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Persistence of spatial analyticity is studied for solution of the beam equation utt +
(m + Δ2)u + |u|p−1u = 0 on Rn × R. In particular, for a class of analytic initial 
data with a uniform radius of analyticity σ0, we obtain an asymptotic lower bound 
σ(t) � c/

√
t on the uniform radius of analyticity σ(t) of solution u(·, t), as t → ∞.
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1. Introduction

This paper is concerned with persistence of spatial analyticity of solutions for the Cauchy problem of the 
fourth order wave equation {

utt +
(
m + Δ2)u + |u|p−1u = 0,

(u, ut)|t=0 = (u0, u1),
(1)

where u : Rn ×R −→ R, p � 1, and m > 0.
Equations like (1) are also referred to as Bretherton’s type equations or the beam equation. The original 

Bretherton equation, written down for n = 1 by Bretherton [3], arised in the study of weak interactions of 
dispersive waves. A similar equation for n = 2 was proposed in Love [17] for the motion of a clamped plate. 
Recent developments in arbitrary dimension were established in [13–15,21,22].

Questions such as well-posedness, blow-up in finite time, long time existence, and the existence of uniform 
bounds for global solutions of (1) are addressed by several authors. For instance, local well-posedness, 
scattering, and stability in the energy space H2(Rn) × L2(Rn) was studied by Levandosky in [13,14] and 
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Levandosky and Strauss [15], results which were extended by Pausader [23,24]. Low-regularity global well-
posedness was also shown by Zhang [32] in dimensions 3 � n � 7 in the cubic case for data (u0, u1) ∈
Hs(Rn) ×Hs−2(Rn) satisfying

s > min
{
n− 2

2 ,
n

4

}
.

We remark that the energy

E(t) = 1
2

∫
Rn

(
u2
t + (Δu)2 + mu2 + 2

p + 1 |u|
p+1

)
dx

is conserved by the flow of (1), i.e., E(t) = const. for all t.
In this paper, we shall study the persistence of spatial analyticity for the solution of the Cauchy problem 

(1), given initial data in a class of analytic functions. By the Paley-Wiener Theorem, the radius of analyticity 
of a function can be related to decay properties of its Fourier transform. It is therefore natural to take data 
for (1) in the Gevrey space Gσ,s(Rn), defined by the norm

‖f‖Gσ,s(Rn) = ‖ exp(σ|ξ|)〈ξ〉sf̂‖L2
ξ(Rn) (σ � 0),

where 〈ξ〉 =
√

1 + |ξ|2. When σ = 0, this space coincides with the Sobolev space Hs(Rn), with norm

‖f‖Hs(Rn) = ‖〈ξ〉sf̂‖L2
ξ(Rn),

while for any σ > 0, any function in Gσ,s(Rn) has a radius of analyticity of at least σ at each point x ∈ Rn. 
This fact is contained in the following theorem, whose proof can be found in [12] in the case s = 0 and 
n = 1; the general case follows from a simple modification.

Paley-Wiener Theorem. Let σ > 0 and s ∈ R. If f ∈ Gσ,s(Rn), then f is the restriction to Rn of a function 
F which is holomorphic in the strip

Sσ = {x + iy ∈ Cn : |y| < σ}.

Moreover, the function F satisfies the estimates

sup
|y|<σ

‖F (· + iy)‖Hs < ∞.

Information about the domain of analyticity of a solution to a partial differential equation (PDE) can 
be used to gain a quantitative understanding of the structure of the equation, and to obtain insight into 
underlying physical processes. The study of real-analytic solutions to nonlinear PDE has developed over the 
last three decades. Starting with the works of Kato and Masuda [11] for dispersive wave-type equations, and 
Foias and Temam [6] for the Navier-Stokes equations, analytic function spaces have become popular tools 
for the study of a variety of questions connected with nonlinear evolutionary PDE. In particular, the use 
of Gevrey-type spaces has given rise to a number of important results in the study of long time dynamics 
of dissipative equation, such as estimating the asymptotic degrees of freedom (e.g., determining nodes) 
[18], approximating the global attractors/inertial manifolds [10] and a rigorous estimate of the Reynold’s 
scale [4].

Given a nonlinear dispersive PDE in the independent variables (t, x), consider the Cauchy problem with 
real analytic initial data at t = 0. If these data have a uniform radius of analyticity σ0, in the sense that 
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there exists a holomorphic extension to the complex strip of width σ0, then we ask whether the solution 
at some later time t > 0 also has a uniform radius of analyticity σ = σ(t) > 0, in which case we would, 
moreover, like to have an explicit lower bound on σ(t). Heuristically, the picture one should have in mind 
is that σ(t) is the distance from the x-axis to the nearest complex singularity of the holomorphic extension 
of the solution at time t. If at some time t this singularity actually hits the x-axis, then the solution itself 
suffers a breakdown of regularity. This point of view is the basis for the widely used singularity tracking 
method [28] in numerical analysis, where a spectral method is used to obtain a numerical estimate of σ(t). 
This estimate can then be used to predict either the formation of a singularity in finite time or alternatively 
global regularity. Even in cases where singularity formation does not occur (as is the case for the beam 
equation), it is still of interest to obtain lower bounds on σ(t), as this has implications for the rate of 
convergence of spectral methods for the equation one is looking at (see [2] for an example of this).

The spaces Gσ,s(Rn) were introduced by Foias and Temam [6] (see also [11]) in the study of spatial 
analyticity of solutions to the Navier-Stokes equations, and various refinements of their method have since 
been applied to prove lower bounds on the radius of spatial analyticity for a number of nonlinear evolution 
equations [5,7–9,16,19,20,25–27,29–31]. The method used here for proving lower bounds on the radius of 
analyticity was introduced in [27] in the context of the 1D Dirac-Klein-Gordon equations. This method 
is based on an approximate conservation laws, and has been applied to prove an algebraic lower bound 
(decay rate) of order t−1/α for some α ∈ (0, 1] on the radius of spatial analyticity of solutions to a number 
of nonlinear dispersive and wave equations (see e.g., [1,25–27,29–31]). The optimal decay rate that can be 
obtained in this setting is 1/t, which corresponds to α = 1 (see e.g., [1,29,31]). This decay rate is related to 
the behavior of the exponential weight, exp(σ|ξ|), that sits in the Gevrey norm. More specifically, it stems 
from the simple estimate

exp(σ|ξ|) − 1 � (σ|ξ|)α · exp(σ|ξ|) (0 � α � 1),

which follows from an interpolation between exp r − 1 � exp r and exp r − 1 � r exp r for r � 0.
In the present work, in an attempt to improve the decay rate obtained so far, we introduce a modified 

Gevrey norm1 by

‖f‖Hσ,s(Rn) = ‖ cosh(σ|ξ|)〈ξ〉sf̂‖L2
ξ(Rn) (σ � 0),

where the exponential weight exp(σ|ξ|) in the Gevrey norm is now replaced by a hyperbolic weight cosh(σ|ξ|). 
These two weights are equivalent in the sense that

1
2 exp(σ|ξ|) � cosh(σ|ξ|) � exp(σ|ξ|). (2)

Thus, the associated Gσ,s and Hσ,s–norms are equivalent, i.e.,

‖f‖Hσ,s(Rn) ∼ ‖f‖Gσ,s(Rn), (3)

and so the statement of Paley-Wiener Theorem still holds for functions in Hσ,s.
Note also that H0,s = G0,s = Hs. The space Hσ,s, however, has an advantage since cosh(σ|ξ|) satisfies 

the estimate

cosh(σ|ξ|) − 1 � (σ|ξ|)2α · cosh(σ|ξ|) (0 � α � 1). (4)

This follows from

1 As far as we know the space Hσ,s is new to this paper and was not used before.
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cosh r − 1 � cosh r and cosh r − 1 � r2 cosh r (r ∈ R).

Therefore, in view of (4), an application of our method in the Hσ,s-set up can yield a decay rate of order 
t−1/2α for some α ∈ (0, 1] provided that the nonlinear estimates in the derivation of the approximate 
conservation law can absorb the weight |ξ|2α. In this work we managed to obtain the optimal decay rate of 
t−1/2 (which corresponds to α = 1) for the Cauchy problem (1).

We remark that as a consequence the embedding

Hσ,s ⊂ Hs (σ � 0) (5)

and the existing well-posedness theory in H2(Rn) ×L2(Rn), one can conclude that the Cauchy problem (1), 
with 1 � n � 3 and p � 1, has a unique, global-in-time solution, given initial data (u0, u1) ∈ Hσ0,2(Rn) ×
Hσ0,0(Rn) for some σ0 � 0.

We now state our main theorem.

Theorem 1 (Lower bound for the radius of analyticity). Let 1 � n � 3, p � 1 is an odd integer and σ0 > 0. 
If (u0, u1) ∈ Hσ0,2(Rn) ×Hσ0,0(Rn), then for any T > 0 the solution of (1) satisfies

(u, ut) ∈ C
(
[0, T ];Hσ,2(Rn)

)
× C1 (

[0, T ];Hσ,0(Rn)
)

with

σ := σ(T ) = min
{
σ0, cT

− 1
2

}
,

where c > 0 is a constant depending on the initial data norm.

In view of the Paley-Wiener theorem and (3), this result implies that the solution u(·, t) has radius of 
analyticity at least σ(t) for every t > 0.

Remark 1. The result of Theorem 1 can be extended to dimension n = 4 if one uses Strichartz estimates 
(see [21]) instead of just Sobolev embeddings as we do in this paper. It is also possible to extend the result 
for n � 5 but with some upper bound restriction on p. However, we will not pursue these issues here.

The first step is to prove the following local-in-time result, where the radius of analyticity remains 
constant.

Theorem 2 (Local well-posedness). Let 1 � n � 3, p � 1 is an odd integer and σ > 0. Given (u0, u1) ∈
Hσ,2(Rn) ×Hσ,0(Rn), there exists a time δ > 0 and a unique solution

(u, ut) ∈ C
(
[0, δ];Hσ,2(Rn)

)
× C1 (

[0, δ];Hσ,0(Rn)
)

of the Cauchy problem (1) on Rn × [0, δ]. Moreover, the existence time is given by

δ = c0 (‖u0‖Hσ,2 + ‖u1‖Hσ,0)−(p−1)
, (6)

for some constant c0 > 0.

The second step in the proof of Theorem 1 is to prove an approximate conservation law for the norm of 
the solution, that involves a small parameter σ > 0 and which reduces to the exact energy conservation law 
in the limit as σ → 0. To derive this approximate conservation law, we set
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vσ(x, t) := cosh(σ|D|)u(x, t),

where u is the solution to (1). Define a modified energy associated with vσ by

Eσ(t) = 1
2

∫
Rn

(
(∂tvσ)2 + (Δvσ)2 + mv2

σ + 2
p + 1 |vσ|

p+1
)

dx.

Theorem 3 (Approximate conservation law). Let 1 � n � 3, p � 1 is an odd integer and σ > 0. Given 
(u0, u1) ∈ Hσ,2 ×Hσ,0, let u be the local solution of (1) on Rn × [0, δ] that is obtained in Theorem 2. Then

sup
0�t�δ

Eσ(t) = Eσ(0) + δσ2 · O
(
(Eσ(0))

p+1
2

)
. (7)

Observe that in the limit as σ → 0, we recover the conservation E0(t) = E0(0) for 0 � t � δ (note that 
v0 = u). Applying the last two theorems repeatedly, and then by taking σ > 0 small enough we can cover 
any time interval [0, T ] and obtain the main result, Theorem 1.

Notation. For any positive numbers a and b, the notation a � b stands for a � cb, where c is a positive 
constant that may change from line to line. Moreover, we denote a ∼ b when a � b and b � a.

In the next sections we prove Theorems 2, 3 and 1.

2. Proof of Theorem 2

Theorem 2 can easily be proved using energy inequality, Sobolev embedding and a standard contraction 
argument. Indeed, consider the Cauchy problem for the linear beam equation

utt +
(
m + Δ2)u = F,

(u, ut)|t=0 = (u0, u1)

whose solution is given by Duhamel’s formula

u(t) = S ′
m(t)u0 + Sm(t)u1 +

t∫
0

Sm(t− s)F (s) ds, (8)

where

Sm(t) = sin (t〈Δ〉m)
〈Δ〉m

.

Applying cosh(σ|D|) to (8) and taking the H2-norm on both sides yields the energy inequality

sup
0�t�δ

(‖u‖Hσ,2 + ‖ut‖Hσ,0) � ‖u0‖Hσ,2 + ‖u1‖Hσ,0 +
δ∫

0

‖F (s)‖Hσ,0 ds (9)

for some δ > 0.
Now consider the integral formulation of (1),

u(t) = S ′
m(t)u0 + Sm(t)u1 +

t∫
Sm(t− s)up(s) ds, (10)
0
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where we used the fact that |u|p−1u = up for odd p.
Then by (9) and a standard contraction argument, Theorem 2 reduces to proving the nonlinear estimate

‖up‖Hσ,0 � ‖u‖pHσ,2 , (11)

which is also equivalent, by (3), to proving

‖up‖Gσ,0 � ‖u‖pGσ,2 .

Setting U = exp(σ|D|)u, this estimate reduces further to

‖exp(σ|D|) [(exp(−σ|D|)U)p]‖L2
x

� ‖U‖pH2 . (12)

By Plancherel,

LHS (12) = ‖Fx {exp(σ|D|) [(exp(−σ|D|)U)p]} (ξ)‖L2
ξ

=

∥∥∥∥∥∥∥
∫

ξ=
∑p

j=1 ξj

exp

⎛⎝σ

⎡⎣|ξ| − p∑
j=1

|ξj |

⎤⎦⎞⎠ p∏
j=1

Û(ξj) dξ1dξ2 · · · dξp

∥∥∥∥∥∥∥
L2

ξ

�

∥∥∥∥∥∥∥
∫

ξ=
∑p

j=1 ξj

p∏
j=1

|Û(ξj)| dξ1dξ2 · · · dξp

∥∥∥∥∥∥∥
L2

ξ

= ‖V p‖L2
x

where V = F−1
[
|Û |

]
. To obtain the third line we used the fact that |ξ| �

∑p
j=1 |ξj |, which follows from 

the triangle inequality.
Now by Sobolev embedding,

‖V p‖L2
x

= ‖V ‖p
L2p

x
� ‖V ‖pH2 = ‖U‖pH2

for all2 p � 1 if 1 � n � 4. This concludes the proof of (12), and hence (11).

3. Proof of Theorem 3 and Theorem 1

Let 1 � n � 3, p � 1 is an odd integer, σ > 0, and δ > 0 be the local existence time for the solution 
obtained in Theorem 2, (6). Recall that vσ(x, t) = cosh(σ|D|)u(x, t), where u is the solution to (1). Thus, 
u(x, t) = sech(σ|D|)vσ(x, t).

3.1. Proof of Theorem 3

Using integration by parts and equation (1), we obtain

E ′
σ(t) =

∫
Rn

∂tvσ
[
∂ttvσ + Δ2vσ + mv + vpσ

]
dx

2 This estimate also holds for 1 � p � n
n−4 if n � 5.
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=
∫
Rn

∂tvσ
[
cosh(σ|D|)

(
utt + Δ2u + mu

)
+ vpσ

]
dx

=
∫
Rn

∂tvσ [− cosh(σ|D|)up + vpσ] dx

=
∫
Rn

∂tvσ ·Np (vσ) dx,

where

Np(vσ) = vpσ − cosh(σ|D|) [sech(σ|D|)vσ]p .

Therefore,

Eσ(t) = Eσ(0) +
t∫

0

∫
Rn

∂tvσ(x, s) ·Np (vσ(x, s)) dxds. (13)

We now state a key estimate that will be proved in the next section.

Lemma 1. For ∂tvσ ∈ L2
x and vσ ∈ H2, we have the estimate∣∣∣∫

Rn

∂tvσ ·NP (vσ) dx
∣∣∣ � Cσ2 ‖∂tvσ‖L2

x
‖vσ‖pH2 (14)

for some constant C > 0.

Now we use (13) and (14) to obtain the a priori energy estimate

sup
0�t�δ

Eσ(t) = Eσ(0) + δσ2 · O
(
‖∂tvσ‖L∞

δ L2
x
‖vσ‖pL∞

δ H2

)
, (15)

where we use the notation

L∞
δ X := L∞

t X ([0, δ] ×Rn)

with X = L2
x or H2.

As a consequence of Theorem 2 we get

‖vσ‖L∞
δ H2 + ‖∂tvσ‖L∞

δ L2
x

= ‖u‖L∞
δ Hσ,2 + ‖ut‖L∞

δ Hσ,0

� C (‖u0‖Hσ,2 + ‖u1‖Hσ,0)

= C
(
‖vσ(·, 0)‖H2 + ‖∂tvσ(·, 0)‖L2

x

)
.

(16)

Since

Eσ(0) = 1
2

∫
Rn

(
[∂tvσ(x, 0)]2 + (Δvσ(x, 0))2 + m[vσ(x, 0)]2 + 2

p + 1 |vσ(x, 0)|p+1
)

dx

�
(
‖vσ(·, 0)‖ 2 + ‖∂tvσ(·, 0)‖ 2

)2
H Lx
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it follows from (16) that

‖vσ‖L∞
δ H2 + ‖∂tvσ‖L∞

δ L2
x

� [Eσ(0)] 1
2 . (17)

Finally, using (17) in (15) we obtain the desired estimate (7).

3.2. Proof of Theorem 1

Suppose that (u0, u1) ∈ Hσ0,2 ×Hσ0,0 for some σ0 > 0. This implies

vσ0(·, 0) = cosh(σ0|D)|)u0 ∈ H2, ∂tvσ0(·, 0) = cosh(σ0|D)|)u1 ∈ L2.

Then by Sobolev embedding

Eσ0(0) � ‖vσ0(·, 0)‖2
H2 + ‖∂tvσ0(·, 0)‖2

L2
x

+ ‖vσ0(·, 0)‖p+1
H2 < ∞.

Now following the argument in [27] (see also [25]) we can construct a solution on [0, T ] for arbitrarily large 
time T by applying the approximate conservation (7), so as to repeat the local result in Theorem 3 on 
successive short time intervals of size δ to reach T by adjusting the strip width parameter σ ∈ (0, σ0] of the 
solution according to the size of T .

The goal is to prove that for a given parameter σ ∈ (0, σ0] and large T > 0,

sup
t∈[0,T ]

Eσ(t) � 2Eσ0(0) for σ = c/
√
T , (18)

where c > 0 depends only on the initial data norm, σ0 and p. This would imply Eσ(t) < ∞ for all t ∈ [0, T ], 
and hence

(u, ut)(·, t) ∈ Hσ,2 ×Hσ,0 for σ = c/
√
T and t ∈ [0, T ].

To prove (18) first observe that for a given parameter σ ∈ (0, σ0] and 0 < t0 � δ we have by Theorems 2
and 3,

sup
t∈[0,t0]

Eσ(t) � Eσ(0) + Cδσ2 (Eσ(0))
p+1
2 � Eσ0(0) + Cδσ2 (Eσ0(0))

p+1
2 ,

where we also used the fact the Eσ(0) � Eσ0(0) for σ � σ0; this holds since cosh r is increasing for r � 0. 
Thus,

sup
t∈[0,t0]

Eσ(t) � 2Eσ0(0), (19)

provided

Cδσ2 (Eσ0(0))
p+1
2 � Eσ0(0). (20)

Then we can apply Theorem 2, with initial time t = t0 and the time step δ as in (6) to extend the solution 
to [t0, t0 + δ]. By Theorem 3, the approximate conservation law, and (19) we have

sup Eσ(t) � Eσ(t0) + Cδσ2 (2Eσ0(0))
p+1
2 . (21)
[t0,t0+δ]
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In this way, we cover time intervals [0, δ], [δ, 2δ] etc., and obtain

Eσ(δ) � Eσ(0) + Cδσ2 (2Eσ0(0))
p+1
2

Eσ(2δ) � Eσ(δ) + Cδσ2 (2Eσ0(0))
p+1
2 � Eσ(0) + C2δσ2 (2Eσ0(0))

p+1
2

· · ·

Eσ(nδ) � Eσ(0) + Cnδσ2 (2Eσ0(0))
p+1
2 .

This continues as long as

Cnδσ2 (2Eσ0(0))
p+1
2 � Eσ0(0) (22)

since then

Eσ(nδ) � Eσ(0) + Cnδσ2 (2Eσ0(0))
p+1
2 � 2Eσ0(0)

so we can take care one more step. Note also that (20) follows from (22).
Thus, the induction stops at the first integer n for which

Cnδσ2 (2Eσ0(0))
p+1
2 > Eσ0(0)

and then we have reached the final time

T = nδ,

when

CTσ2 (2Eσ0(0))
p−1
2 > 1.

Note that T will be arbitrarily large for σ > 0 small enough. Moreover,

σ2 > C−1 (2Eσ0(0))
−p+1

2 · T−1

proving

σ � cT− 1
2 ,

as claimed.

4. Proof of Lemma 1

First we prove the followings two Lemmas which are crucial in the proof of Lemma 1.

Lemma 2. For a, b ∈ R, we have

|cosh b− cosh a| � 1 ∣∣∣b2 − a2
∣∣∣ (cosh b + cosh a) . (23)
2
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Proof. Note that cosh r is an increasing function for r � 0. Since cosh r is even, i.e., cosh r = cosh |r|, we 
may assume a, b � 0. By symmetry we may also assume b � a. Then

cosh b− cosh a =
b∫

a

s∫
0

cosh r dr ds � cosh b

b∫
a

s∫
0

dr ds = 1
2

(
b2 − a2) cosh b. �

Lemma 3. Let ξ =
∑p

j=1 ξj for ξj ∈ Rn, where p � 1 is an integer. Then

∣∣∣∣∣∣1 − cosh |ξ|
p∏

j=1
sech |ξj |

∣∣∣∣∣∣ � 2p
p∑

j �=k=1

|ξj ||ξk|. (24)

Proof. First observe that

p∏
j=1

cosh |ξj | = 21−p
∑

s2,s3··· ,sp
cosh

⎛⎝|ξ1| +
p∑

j=2
sj |ξj |

⎞⎠ , (25)

where s2, s3, · · · , sp are independent signs (+ or −). Indeed, the case p = 1 is obvious, while the case p = 2
follows from the identity

2 cosh |ξ1| cosh |ξ2| = cosh(|ξ1| − |ξ2|) + cosh(|ξ1| + |ξ2|),

which also implies (25) for p = 3. The general case follows by induction.
It follows from (25) that

cosh

⎛⎝|ξ1| +
p∑

j=2
sj |ξj |

⎞⎠ + cosh |ξ| � 2p
p∏

j=1
cosh(|ξj |). (26)

Observe also that ∣∣∣∣∣∣∣
⎛⎝|ξ1| +

p∑
j=2

sj |ξj |

⎞⎠2

− |ξ|2

∣∣∣∣∣∣∣ � 2
p∑

j �=k=1

|ξj ||ξk|. (27)

Applying (25), (23), (26) and (27) we obtain

∣∣∣∣∣∣
p∏

j=1
cosh |ξj | − cosh |ξ|

∣∣∣∣∣∣ =

∣∣∣∣∣∣21−p
∑

s2,s3··· ,sp
cosh

⎛⎝|ξ1| +
p∑

j=2
sj |ξj |

⎞⎠ − cosh |ξ|

∣∣∣∣∣∣
=

∣∣∣∣∣∣21−p
∑

s2,s3··· ,sp

⎡⎣cosh

⎛⎝|ξ1| +
p∑

j=2
sj |ξj |

⎞⎠ − cosh |ξ|

⎤⎦∣∣∣∣∣∣
� 21−p

∑
s2,s3··· ,sp

1
2

∣∣∣∣∣∣∣
⎛⎝|ξ1| +

p∑
j=2

sj |ξj |

⎞⎠2

− |ξ|2

∣∣∣∣∣∣∣
⎛⎝cosh

⎛⎝|ξ1| +
p∑

j=2
sj |ξj |

⎞⎠ + cosh |ξ|

⎞⎠



T.T. Dufera et al. / J. Math. Anal. Appl. 509 (2022) 126001 11
� 21−p
∑

s2,s3··· ,sp

⎛⎝ p∑
j �=k=1

|ξj ||ξk|

⎞⎠ · 2p
p∏

j=1
cosh(|ξj |)

= 2p
⎛⎝ p∑

j �=k=1

|ξj ||ξk|

⎞⎠ p∏
j=1

cosh(|ξj |).

Dividing by 
∏p

j=1 cosh(|ξj |) yields the desired estimate (24). �
Now we prove Lemma 1. Recall that

Np(vσ) = vpσ − cosh(σ|D|) [sech(σ|D|)vσ]p .

By Cauchy-Schwarz inequality

∣∣∣∫
Rn

∂tvσ ·NP (vσ) dx
∣∣∣ � ‖∂tvσ‖L2

x
‖NP (vσ)‖L2

x
,

and so we are reduced to prove

‖NP (vσ)‖L2
x

� σ2 ‖vσ‖pH2 . (28)

Taking the Fourier transform we have

Fx[Np(vσ)](ξ) =
∫

ξ=
∑p

j=1 ξj

⎡⎣1 − cosh(σ|ξ|)
p∏

j=1
sech(σ|ξj |)

⎤⎦ p∏
j=1

v̂σ(ξj) dξ1dξ2 · · · dξp (29)

By symmetry, we may assume |ξ1| � |ξ2| � · · · � |ξp|. By Lemma 3,∣∣∣∣∣∣1 − cosh(σ|ξ|)
p∏

j=1
sech(σ|ξj |)

∣∣∣∣∣∣ � 2p
p∑

j �=k=1

|σξj ||σξk|

� c(p)σ2|ξ1||ξ2|,

(30)

where c(p) = p22p. Now set

wσ := F−1
x (|v̂σ|) .

Then applying (30) to (29) we obtain

|Fx[Np(vσ)](ξ)| � c(p)σ2
∫

ξ=
∑p

j=1 ξj

|ξ1||ξ2||v̂σ(ξ1)||v̂σ(ξ2)|
p∏

j=3
|v̂σ(ξj)| dξ1dξ2 · · · dξp

= c(p)σ2
∫

ξ=
∑p

j=1 ξj

|ξ1||ξ2|ŵσ(ξ1)ŵσ(ξ2)
p∏

j=3
|ŵσ(ξj)| dξ1dξ2 · · · dξp

= c(p)σ2Fx

(
(|D|wσ)2 · wp−2

σ

)
(ξ).
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Therefore, using Plancherel, Hölder and Sobolev embedding we obtain

‖Np(vσ)‖L2
x

� c(p)σ2‖(|D|wσ)2 · wp−2
σ ‖L2

x

� c(p)σ2‖|D|wσ‖2
L4

x
‖wσ‖p−2

L∞
x

� Cσ2 ‖wσ‖2
H2 ‖wσ‖p−2

H2

= Cσ2 ‖vσ‖pH2

as desired in (28).
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