law for every voltage step value and every voltage source combination. As a result, there
was only active power present, which is entirely utilised by the load. The voltage and
current waveforms were observed to be in phase with unity pf. Under the RL load, since the
inductive component of the load acts as a low-pass RL filter, it could be seen that the current
waveform was now smoothened and lagged the voltage waveform with the power factor
pf of 0.86. The RL filter, in short, prevents high-frequency and allows low-frequency current
signals to get through at the cut-off frequency, fcut which can be calculated using R/2πL.
Any frequency greater than fcut was filtered, including high-frequency noise. For both
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types of loads, the FFT analyses are given in Figure 15. Since the waveform shapes were
identical, the output voltage and current under R load were found to have similar THD
values of 3.87% from simulations. Experimentally, the voltage THD, THDv, and current
THD, THDi values were also reasonably close. However, under the RL load, due to the
inductive effect, the THDi has a reduced value of 0.38%, while the THDv still maintained
an almost identical value of 3.88% as that obtained in the simulation. A similar case was
also observed for the THDv measured experimentally. As for the experimental THDi, the
value recorded by the power analyser meter was ~1.8%.
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4.4. Blocking Voltage Test

The relationships between the blocking voltages across the switches and the selected
magnitudes of the DC sources were initially studied from simulation analysis. To verify
the blocking voltage relationships in Section 2, the voltage across each switch was mea-
sured experimentally. With the VDC value of 40.66 V, as given in Table 6, the measured
voltages across all switches are shown in Figure 16, where it can be concluded that all the
measured maximum blocking voltages agree with the theoretical relationships given in
Equations (1)–(5). The highest measured voltages were found across switches S5 and S6
with a value of ~325.28 V, which is equivalent to 8 VDC. On the other hand, the blocking
voltages across switches S7 and S8 were the lowest. They shared the same value of ~40.66 V,
which was equivalent to VDC. By summing up the blocking voltages, a net value of 1626.4 V
was achieved, corresponding to ~40 VDC, representing the TSV of the inverter.

1 

 

 

Figure 16. Experimentally measured blocking voltages across all switches.

4.5. Power Sharing and Efficiency

In this section, the complete system is tested again using different sets of R and RL load
values. Then, the power shared by the DC sources is analysed along with the efficiency of
the MLI. Presented in Tables 7 and 8 are the results obtained from the simulation study and
experimental measurement. Based on the switching signals, referring to Equations (6)–(9),



Appl. Sci. 2022, 12, 3581 17 of 21

the value for IV1, IV2, IV3, and IV4 were 41.24 m, 24.86 m, 48.64 m, and 37.27 m, respectively.
With this, the power delivery ratio by the sources could be estimated as follows:

PV1 : PV2 : PV3 : PV4 = PV1 : 0.6028PV1 : 5.8701PV2 : 0.7662PV3 (21)

Table 7. Simulation (S) and experimental (E) tests of the full system with 17 L inverter under R load.

Load
(Ω) Test

Source Power (W)
Pin (W) Vinv

(Vrms)
pf Pinv

(W)
THDv/i

(%)
η (%)

V1 V2 V3 V4

476
S 14.45 8.722 51.23 39.38 113.78 231.1 1.00 112.34 3.89/3.89 98.74

E 15.10 8.692 51.40 39.45 114.65 230.1 1.00 111.37 3.7/3.2 97.14

156
S 43.87 26.45 155.4 119.1 344.86 231.0 1.00 342.57 3.87/3.87 99.34

E 45.89 26.69 158.7 122.1 353.42 231.1 1.00 342.95 3.7/3.4 97.04

99
S 69.16 41.69 244.9 187.7 543.51 230.9 1.00 540.54 3.87/3.87 99.45

E 68.77 43.61 247.4 190.8 550.59 229.7 1.00 534.97 3.6/3.2 97.16

Table 8. Simulation (S) and experimental (E) tests of the full system with 17 L inverter under RL loads.

Load
(Ω-H) Test

Source Power (W)
Pin (W) Vinv

(V)
pf Pinv

(W)
THDv/i

(%)
η (%)

V1 V2 V3 V4

599–2.11
S 5.160 3.100 18.38 14.17 40.810 231.1 0.66 39.64 3.89/0.28 97.13

E 5.290 3.030 18.53 14.02 40.880 231.3 0.66 39.84 3.5/0.8 97.46

168–0.33
S 29.66 17.77 105.2 80.59 233.21 231.1 0.86 231.94 3.88/0.38 99.45

E 30.16 18.31 105.8 80.48 234.13 230.2 0.86 230.24 3.7/1.8 98.34

103–0.095
S 61.07 36.60 216.5 165.8 479.95 230.9 0.96 478.13 3.87/0.58 99.62

E 61.97 38.75 220.7 170.1 491.50 230.5 0.96 476.64 3.7/1.2 96.98

From both tables, it can be noted that the source V2 delivered only ~60% of the
power provided by source V1. Source V3, on the other hand, offered ~590% of the total
power produced by source V2. Lastly, source V4 was found to deliver only ~77% of
the power distributed by source V3. These experimental and simulated power-sharing
results are very close to the theoretical ratios given in (21). The theoretical input powers
under the three tested R loads were calculated to be 112.47 W, 343.17 W, and 540.75 W,
respectively. As for the tested RL loads, the theoretical input powers were 39.73 W, 232.6 W,
and 480.26 W, respectively. Again, these theoretical values were very comparable to the
presented simulation and experimental results. The amount of power required for each
source is generally based on the voltage magnitude and frequency at which they are
switched ON to produce any voltage level. From the obtained power-sharing results, the
amount of power each DC source stage needs to deliver is known. Therefore, the number
of PV panels required per DC-DC converter stage can be estimated in the design process if
all inputs are to be powered by the PV source. In terms of THD, they are all comparable in
the case of R loads. For RL loads, THDv values remain consistent, while THDi values were
reduced according to the pf value.

4.6. Real Load Test

In the last part of the experiment, the system was tested using real loads. The purpose
was to verify the viability of the proposed system in real applications. Firstly, the output of
the MLI was connected to incandescent light bulbs rated at 300 W. The output waveforms
for both voltage and current are shown in Figure 17 with their respective FFT analysis.
The behaviour of the incandescent bulb load was found to be very similar to that of the
pure R load. This is because the incandescent bulb is nearly entirely resistive due to the
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absence of external inductive or capacitive elements. There is still some reactance due to
the construction of the bulb and its filament, but they are very insignificant. Thus, the
voltage and current waveforms still produced comparable THD values.
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The system was then tested using another type of real load, which is the fluorescent
light bulb. Theoretically, fluorescent lights are nonlinear and are also very inductive due
to the presence of magnetic ballast. The output voltage and current waveforms obtained
using the fluorescent light load combination with the theoretical rated power of 120 W each
are shown in Figure 18, along with their respective FFT analysis. As can be seen, the current
did not have a pure sinusoidal waveform shape and appeared more triangular in shape
even though its pf was very low. The pf, in this case, was 0.41 lagging. Furthermore, the
voltage waveform was also seen to be slightly distorted. These phenomena were due to the
characteristics of the fluorescent bulb load. In brief, because of the bulb’s nonlinear nature,
harmonic currents were generated, causing the current to be drawn in a non-sinusoidal
pattern that is not proportionate to the voltage waveform. Despite a small deformation in its
shape, the measured THDv value of 4.1% was only marginally higher than the previously
reported values under linear R and RL loads. In contrast, THDi had the value of 6.9%,
despite having a lower pf, due to its less-sinusoidal triangle waveform shape.
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5. Conclusions

Experimental evaluation and validation of a standalone photovoltaic (PV) renewable
energy system using perturb and observe MPPT-based voltage controller (POVC) for the
application on the reduced component multilevel inverter (MLI) have been presented. The
selected MLI was operated using its asymmetrical source configuration, which produces
17 output levels. Boost converters were used as one of the inputs of the MLI. POVC
was deployed at the boost converter stage to regulate the output voltage before being
fed to the input of MLI. From both simulation and experimental analyses, the POVC has
demonstrated its ability to achieve voltage regulation under varying environmental and
test conditions, including MPPT at full load. In the full system tests, 17 output levels were
successfully generated at the targeted output rms voltage of 230 V. The power-sharing and
blocking voltage test results obtained from both simulation and experiment were also very
comparable. They were also close to the theoretical calculations. The system performed
notably well with R, RL, incandescent light bulb, and fluorescent light bulb loads. From
the results, the system was shown to be capable of powering up all the tested loads. The
experimentally measured efficiencies were also very good, with the highest measured
efficiency at 98.34% and the lowest at 97.03%.
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