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Abstract
This study assesses a plausible correlation between a dust intrusion episode and a daily increase in COVID-19 cases. A surge 
in COVID-19 cases was observed a few days after a Middle East Dust (MED) event that peaked on 25th April 2020 in south-
west Iran. To investigate potential causal factors for the spike in number of cases, cross-correlations between daily combined 
aerosol optical depths (AODs) and confirmed cases were computed for Khuzestan, Iran. Additionally, atmospheric stability 
data time series were assessed by covering before, during, and after dust intrusion, producing four statistically clustered 
distinct city groups. Groups 1 and 2 had different peak lag times of 10 and 4-5 days, respectively. Since there were statisti-
cally significant associations between AOD levels and confirmed cases in both groups, dust incursion may have increased 
population susceptibility to COVID-19 disease. Group 3 was utilized as a control group with neither a significant level of 
dust incursion during the episodic period nor any significant associations. Group 4 cities, which experienced high dust incur-
sion levels, showed no significant correlation with confirmed case count increases. Random Forest Analysis assessed the 
influence of wind speed and AOD, showing relative importance of 0.31 and 0.23 on the daily increase percent of confirmed 
cases, respectively. This study may serve as a reference for better understanding and predicting factors affecting COVID-19 
transmission and diffusion routes, focusing on the role of MED intrusions.
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Introduction

Natural pathways are the primary sources of airborne par-
ticles on Earth, including marine aerosols and dust from 
arid areas (Shahsavani et al. 2020; Solomon et al. 2007). 
Levels of atmospheric particulate matter (PM) exceeding air 
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quality standards and health guidelines are transported from 
deserts to inhabited areas under certain weather conditions 
(Marsham et al. 2013; Shahsavani et al. 2020). For example, 
Shamal winds and cyclones cover the Middle East with dust 
clouds, leading to the deterioration of atmospheric condi-
tions during the summer (Alizadeh-Choobari et al. 2016). 
PM levels during such Middle East Dust (MED) events 
can be very high in western Iran: in the city of Ahvaz, a 
level of >9000 μg/m3 was recorded on 27th January 2017, 
and 5338 μg/m3 on 3rd June 2010; and at Sanandaj a PM10 
level of 5616 μg/m3 was recorded on 5th July 2009 (Rashki 
et al. 2021; Salmabadi et al. 2020; Shahsavani et al. 2012). 
The primary sources of dust particles for these events were 
located in Northern Iraq and along the Iraq-Syria border. 
In this arid climate, the vulnerability level of wind erosion 
is increased due to reduced vegetation coverage and major 
soil disturbance linked to human activities such as conflicts 
and land-use dynamics (Modarres et al. 2017). Meteoro-
logical elements such as reductions in precipitation, low soil 
moisture level, high temperature, wind speed, and relative 
humidity (RH) intensify these MED events (Klingmüller 
et al. 2016).

Airborne particles are linked to long-term and short-
term impacts on human health, such as cardiopulmonary 
and respiratory diseases (Middleton 2020). The Ameri-
can Cancer Society recorded 8–18% more cardiovascular-
related deaths due to an increase of 10.0 μg/m3 in PM2.5 
for 552,000 participants over 16 years in from US metro-
politan areas (Fromme et al. 2008; Goudarzi et al. 2018; 
Niu et al. 2010). It is worth noting that health conditions 
caused by natural PM (mineral dust) may differ from 
anthropogenic PM (Bart et al. 2011; WHO 2007). Some 
epidemiologists observed higher mortality rates on higher 
PM level dusty days than non-dusty days (Neophytou et al. 
2013; Sandra et al. 2011).

In the Iranian cities of Ahvaz and Kermanshah, some 
studies have shown increases in respiratory hospitalizations 
and cardiorespiratory mortality during dust storms (Del-
angizan and Jafari Motlagh 2013; Geravandi et al. 2017). 
Ahvaz city in Khuzestan, which experiences major MED 
intrusions, experienced a 3.3% rise in daily deaths associ-
ated with a 10.0 μg/m3 increment of PM10 concentration 
during dusty days as compared to a 1.0% increase on non-
dusty days (Shahsavani et al. 2020). The authors found that 
any PM exposure during an MED intrusion may adversely 
impact human health in arid and downwind affected areas 
(receptors) (Shahsavani et al. 2020).

During atmospheric transport, pollutants may be inte-
grated into dust clouds and reach areas (receptors) down-
wind. Local gaseous pollutants (e.g., SO2) can also con-
dense on dust particles (Rodriguez et al. 2011). During 

dust episodes, the accumulation, transport, and conden-
sation of pollutants could make dust more dangerous 
to human health. Dust storms can transport bioaerosols 
on a large scale and affect ecosystems and populations 
downwind. Dust and sandstorms are capable of introduc-
ing many foreign microorganisms into the global system. 
Microorganisms found in desert dust are typically very 
resilient and highly resistant to desiccation, temperature 
extremes, high salinity, and exposure to ultraviolet radia-
tion (Behzad et al. 2018; Broomandi and Rashidi 2018; 
Gonzalez-Toril et al. 2020; Goudarzi et al. 2014; Kai et al. 
2017; Neisi et al. 2019; Nourmoradi et al. 2015; Reche 
et al. 2018; Weil et al. 2017).

Particulate matter can provide a substrate, allowing a 
virus to maintain a long-term (hours or days) presence in 
the ambient atmosphere. Environmental parameters are the 
key players in viral inactivation. For example, high temper-
ature and solar radiation may accelerate inactivation rates 
of viruses, while high humidity can promote diffusion rate 
(Setti et al. 2020; Després et al. 2012; Wigginton and Boehm 
2020). Recent studies noted an association between ambient 
PM concentrations and presence of viruses among exposed 
populations (Chen et al. 2010).

In China, a positive correlation (p < 0.001) was found 
between childrens’ infection rates of RSV (respiratory 
syncytial virus) with PM2.5 and PM10 concentration. RSV 
deeper penetration in the respiratory system is report-
edly promoted by particle-based transport (Ye et  al. 
2016). Another investigation found a positive correlation 
between viral disease and exposure to high PM2.5 levels 
in China (Chen et al. 2017). Zhu et al. (2020) evaluated 
the association of short-term exposure to higher levels 
of air pollution with increases in risk of infection. The 
authors of this paper showed a substantial positive corre-
lation between four days of exposure (23rd January 2020 
to 29th February 2020) to concentrations of PM2.5 and 
PM10 and number of new daily positive cases in 120 cit-
ies in China. They also found that a 10.0 μg/m3 increase 
in PM2.5 and PM10 levels was positively correlated with 
a 1.76% (95% CI: 0.89 to 2.63) and 2.24% (95% CI: 
1.02 to 3.46) rise in confirmed daily positive cases (Zhu 
et al. 2020). A study based in the USA found that long-
term exposure to PM2.5 was positively correlated with 
increased mortality risk of COVID-19 (Wu et al. 2020). 
They reported that a 1.0 μg/m3 incremental increase of 
PM2.5 positively correlated with an increase in the SARS-
CoV-2 mortality rate of 8% (Wu et al. 2020).

In Istanbul, Turkey, a study of the associations of mete-
orological parameters and air quality with daily COVID-19 
case numbers found that air quality indices, temperature, 
and relative humidity were associated with the spread of 
disease in the population (Shahzad et al. 2021). Temperature 
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and NO2 concentrations were the primary factors associated 
with a substantial spike in the infection and death rates of 
COVID-19 in Istanbul. Moreover, they found a significant 
association for PM10, PM2.5, O3, and relative humidity with 
COVID-19 transmission (Shahzad et al. 2021).

A study conducted in the state of NJ, USA, explored cor-
relations between meteorological parameters and new COVID-
19 case counts, finding that temperature was negatively cor-
related, and relative humidity and air quality index were 
positively correlated with new case counts. PM 2.5, popula-
tion density, human development index, and health security 
index were also correlated with spread of the disease (Doğan 
et al. 2020). Moreover, autoregressive distributed lag (ARDL) 
analysis showed that relative humidity, air quality, and infec-
tions had lagged effects with COVID-19 spread across New 
Jersey (Doğan et al. 2020).

Viruses such as SARS-CoV-1 are likely to spread in the 
air within the formation of tiny liquid droplets and then could 
freely transport with their viral content over tens of meters 
from their origin in the air (Hadei et al. 2020; Morawska and 
Cao 2020; Rahmani et al. 2020). Researchers have concluded 
that COVID-19 can spread person-to-person through the air 
(Bourouiba 2020; Domingo et al. 2020; Hadei et al. 2020; 
Jayaweera et al. 2020; Morawska and Cao 2020). Recently 
published studies suggested two mechanisms of direct and 
indirect aerosol transmission routes of SARS-CoV-2. With 
direct dispersion human-exhaled aerosols are transmitted in 
close proximity, while with indirect dispersion ambient parti-
cles act as cargo to spread the virus. Additionally, the presence 
of particulate matter can stimulate the expression of Trans-
membrane Serine Protease 2 (TMPRSS2) and Angiotensin-
Converting Enzyme 2 (ACE-2), causing an increase in the 
SARS-CoV-2 binding sites and the facilitation of infection 
efficiency (Cao et al. 2021; Li et al. 2020; Paital and Agrawal 
2020; Yao et al. 2020a).

To the best of our knowledge, there is no study examin-
ing the association between MED dust storms and new case 
counts of SARS-CoV-2. This study aims to assess plausible 
links between MED dust intrusion and COVID-19 infec-
tion counts by assessing dust storm measures and disease 
occurence. This research is founded on the hypothesis of this 
possible relations in two ways: (1) the population becomes 
more susceptible to viral exposure during epidemics due to 
the damaging effect of MED events on the respiratory sys-
tem, and (2) atmospheric clouds of dust can act as a carrier 
and increase atmospheric transportation of the virus (SARS-
CoV-2). During the pandemic, a MED dust storm occurred 
on April 25–26, 2020, in Khuzestan, Iran, with the number of 
new cases in several cities increased dramatically followingr 
the event. To confirm the given hypotheses, the relationship 
between AOD levels and daily percentage increase in posi-
tive cases of COVID-19 are statistically examined in detail 
in 20 cities in Khuzestan, Iran.

Material and methods

Case study and meteorological characteristics

Khuzestan province covers 63,213 km2 in southwestern Iran 
and is home to 4.7 million inhabitants. It is located between 
31°N and 32°N latitudes and 48°E and 49.5°E longitudes 
(Fig. 1). The topographic altitudes change from 0 to 3740 m. 
The weather ranges from humid to arid. While the southern 
regions experience a tropical climate, the northern regions 
have a colder climate. Summertime begins in April and lasts 
to September, and wintertime lasts from October to March. 
During summer, the annual mean maximum temperatures 
are close to 50 °C, with the minimum value occurring in 
March (close to 9°C). The annual precipitation levels range 
995–1100 mm in the north and 150–256 mm in the south. 
Roughly 70% of annual rainfall is from February to April. 
The annual amount of evaporation is 2000–4000 mm. The 
direction of the prevailing wind speed is from west to east 
and from northwest to southeast (Zarasvandi et al. 2011).

There are two main origins of dust storms in Khuzestan, 
including neighboring countries such as Iraq and Saudi Ara-
bia (Mohammadpour et al. 2020; Salmabadi et al. 2020) and 
susceptible to land to wind erosion in the west of Khuzestan 
and desiccation of water bodies such as Karkheh river and 
Hourazim wetland (Malamiri et al. 2019; MalAmiri et al. 
2022). According to the long-term analyses of meteorolog-
ical-dust data, the highest levels of dusty days for both Iran 
and the Middle East occurred in the cities of Khuzestan 
province, Iran (Salmabadi et al. 2020), with a maximum 

Fig. 1   Khuzestan province: digital elevation model and locations of 
the studied cities
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number of 322 dusty days in Ahvaz during 2011. The 
increase in the number of dusty days following 2008 was 
caused by the shifting to the extended dry conditions over 
the Fertile Crescent in Iraq (Klingmüller et al. 2016), and 
the continued spike of dust-AODs in downwind areas such 
as Khuzestan (Hamzeh et al. 2021a). Dusty days are more 
frequent in the late spring and summer, with dust storms 
having horizontal visibility below 100 m most common 
in June and July (Mohammadpour et al. 2020; Salmabadi 
et al. 2020). The number of dusty days also increased in 
February and March due to the frontal dust storms over the 
Iraqi plains, with the highest impact on the southwest of 
Iran (Gholamzade Ledari et al. 2020; Hamidi 2019; Hamzeh 
et al. 2021b).

Dust episode identification, 
along with differentiation between dust storm 
contributions and contributions from other sources 
to PM levels

Regional dust storms and other phenomena such as stable 
weather conditions and inversions can increase ambient PM 
levels. In our study, dusty days due to regional dust intru-
sions were statistically separated from non-dusty days by 
analyzing air pollutant levels. The threshold value of 100 
μg/m3 for PM10 concentration was applied to distinguish 
dusty days from regular non-dusty days, as utilized by other 
researchers (Escudero et al. 2007; Givehchi et al. 2013). 
Multi-pollutant behavior analyses were used to distinguish 
days influenced by either inversion/atmospheric conditions 
or regional dust storms. During dust intrusion, notable 
increases in the PM levels are expected with no notewor-
thy increment of gaseous pollutants’ concentrations, mainly 
formed from primary combustion like Carbon Monoxide 
(CO). To separate episodic days, the duration of notably 
elevated concentration of PM10, i.e., the daily average con-
centration with at least one STD (standard deviation) above 
the mean value, was chosen. During the study, when the 
daily carbon monoxide concentrations were at least one STD 
below the mean, the day’s measurements were included in 
the analysis, as applied by Givehchi et al. (2013). Among 
the determined dusty days in Khuzestan province, the dust 
storm outbreaks causing elevated PM10 concentrations (daily 
PM10 concentration above 200 μg/m3) were selected for 
includion in the study. A statistical procedure by Givehchi 
et al. (2013) was followed to separate the amount of PM10 
increases caused by an intensive dust intrusion from local 
anthropogenic sources. Firstly, the initial correlation coef-
ficients (R2 with p values < 0.0001) of hourly-based PM10 
concentrations in the studied time frame among all pairs of 
available air quality stations were calculated during dust epi-
sodes. The pairs with a remarkably lower correlation coef-
ficient (<0.6) were excluded from the studied cities since it 

is expected that they would be primarily affected by local 
emission sources, even during the dust intrusion.

Data collection

In the current study, the hourly PM10 data were obtained 
from the National Air Quality Information System (Iranian 
meteorological organization). Also, the daily data of number 
of new cases and deaths were obtained from the database 
of the official coronavirus site enabled by the Ministry of 
Health (Food and Drug Association).

Cross‑correlation calculation among combined AOD 
and daily increase percent of COVID‑19 infection

Since cross-correlation helps to evaluate the similarity 
between two-time series, it was implemented to explore the 
relationship between combined AOD and the daily percent-
age increase of SARS-CoV-2 infection (Wang et al. 2019). 
In its application, one of the main limitations is the different 
distribution characteristics of data sets correlated. During 
the growth or spread period, the pandemic usually follows 
an increasing trend; however, the AOD data is more random 
with some short-term autocorrelations due to the nature of 
local emissions and dust incursion characteristics. To pro-
vide correct correlation results, it is necessary to eliminate 
the typical growth characteristics of the COVID cases. In 
this study, a transformation procedure was used to normalize 
the virus infection growth characteristics, which typically 
follows an exponential function, while log transformation or 
original data was sufficient to have a normal distribution for 
AOD data. The percentage of daily increase values COVID 
infection numbers were calculated regarding the preceding 
day only (e.g., = COVIDt−COVIDt−1

COVIDt−1

 , where COVIDt is the num-
ber of new cases in a day, and COVIDt−1 is the number of 
new cases in a preceding day).

The positive lags denote correlations among the AOD at 
time t with the increasing percentage of COVID-19 at time 
t+1, t+2. The lag with the highest correlation coefficient was 
identified when the combined AOD and daily percentage 
increase of COVID-19 infection match the best.

COVID-19 infection data were received from the Iranian 
Ministry of Health and Medical Education. Cross-correla-
tions between the daily combined AOD and the increase 
in the percentage of COVID-19 infection numbers were 
calculated for 20 cities in the province starting from 20th 
April 2020 to 5th May 2020. Before 20th April, the infection 
data were not reported for each city, so it was impossible to 
include the data of earlier pandemic periods. The studied 
cities are listed in Table S1 in the supplementary material.
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Grouping the studied cities using the K‑means 
clustering method

To investigate the possible association between weather 
conditions and vulnerability to infection during dusty 
days, it was decided to assign each city into a cluster using 
t he  K-means  c lus t e r ing  met hod .  A  da t a se t 
D = {O1, O2, …, On} has n objects (instances) each Oi is an 
object as a p-dimensional explanatory variable in the data-
set (e.g., Pasquil Stability Class (PSC), Planetary Bound-
ary Layer Height (PBLH), Wind speed, AOD, Duration of 
MED, and Population Density). The studied domain needs 
division into a combination of k clusters, representing a 
vector CKM = {C1, C2, …, Ck} with denoted centroids by 
μ = {m1, m2, …, mk}. The beginning step is the randomly 
assigning of k points as cluster centers. For each data 
point, Oi is a distance to each cluster centroid mj and was 
calculated through one distance metric like Manhattan, 
Euclidean, Minkowski, or Chebyshev distance. The arg-
minj dist (Oimj) is used to figure the nearest cluster for the 
respective instance to be assigned. The new midpoint of 
clusters is calculated by mj =

�

1

nj

�

∑

Oj∈mj
Oj , where nj, mj, 

and Oi the number of objects in cluster j, the centroid of 
cluster j, and the dataset instances, respectively. Itera-
tively, this process proceeds to where no data point alters 
cluster membership (Grace et al. 2016; Tüysüzoğlu et al. 
2019).

Statistical analysis

Random Forest Analysis (RFA) was used in the current 
study to evaluate the relative importance of parameters 
including (AOD, temperature, PBLH, surface pressure, 
relative humidity, and wind speed) affecting the daily 
increase percent of COVID-19 infection. RFA helped in 
the selection of the most critical predictors affecting the 
response based on a classification from zero (no impor-
tance) to one (highest importance) (Molinaro et al. 2011).

MODIS 10 km AOD products

Deep blue AOD (Aerosol Optical Depth) data from the 
Aqua-MODIS 550 nm Collection 6 MODIS and Terra-
MODIS 550 nm Collection 6 MODIS were employed to 
investigate the changes in daily PM levels in the atmos-
pheric column over 20 cities. At a 10-km resolution, the 
standard MODIS Level 2 (L2) AOD products are distrib-
uted. MYD04_L2 data from the Aqua-MODIS 550 nm 
L2 Aerosol Products and MOD04_L2 data from Terra-
MODIS 550 nm L2 Aerosol Products for the study dura-
tion were extracted from LAADS (MODIS L1 Level 1 

Atmosphere Archive and Distribution System) (http://​
ladsw​eb.​nascom.​nasa.​gov/).

AOD combination from Terra and Aqua

For improving the AOD spatial coverage in our study, DB_
DT AOD from Terra and Aqua (MODIS-carrying satellites) 
were combined by averaging. The method of averaging the 
Aqua and Terra measurements successfully estimates the 
daily AOD average mentioned in other studies (Lee et al. 
2011; Nabavi et al. 2018). When either Aqua or Terra is 
missing, AOD with the help of simple linear regression can 
be estimated (Eqs. (1) and (2)) among daily Aqua and Terra 
AOD values (Hu et al. 2013; Nabavi et al. 2018).

𝜏 and τ are estimated and available DB_DT AOD, 
respectively.

Reanalysis for weather monitoring

ERA5 reanalysis data, produced by C3S at ECMWF, as the 
current atmospheric reanalysis and regard to the 2016 ver-
sion of IFS (Integrated Forecasting System), was employed 
to investigate the probable impact of meteorological data 
(including daily mean surface pressure (KPa), daily mean 
wind speed (m/s), daily mean relative humidity (%), daily 
mean temperature (°C), daily mean planetary boundary layer 
height (m)) on the increment of SARS-CoV-2 infection in 
Khuzestan province, Iran.

Investigation of atmospheric stability class

Stability time series by covering before-during-after dust 
intrusion for the studied cities, including Pasquil stability 
class (PSC) and vertical mixing Planetary Boundary Layer 
Height (PBLH), were downloaded from https://​www.​ready.​
noaa.​gov/​READY​amet.​php and were studied for any signifi-
cant commonalities or differences between cities based on 
the dust incursion times, respectively.

Monitoring dust storm events over Khuzestan using 
the Visible/IR images of SEVIRI

The Visible/IR images from Spinning Enhanced Visible 
and Infrared Imager (SEVIRI), carried by MSG (Meteosat 

(1)

DB_DTAODave =
(𝜏Terra+𝜏Aqua)

2
, if Terra is missing

DB_DTAODave =
(𝜏Terra+𝜏Aqua)

2
, if Aqua is missing

DB_DTAODave =
(𝜏Terra+𝜏Aqua)

2
, if both are available

(2)
𝜏Terra = 0.816 × 𝜏Aqua + 0.0652

𝜏Aqua = 0.7428 × 𝜏Terra + 0.0725
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Second Generation) satellites, are employed in our study 
to investigate dust storms. For continuous dust monitoring, 
the EUMETSAT (European Organisation for the Exploita-
tion of Meteorological Satellites) recommends RGB images 
(available free of charge every hour: http://​www.​eumet​sat.​
int/​Home/​Main/​Image_​Galle​ry/ Real_Time_Imagery/index.
htm). The infrared channel data from SEVIRI is based on 
RGB image compositions, where dusty pixels show up in 
pink colors, and is used to monitor the dust event evolution 
during both day and night in deserts (Martínez et al. 2009).

HYSPLIT model

For analyzing the sources and trajectories of dust particles, 
the Online HYSPLIT version 4 (Hybrid Single Lagrangian 
Integrated Trajectory) model was employed with 1°×1° 
resolution meteorological data (Draxler and Hess 1997). 
An HYSPLIT ensemble trajectory calculates the multiple 
pathways from one position by all-feasible deviations in X, 
Y, and Z. For the reduction of the model uncertainty, ensem-
ble trajectories are used to compute all possible pathways 
(Draxler and Hess 1997).

Results and discussion

Identification of a regional dust invasion event 
during the pandemic growth period

In Khuzestan, several air quality stations record hourly 
PM10 concentrations. The recorded data from Ahvaz, 
Shush, Shushtar, Ramshir, Hamidiyeh, Abadan, Hendi-
jan, Andimeshk, Dezful, and Omidiyeh were considered. 
Others were excluded due to the limited data coverage and 
unreliability with several hourly/daily gaps during the stud-
ied period (1st April 2020–30th April 2020). The resulting 
numbers of dusty days were 2, 2, 1, 1, 5, 4, 1, 1, and 3 
for Shush, Ahvaz, Shushtar, Ramshir, Hamidiyeh, Abadan, 
Hendijan, Andimeshk, Dezful, and Omidiyeh, respectively 
during April 2020. Among the determined dusty days, one 
dust episode outbreak on 25th–26th April 2020, causing the 
elevated levels of PM10 (daily PM10 concentration above 200 
μg/m3), occurred and was selected for our research. To dis-
tinguish the increases of PM10 caused by dust intrusion from 
local anthropogenic sources, the initial correlation coeffi-
cient (R2 with p values less than 0.0001) of hourly PM10 
concentration among all pairs of air quality stations during 
dust outbreak was calculated. Correlation values above 0.75 
showed that any of the studied stations were influenced by 
local sources during dust intrusion, and the amount of PM10 
increases during dust outbreak was caused by the dust intru-
sion. Fig. 2 illustrates the time series of daily measured PM10 

concentration and combined daily extracted deep blue AOD 
over the mentioned cities above.

Globally, the AErosol RObotic NETwork project (AER-
ONET) provides distributed observations of spectral aerosol 
optical depth (AOD), precipitable water in diverse aerosol 
regimes, and inversion products (https://​aeron​et.​gsfc.​nasa.​
gov/). PM10 data (9 cities out of 20 cities), the correlation 
among the combined AOD data, and ground-based PM10 
measurements were acceptable with the R values ranging 
from 0.60 to 0.78 (all p values < 0.0001) (details of regres-
sion results presented in Supplementary Material). Both 
series in Fig. 2 represent a peak in PM10 and AOD values 
during dust intrusion on 26th April 2020.

To monitor MED outbreaks over land, their migration, 
and the corresponding changes in PM10 levels in Khuzestan 
province, HYSPLIT backward trajectory modeling and the 
Visible/IR images of SEVIRI with a temporal resolution of 
60 min and spatial resolution of 3 km×3 km were imple-
mented in our study (Figs. 3 and 4). Transport pathways of 
dust particles were tracked through 6-h time intervals up 
to 24 h before dust episodes reaching the study locations 
using HYSPLIT backward trajectories on 25th April 2020. 
Fig. 3 shows the main corridors of dust transport originating 
from arid and semi-arid areas in northern Saudi Arabia and 
central parts of Iraq to Iran’s west and southwest regions.

The Visible/IR images of SEVIRI are employed to sup-
port HYSPLIT results and identify dust storms (Fig. 4) that 
were consistent with the spatial and temporal coverage. In 
the thermal infrared part of the electromagnetic spectrum 
(8.7 to 12.0 μm), atmospheric dust can create a cooling 
anomaly in ‘clear-sky’ conditions (Hennen et al. 2019). 
Relative RGB (Red/Green/Blue) beam strengths are ren-
dered from inter-channel Brightness Temperature Differ-
ences (BTD), configured with specific limits (cf. Table 1 
in Hennen et al. 2019) to distinguish ‘thermally insulating’ 
atmospheric components (such as soot and clouds from bio-
mass burning) from atmospheric dust (Brindley et al. 2012; 
Hennen et al. 2019). In the ‘Dust RGB’ product, meteor-
ological clouds appear as red or brown, the dust appears 
magenta or pink, and bare surfaces appear as white or blue 
(Fig. 3) (Brindley et al. 2012; Hennen et al. 2019). Accord-
ing to Fig. 4, dust storms originated in central parts of Iraq 
and northern Saudi Arabia, gradually moved to the west and 
southwest of Iran, including Khuzestan province. Along with 
the results of applied statistical analyses to the pollutant con-
centrations, both HYSPLIT backward trajectory modeling 
and the Visible/IR images of SEVIRI confirmed that a dust 
storm started on 25th and peaked on 26th April 2020, similar 
to a prior case that covered large areas of Iraq and northern 
regions of Saudi Arabia that afterwards reached Khuzestan 
(Ashrafi et al. 2014; Martínez et al. 2009).

Previous studies have shown two different dust storm cor-
ridors to Khuzestan province in Iran: (a) W-E direction, from 
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central regions of Iraq to the southwest and west of Iran, 
and (b) NW-SE direction, from eastern Syria and northwest-
ern Iraq (Baghbanan et al. 2020; Broomandi and Bakhtiar 
Pour 2017; Cao et al. 2015; Zarasvandi et al. 2011). During 
warm periods from March to September, Shamal winds are 
responsible for dust transportation from eastern Syria, west-
ern regions of Iraq, and Jordan to Khuzestan province. The 
main dust events over Iran come from the semi-arid and arid 
region of the dust belt, mainly northern, eastern, and central 
parts of Syria and Iraq, and the northern part of Saudi Arabia 
(Aliabadi et al. 2015; Broomandi and Bakhtiar Pour 2017; 
Cao et al. 2015).

The trend of changes in the COVID‑19 situation 
in Khuzestan, Iran

The first confirmed COVID-19 case was reported in Iran in 
mid-February 2020. As a result, lockdown and precautionary 
measures were implemented from 21st March to 21st April in 
2020 in the whole country. By the beginning of June 2020, 

the total number of infected, dead, and recovered people in 
Iran are 157,562, 7942, and 123,077, respectively, while in 
Khuzestan are 15,988, 595, and 14,591, respectively. It is 
worth mentioning that the Khuzestan population ratio to Iran 
is about 5.9%. However, the rates of total infected, death, and 
recovered people in this city are around 10%, 7.5%, and 12%.

According to Fig. 5, the initial number of Khuzestan 
cases had been slightly increasing, while the numbers were 
rapidly decreasing in the whole country. Subsequently, how-
ever, case numbers massively increased in Khuzestan, while 
the numbers were decreasing in the country, to the extent 
that the increase rate in Khuzestan outstripped that of the 
country starting from 27th April 2020. The infection ratio of 
new cases in the province to the country was 9.6 %, 13.2%, 
15.0%, 19.0%, and 28.0% on 25th April (the day of the end 
of the studied dust storm event), 27th April (2 days after the 
dust intrusion), 29th April (4 days after the dust intrusion), 
30th April (5 days after the dust intrusion), and 2nd May 
(7 days after the dust intrusion), respectively. Right after 
a 7-day lag, the newly reported number of cases tripled in 

Fig. 2   The time series of (A) 
combined daily extracted deep 
blue AOD, and (B) measured 
daily PM10 concentration and in 
Khuzestan, Iran during 1st April 
2020 to 30th April 2020
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this province, indicating a significant abnormal increase in 
the daily infection rate. Additionally, Fig. 5 shows a slight 
increase in the overall death rate in Iran, while there is a 
rapid increase in death rate in Khuzestan.

Influences of climate parameters on aerosol optical 
depth (AOD) in Khuzestan, Iran

Meteorological variables such as temperature, planetary 
boundary layer height (PBLH), surface pressure, RH (rela-
tive humidity), wind speed, and direction could impact the 
formation and dispersion of dust storms (Miri et al. 2017; 
Pirsaheb et al. 2016). The Pearson correlation coefficients 
analyses show that daily combined AOD in studied cit-
ies of Khuzestan, Iran had a statistically significant posi-
tive correlation with daily average wind speed (R2=0.40, p 
value <0.05), temperature (R2=0.32, p value <0.05), PBLH 
(R2=0.13, p value <0.05(. However, no statistically signifi-
cant correlation was observed among daily combined AOD 
and relative humidity and surface pressure. The elevated 
AOD levels can be due to the (a) any increase in air tempera-
ture; leading to a reduction in air humidity and increase in 
dust acceptance in air, (b) any decrease in relative humidity; 
preventing the precipitation phenomena and the act of wash-
ing and dust descending, (c) any increase in the wind speed; 
facilitating the transmission of dust particles from origins 

to downwind areas, (d) any reduction in surface pressure; 
lowering the chance of precipitation, air turbulence, and dust 
movement, (e) and any increase in PBLH; causing effective 
dispersion of dust particles in the vertical direction (Ashrafi 
et al. 2014; Guan et al. 2017; Namdari et al. 2018; Pirsaheb 
et al. 2016; Rashki et al. 2015; Zhu et al. 2018).

Clustering of the cities according to atmospheric 
stability characteristics

The relationship between virus spread and atmospheric 
dust is not straightforward, and possible latent relations 
with other independent factors, meteorological factors, 
and atmospheric stability characteristics should be consid-
ered. To find any significant commonalities or differences 
among the cities during the dust incursion times (1st April 
2020–30th April 2020), atmospheric stability data time series 
(e.g., Pasquil Stability Class (PSC) and Planetary Boundary 
Layer Height (PBLH)) studied for before, during, and after 
dust intrusion periods. Table 1 illustrates the dust event’s 
duration, the dust cloud arrival time, PSC, PBLH, Wind 
Speed, AOD, and Population Density. The highest PBLH 
value was observed in Andimeshk (2526 m) with a stability 
class of B (Moderately unstable conditions), while in Mah-
shahr, the lowest value of 216 m occurred with a stability 

Fig. 3   HYSPLIT Back trajec-
tory simulation for (A) Abadan, 
(B) Ahvaz, (C) Dezful, and (D) 
Mahshahr cities in Khuzestan 
province, Iran on 26th April 
2020
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class of D (Neutral conditions) on 26th and 25th April 2020, 
respectively.

The K-means clustering algorithm clustered the cities to 
characterize their features or attributes (Shafiee et al. 2016a, 
b; Shobha and Asha 2017), and it measures different aspects 
of the cities’ atmospheric stability characteristics. The clus-
ters were extracted by considering attribute values of PSC, 
PBLH, AOD, wind speed, population density, and the dura-
tion of dust events. Table 2 summarizes the cluster analysis 
in Khuzestan, Iran. RFA analysis showed the critical role of 
wind speed and AOD with the relative importance of 0.31 
and 0.23, respectively, influencing the daily increase percent 
of COVID-19 infection (Table 3).

The cities were divided into three clusters based on their 
similarities. Cluster 1 includes Hendijan, Mahshar, Ramshir, 
Omidiyeh, and Behbahan cities with PBLH values below 
1000 m (excluding Behbahan) with the stability classes of 
C and D and AOD ranging of 0.50–0.58. In cluster 1, the 
wind speed was relatively higher than the other two clus-
ters (above 8.0 m/s). Cluster 2 includes Ahvaz, Shushtar, 
Abadan, Karun, Bavi, Andimeshk, and Shush cities with 
PBLH values above 2000 m (excluding Abadan), stabil-
ity classes of A and B, and AOD ranging of 0.60–0.86. In 

cluster 2, the wind speed varied between 5 and 9 m/s. Cluster 
3 includes Rahmhormoz, Khoramshahr, Dezful, Izeh, Bagh-
e Malek, Masjed Soleyman, Hoveyzeh, and Hamidiyeh with 
PBLH values below 1000 m, with stability class of C and D, 
and AOD ranging of 0.71–0.87. In cluster 3, the wind speed 
was relatively lower than others, varying between 1.0 and 
8.0 m/s. The main differences in the observed relationships 
of the virus spread and the dust event for each city type are 
discussed in the following sections.

Cross‑correlation analysis between the combined 
AOD data and the daily percentage increase 
of COVID‑19 infection

The SARS-CoV-2 virus has an incubation time ranging 2–14 
days (Guan et al. 2020; Lauer et al. 2020); thus, any pos-
sible impacts of the infection spread following a dust event 
would be observed after several days. Cross-correlation is 
a method to evaluate two-time series if one is more corre-
lated to a lagged measure of the other, helping to identify 
at which lag time the two-time series are most strongly cor-
related. In this study, several cross-correlations up to +10 
days lag were applied to the studied cities. Due to a lack of 

Fig. 4   SEVIRI satellite images 
for April dust storm. (A) 25th 
April 2020 at 1:00 am, (B) 25th 
April 2020 at 10:00 am, (C) 25th 
April 2020 at 3:00 pm, (D) 25th 
April 2020 at 7:00 pm, (E) 25th 
April 2020 at 10:00 pm, and (F) 
26th April 2020 at 8:00 am

Environmental Science and Pollution Research (2022) 29:36392–3641136400

1 3



data availability, analysis with a higher lag level, e.g., 14 
days or more, was impossible. The event data sets consist of 
measurments for (1) the prior week before the event, (2) dur-
ing the event (1–3 days), and (3) after the event, including all 
possible recorded days during the study period.

In Table 4, cities were categorized into four groups, based 
on calculated cross-correlations among the daily combined 
AOD and increases of COVID-19 infection numbers (%) 
from 20/04/2020 to 09/05/2020. In group 1, cities of Mas-
jed Soleyman, Khoramshahr, and Izeh with R values above 
0.70 showed that dust incursions might have a significant 
impact on the spread of COVID cases in these cities since 
the peak correlations come around 10-day lag that is the typ-
ical incubation period (Bontempi 2020). Group 2 includes 
Shushtar, Behbahan, Andimeshk, Abadan, Bagh-e Malek, 
Hamidiyeh, Ahvaz, Bavi, Dezful, and Ramshir, showing R 
values ranging from 0.40 to 0.68. In this group, the AOD 
levels are high (except Behbahan city with relatively high 
correlations). The peak correlations were observed around 
4–5 days lag times, which might be related to the weaken-
ing of the infected persons’ respiratory and immune systems 
(Bontempi 2020). Group 3 includes Omidiyeh, Mahshahr, 
Hendijan, and Karun, with R values ranging from 0.31 to 
0.43. Most of the AOD levels in this group were lower, so 
they were utilized as our control group cities. These cities, 
having lower correlations for dust intrusions with new case 

counts, expectedly show no significant association with any 
lag. Finally, in group 4, the cities of Rahmhormoz, Hov-
eyzeh, and Shush, with R values ranging from 0.23 to 0.34, 
exceptions to the hypothesis since they had a higher level of 
dust incursion, but no significant correlation with no identifi-
able confirmed COVID case count increases.

In reference to Fig. 1 and Table 2, neighboring cities such 
as Bavi, Karun, and Shushtar had similar lag values. Cor-
respondingly, the cities clustered together (Table 2) based 
on atmospheric stability and dust storm characteristics (e.g. 
Ahvaz, Shushtar, Andimeshk, and Abadan in Cluster 2 and 
Ramshir, Hendijan, Mahshahr, and Omidiyeh Hendijan in 
Cluster 1) fell into the same groups in Table 4. The cities 
of Cluster 3 (Rahmhormoz & Hoveyzeh and Masjed Soley-
man & Khoramshahr & Izeh) belonged to Groups 1 & 4. 
The reason behind this different grouping (based on cross-
correlation among combined AOD and daily increase per-
cent of COVID-19 infection) might be due to poor medical 
surveillance such as insufficient testing in Shush, Rahmhor-
moz, and Hoveyzeh (grouped in G.4). Despite the similar 
atmospheric stability and dust storm characteristics, they 
were exceptions to the hypothesis, not showing a significant 
correlation.

Another notable exception was observed in Cluster 3. 
Khorramshahr (grouped in G.1) and Dezful & Bagh-e Malek 
& Hamidiyeh (grouped in G.2) were clustered together 

Table 1   Atmospheric stability 
classification, time of arrival 
and duration of dust event, and 
combined extracted AOD values 
in Khuzestan province, Iran 
during the studied period (1st 
April 2020–30th April 2020)

* Occurred on 25th April 2020 (UTC)

City AOD Time of arrival on 
26th April 2020 
(UTC)

Duration PSC PBLH Wind speed Pop-density

Khoramshahr 0.71 05:30:00 10 D 897.6 6.17 74.4
Shushtar 0.78 08:30:00 9 B 2072 7.77 78.93
Andimeshk 0.79 13:30:00 2 B 2526 4.58 55.01
Ahvaz 0.86 09:30:00 7 B 2083 6.44 267.8
Abadan 0.71 09:30:00 7 A 1684 8.74 117.45
Hamidiyeh 0.85 07:30:00 5 C 753.7 2.51 69.46
Dezful 0.79 05:30:00 10 D 919.9 6.59 95.56
Ramshir 0.58 06:30:00 9 D 569.2 12.24 33.34
Omidiyeh 0.53 09:30:00* 9 C 904.1 11.85 42.99
Mahshahr 0.50 21:30:00* 15 D 216 7.58 155.28
Hendijan 0.50 11:30:00 5 D 391.9 5.45 10.25
Shush 0.77 12:30:00 3 B 2485 6.80 56.67
Masjed Soleyman 0.83 06:30:00* 5 D 1080 3.85 52.12
Izeh 0.72 15:30:00 15 C 731 1.09 52.49
Behbahan 0.56 09:30:00* 9 C 1753 8.12 62.62
Bagh-e Malek 0.81 15:30:00 15 C 516 1.06 46.65
Bavi 0.86 09:30:00 7 B 1993 9.13 70.07
Karun 0.60 09:30:00 7 B 2298 7.78 88.45
Rahmhormoz 0.81 03:30:00 15 D 317 7.72 62.58
Hoveyzeh 0.87 06:30:00 5 D 1009 3.34 14.1
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because they shared similar cross-correlation values. All cit-
ies in cluster 3 share similar atmospheric stability and dust 
storm properties, while they have different elevations. Khor-
ramshahr is located near the sea and at a lower elevation, 
about 3 m above sea level. It is speculated that it was more 
vulnerable to the dust storm intrusion than Dezful, Bagh-e 
Malek, and Hamidiyeh, located farther inland, at 921 m, 734 
m, and 52 m above sea level, respectively, even though their 
AOD levels were slightly higher than Khoramshahr.

Study implications and limitations

There is sparse research concerning COVID-19 epidemic 
phenomena and their possible association with PM levels 
and diffusion. Recently, studies showed a meaningful link-
age among Saharan dust intrusion and observed COVID-19 
outbreak in early 2020 on the Canary Islands, Spain, found 
that higher levels of PM2.5 caused by Saharan dust intrusions 
and air temperature inversions can boost severe COVID-19 
outbreaks (Rohrer et al. 2020). Another study conducted in 
Spain, which examined the impact of Saharan dust intru-
sions on the incidence and severity of COVID-19, found 
that dust intrusion had an additional influence on COVID-19 
incidences and hospital admission rates (Linares et al. 2021).

Desert dust events can increase the levels of ambient par-
ticulate matter (PM2.5) as well as being a vector for fungal 
illnesses, which can intensify the mortality and morbidity 
related to SARS-CoV-2 (Verweij et al. 2020). The overbur-
dening of hospitals and health services may also be linked 
to PM2.5 peak levels and particular meteorological condi-
tions favorable for spreading and enhancing the virulence of 
COVID-19 (Rohrer et al. 2020). Additionally, the observed 
pattern of COVID-19 cases concentrated in the 30–50N lati-
tude area suggests that dust carrying the virus may have been 
spread by a circum-global northern sub-tropical jet-stream in 
the high-altitude troposphere over northern parts of China in 
early Spring, 2020 (Wickramasinghe et al. 2020).

The authors speculated that dust particles responsible for 
carrying the COVID-19 virus were transported from con-
siderable virus sources generated in Wuhan, China, toward 
southern parts of the USA, consequently across the Atlantic 
to Portugal and further states to the east (Wickramasinghe 
et al. 2020). Their study suggested that the primary deposi-
tion of the dust particles carrying the virus depends on the 
interaction between the jet-stream and regional meteoro-
logical systems, leading to COVID-19 outbreaks in differ-
ent countries along this latitude belt (Wickramasinghe et al. 
2020). The case of Brazil, which exceptionally is outside the 
30–50N latitude belt, was suggested to being caused by the 
Azores cyclonic system affecting part of the jet-stream west 
of Portugal into the south-westerly trade winds with these 
winds entering Brazil in Spring 2020 (Wickramasinghe et al. 

2020). It is recommended not only to monitor the prevalence 
of the virus in the future but also to consider the occurrence 
of meteorological conditions that can cause unexpected and 
uncontrollable SARS-CoV-2 outbreaks.

Some other researchers suggested that transmission of 
infectious diseases can occur rapidly with increased air pol-
lution levels (Bontempi 2020; Chen et al. 2010; Peng et al. 
2020; Wu et al. 2020; Yang et al. 2020; Ye et al. 2016; Zhu 
et al. 2020). Yang et al. (2020) discussed the susceptibility 
of people to viral disease due to exposure to high levels of 
air pollution with peaks of particulate matter (PM) concen-
tration. Being exposed to elevated levels of PM reduces the 
effectiveness of the immune system and allows microorgan-
isms to become more invasive (Yang et al. 2020). Current 
studies show that atmospheric particles could up-regulate 
the SARS-CoV-2 receptor and related protease (Cao et al. 
2021). Any exposure to aerosol pollution can be related to 
different cardiovascular and respiratory diseases (Pun et al. 
2017) via various mechanisms such as the up-regulation of 
Angiotensin-Converting Enzyme 2 (ACE-2) and Transmem-
brane Serine Protease 2 (TMPRSS2) (Lin et al. 2018; Paital 
and Agrawal 2020). The protective mechanism of ACE-2 up-
regulation helps the respiratory system maintain the Renin 
Angiotensin System (RAS) and decreases the inflamma-
tory reaction (Ye and Liu 2019). It is not only abundantly 
expressed in the lungs, but in the glandular cells of duode-
nal, gastric, and rectal epithelia of the infected people by 
COVID-19 (Cao et al. 2021; Paital and Agrawal 2020; Wu 
et al. 2020). The ACE-2 acts as the primary receptor protein 
of SARS-CoV-2.

Additionally, the high affinity between the virus’s synap-
tic glycoprotein and ACE-2 in host cell targets was reported 
(Vankadari and Wilce 2020). Also, TMPRSS2 acts as a pro-
tease, cleaving viral spike protein and combining it with host 
cells to accelerate the infection (Kaur et al. 2021). When 
particulate matter, especially PM2.5, attacks the human body, 
it can increase SARS-CoV-2 susceptibility for the human 
body by promoting the AEC-2 expression and its co-factor, 
TMPRSS2 (Kim et al. 2020). A recent in vivo study in mice 
showed a significant increase in the level of the AEC-2 
expression after being exposed to PM2.5 (Cao et al. 2021; 
Lin et al. 2018). Statistical analysis suggests a significant 
association between PM concentrations, ACE-2 expression, 
and severity of COVID-19 infection (Cao et al. 2021; Paital 
and Agrawal 2020). Therefore, it is recommended to conduct 
further studies paying particular attention to the level of air 
pollution in areas highly hit by COVID-19 and introduce 
suitable measures by decision-makers to decrease the level 
of air pollution. Bontempi (2020) reported notable regis-
tered positive cases in Italy (mainly in Brescia and Bergamo 
areas, Lombardy) after a PM10 episode exceeding the set 
safety limit of 50 μg/m3 for several days at the beginning of 
March 2020. However, a direct linkage between PM10 peak 
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and COVID-19 diffusion was not reported (Bontempi 2020). 
Other related studies, summarized in Table 5, supported the 
hypothesis that any increase in the spread of COVID-19 and 
related mortality could be due to poor air quality. Specifi-
cally, a positive association was observed among PM, focus-
ing on PM2.5 and COVID-19 mortality or morbidity. Based 
on their studies, long-term exposure to a relatively high level 
of particulate matter may be responsible for the spread and 
pathogenicity of SARS-CoV-2.

This paper suggests that the captured impacts in our study 
can be related primarily to co-morbidities, inflammation, 
pre-existing Particulate Matter-related cellular damage, and 
up-regulation of ACE-2 & TMPRSS2 in the host cells (Cao 
et al. 2021; Ciencewicki and Jaspers 2007; Kim et al. 2020; 
Paital and Agrawal 2020; Pope 3rd et al. 2016; Tsai et al. 
2019). Previous studies also reported that air pollution expo-
sure could negatively affect early responses of the immune 
system to the infection, which leads to later increases in 
worse prognosis and inflammation (Ciencewicki and Jaspers 
2007; Conticini et al. 2020; Lambert et al. 2003), a possible 
alternative explanation for our findings.

A great concern is the presence of pathogenic microor-
ganisms in the air and their transportation by ambient PM. It 
is essential to identify the potential impacts of airborne virus 
exposure caused by PM. During a MED event, these findings 
in Khuzestan, in combination with recently conducted stud-
ies of viral interactions with particulate matter, raise suspi-
cion about the probable airborne transmission of COVID-19. 
As a result, any association between human health and air 
pollution, especially particulate matter, is vital to formulate 
positive strategies by policymakers to decrease atmospheric 
aerosols and potentially reduce the spread of future epidemic 
viruses and illnesses.

Unfortunately, during a pandemic, it is impossible to 
design a study and collect ideal quality temporal and spatial 
data to minimize sources of bias. As a result, our research 
has some limitations, and further investigations are required. 
We only focused on the correlations among AOD levels 
(representing inhalable particle levels in the studied cities) 

and the daily percentage increase of COVID-19 infection 
before, during, and after periods of a dust incursion event; 
this study did not focus on the association of air pollution on 
the COVID-19 pandemic. The data did not include medical 
history (no information on background health issues such 
as respiratory and cardiovascular conditions and diabetes), 
smoking status, or the age-specific or gender-specific con-
firmed COVID-19 cases, so no subgroup analyses on these 
factors could be conducted. We also could not include other 
factors in the analyses, such as indoor confinement dura-
tion, healthcare system capacity, and case identification 
procedures and practices. Also, our findings are not nec-
essarily generalizable globally to other regions with dust 
intrusion events, given that we only had data in one region 
of Iran. Data on potential confounding factors such as the 
susceptibility of the population, surveillance data on res-
piratory infections, patterns of social relationships, public 
health measures, use of masks and sanitizers, hygiene, social 
distancing, virus resistance, mobility, urban density, socio-
economic variables were also not available for our study. 
Adjusting for these potential confounders can strengthen the 
findings for future studies.

Moreover, due to the lack of data, the current study was 
not able to construct generalized linear models with control 
variables such as autoregressive components, seasonality, 
and trend. Therefore, further studies are required with a suf-
ficient length of data introducing the different waves of the 
pandemic to investigate the impacts of the combination of 
air pollution, climate variability, and other factors extrin-
sic to COVID-19. Since dust intrusion is associated with 
a decreased mixing layer height, we recommend in further 
studies to investigate the impact of other pollutants and also 
constitutes of particulate matter (PM10 and PM2.5), which 
can also be linked to the severity and incidence of COVID-
19 (Frontera et al. 2020; Pandolfi et al. 2014; Salvador et al. 
2019; Yao et al. 2020b; Zoran et al. 2020). It is worth men-
tioning that reduced mixing layer height not only increases 

Fig. 5   (A) The total number of infected people, (B) the total number 
of deaths, and (C) the total number of recovered people in Iran and 
Khuzestan province, starting from 6th March 2020 to 28th May 2020

◂

Table 2   Cities in clusters based on features of AOD, Duration, PSC, 
PBLH, WS, and Population Density during studied period (1st April 
2020–5th May 2020) in Khuzestan, Iran

Cluster Cities

1 Hendijan-Mahshahr-Ramshir-Omidiyeh-Behbahan
2 Karun-Abadan-Shushtar-Bavi-Shush-Ahvaz-Andimeshk
3 Rahmhormouz-Korramshahr-Dezful-Izeh-Bagh-e-

Malek-Masjed Soleiman-Hoveizeh-Hamidiyeh

Table 3   The percentages of the included features in RFA based on 
meteorological (WS, Surface Pressure, Temp, PBLH, and RH) and 
air quality (AOD) data during studied period (1st April 2020–5th May 
2020) in Khuzestan, Iran

Feature Importance value % of 
importance 
value

AOD 3.8082567 23
Temperature 2.8008748 17
PBLH 0.9373292 6
Surface pressure 3.0668876 18
RH. 0.9365382 6
WS. 5.2580563 31

Environmental Science and Pollution Research (2022) 29:36392–3641136404

1 3



Ta
bl

e 
4  

T
he

 c
ro

ss
-c

or
re

la
tio

ns
 a

m
on

g 
th

e 
da

ily
 c

om
bi

ne
d 

A
O

D
 a

nd
 in

cr
ea

se
 in

 th
e 

pe
rc

en
t o

f C
O

V
ID

-1
9 

in
fe

ct
io

n 
nu

m
be

rs
 in

 K
hu

ze
st

an
 p

ro
vi

nc
e,

 Ir
an

 d
ur

in
g 

20
th

 A
pr

il 
20

20
–5

th
 M

ay
 2

02
0

C
ity

Pe
ak

 A
O

D
 le

ve
l

Pe
ak

 la
g

R 
va

lu
e

La
g 

0
La

g 
1

La
g 

2
La

g 
3

La
g 

4
La

g 
5

La
g 

6
La

g 
7

La
g 

8
La

g 
9

La
g 

10
(d

ay
s)

(d
ay

s)
(d

ay
s)

(d
ay

s)
(d

ay
s)

(d
ay

s)
(d

ay
s)

(d
ay

s)
(d

ay
s)

(d
ay

s)
(d

ay
s)

(d
ay

s)

M
as

je
d 

So
le

ym
an

0.
82

6
10

0.
81

0.
10

0.
42

−
0.

14
0.

10
0.

21
0.

23
−

0.
40

−
0.

21
−

0.
11

−
0.

32
0.

81
K

ho
ra

m
sh

ah
r

0.
70

9
9

0.
76

0.
10

0.
30

−
0.

10
0.

10
−

0.
30

0.
04

−
0.

10
−

0.
20

0.
20

0.
76

0.
00

4
Iz

eh
0.

72
2

8
0.

70
−

0.
33

0.
60

0.
11

−
0.

10
−

0.
30

−
0.

22
−

0.
30

0.
30

0.
70

−
0.

30
−

0.
23

Sh
us

ht
ar

0.
78

4
4

0.
68

0.
13

0.
12

−
0.

01
0.

11
0.

68
0.

30
−

0.
14

−
0.

31
−

0.
05

−
0.

40
−

0.
24

B
eh

ba
ha

n
0.

56
4

4
0.

63
−

0.
15

0.
10

0.
14

−
0.

44
0.

63
−

0.
12

0.
44

0.
04

0.
14

−
0.

05
−

0.
44

A
nd

im
es

hk
0.

79
4

7
0.

62
−

0.
23

−
.1

0
0.

15
−

0.
07

−
0.

32
−

0.
23

0.
55

0.
62

−
0.

11
−

0.
11

0.
38

A
hv

az
0.

86
2

10
0.

60
0.

40
0.

33
−

0.
33

−
0.

20
−

0.
43

0.
18

−
0.

33
−

0.
10

0.
01

0.
25

0.
60

A
ba

da
n

0.
70

5
5

0.
57

−
0.

34
−

0.
14

−
0.

41
−

0.
30

−
0.

10
0.

57
0.

40
−

0.
00

4
−

0.
43

0.
15

0.
21

B
ag

h-
e 

M
al

ek
0.

80
6

2
0.

56
−

0.
27

0.
01

0.
56

−
0.

10
−

0.
40

0.
33

−
0.

20
0.

10
0.

20
−

0.
20

−
0.

30
H

am
id

iy
eh

0.
85

1
5

0.
54

−
0.

22
0.

21
−

0.
20

−
0.

20
−

0.
00

2
0.

54
0.

43
−

0.
14

−
0.

42
−

0.
41

−
0.

11
B

av
i

0.
85

5
4

0.
42

−
0.

20
−

0.
43

−
0.

05
0.

01
0.

43
0.

10
−

0.
20

−
0.

30
−

0.
11

0.
30

0.
34

D
ez

fu
l

0.
79

4
8

0.
50

0.
10

−
0.

10
0.

01
−

0.
13

0.
30

0.
00

1
−

0.
30

−
0.

30
0.

50
0.

10
−

0.
24

R
am

sh
ir

0.
57

9
5

0.
40

−
0.

10
−

0.
10

0.
14

−
0.

00
4

0.
24

0.
40

−
0.

30
0.

11
0.

33
0.

02
−

0.
20

O
m

id
iy

eh
0.

56
4

5
0.

43
0.

10
−

0.
01

0.
10

−
0.

12
−

0.
10

0.
43

0.
14

0.
37

−
0.

12
−

0.
45

0.
40

M
ah

sh
ah

r
0.

50
4

7
0.

40
0.

02
−

0.
34

0.
30

−
0.

40
0.

32
−

0.
22

−
0.

31
0.

40
0.

20
−

0.
33

−
0.

31
H

en
di

ja
n

0.
49

5
7

0.
49

−
0.

03
0.

22
0.

12
−

0.
04

−
0.

18
−

0.
10

0.
23

0.
48

0.
49

−
0.

15
−

0.
17

K
ar

un
0.

59
5

4
0.

31
−

0.
03

0.
03

0.
01

−
0.

14
0.

31
0.

17
−

0.
18

−
0.

13
0.

13
−

0.
30

−
0.

03
R

ah
m

ho
rm

oz
0.

81
4

2
0.

34
0.

25
−

0.
10

0.
34

−
0.

06
0.

10
0.

30
−

0.
47

−
0.

10
0.

30
−

0.
20

−
0.

24
H

ov
ey

ze
h

0.
87

1
7

0.
28

−
0.

03
0.

06
0.

04
0.

12
−

0.
11

0.
04

−
0.

21
0.

28
0.

14
−

0.
10

−
0.

01
Sh

us
h

0.
77

0
4

0.
23

−
0.

23
−

0.
21

−
0.

13
−

0.
26

0.
23

0.
05

−
0.

03
−

0.
31

0.
07

−
0.

22
−

0.
54

Environmental Science and Pollution Research (2022) 29:36392–36411 36405

1 3



the level of primary pollutants but also can make the disper-
sion of other pollutants more difficult (Li et al. 2017).

Health and environmental data on the ground in real time 
is almost always incomplete, if not entirely unavailable. Yet, 
to respond promptly to the demand of pandemics and to con-
duct short-term projections of disease incidence and death 
that can inform the planning for required beds, ventilators, 
and medicines, we require that data. The innovative utiliza-
tion of satellite remote sensing for making projections fol-
lowing dust storms may provide that data and save lives. Our 
study is the first such application as a potential tool to inform 
the planning for the current pandemic and future epidemics 
in a timely manner.

Conclusion

Sparse earlier research has demonstrated a positive corre-
lation between MED intrusion and health impacts in down-
wind areas. The subsequent global growth of the number 
of confirmed COVID-19 cases, the potential causal associ-
ation of diffusion of COVID-19 with air pollution and dust 
intrusion was proposed. For the first time, this paper inves-
tigated the correlation between dust intrusion and daily 
increase in COVID-19 infection counts in Khuzestan, Iran, 
following the Middle East Dust (MED) intrusion of April 
2020, when PM10 pollution occurred for several days. In 
Khuzestan, only after a 7-day lag, the recorded number of 
new cases tripled, showing a significant abnormal increase 
in the province’s daily disease rate. A direct correlation 
between the elevated daily combined AOD and an increase 
in the percentage of COVID-19 infection numbers was evi-
dent in the region, starting from 20/04/2020 to 09/05/2020. 
A Pearson correlation coefficient analysis shows that com-
bined daily AOD in the studied cities of Khuzestan, Iran, 
was significantly positively associated with diurnal aver-
age wind speed, temperature, and the Planetary Boundary 
Layer. Also, RF analysis showed the critical role of wind 
speed and AOD with the relative correlation coefficient 
values of 0.31 and 0.23, respectively, influencing the daily 
increased percent of COVID-19 disease counts. This first 
study may serve as a reference to better understanding and 
predicting the factors affecting COVID-19 transmission 
and diffusion routes, focusing on the MED intrusions’ role. 
Moreover, the findings can serve to support the adoption 
of public health measures to protect vulnerable popula-
tion groups such as people with previous pathologies and 
the elderly by advising them to reduce their exposure to 
outdoor air pollution during dust intrusions.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11356-​021-​18195-7.
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