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Independent Component Analysis is a matrix factorization method for data dimension
reduction. ICA has been widely applied for the analysis of transcriptomic data for blind
separation of biological, environmental, and technical factors affecting gene expression.
The study aimed to analyze the publicly available esophageal cancer data using the ICA for
identification and comprehensive analysis of reproducible signaling pathways and
molecular signatures involved in this cancer type. In this study, four independent
esophageal cancer transcriptomic datasets from GEO databases were used. A
bioinformatics tool « BiODICA—Independent Component Analysis of Big Omics Data»
was applied to compute independent components (ICs). Gene Set Enrichment Analysis
(GSEA) and ToppGene uncovered the most significantly enriched pathways. Construction
and visualization of gene networks and graphs were performed using the Cytoscape, and
HPRD database. The correlation graph between decompositions into 30 ICs was built with
absolute correlation values exceeding 0.3. Clusters of components—pseudocliques were
observed in the structure of the correlation graph. The top 1,000 most contributing genes
of each ICs in the pseudocliques were mapped to the PPI network to construct associated
signaling pathways. Some cliques were composed of densely interconnected nodes and
included components common to most cancer types (such as cell cycle and extracellular
matrix signals), while others were specific to EC. The results of this investigation may reveal
potential biomarkers of esophageal carcinogenesis, functional subsystems dysregulated
in the tumor cells, and be helpful in predicting the early development of a tumor.
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INTRODUCTION

Investigation of cancer profiles is one of the largest sources of genomic and transcriptomic research
data. Data has been continuously generated and collected with the advancement of data computing
methods and information technology. For instance, a publicly available repository, The Cancer
Genome Atlas (TCGA), describes 33 different tumor types, including 10 rare cancers based on both
cancerous and normal tissue sets collected from 11,000 patients. The largest fully public gene
expression resource is the Gene Expression Omnibus (GEO) database, containing data from 20,000
studies with 500,000 samples, representing over 33 billion individual measurements by November of
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2010 (Barrett et al., 2011). While databases represent significant
resources for a vast amount of cancer genomics studies, complex
issues and challenges remain in obtaining the maximum of useful
for understanding cancer biology and use in clinics information
from these data (Sudhagar et al., 2018). Available statistical
methods work well with data in cases where a large number of
observations are available for a small number of variables.
However, methods of analysis that are existing today,
especially in genomic studies, generate an excessively large
number of different variables. In such cases, “unsupervised
learning” methods are used utilizing the technique of reducing
the dimensionality of data to reduce the multidimensionality of
transcriptome data and highlight significant patterns of
expression.

Currently, several methodologies for unsupervised data
decomposition are widely applied to biological and medical
data including Independent Component Analysis (ICA),
Principal Component Analysis (PCA), Non-negative Matrix
Factorization (NMF). One of the promising and applied
mathematical methods for analyzing large data is ICA. There
are several studies were conducted in order to assess the
performance differences of ICA and PCA (Lee and Batzoglou,
2003; Carpentier et al., 2004; Riva et al., 2005; Mutihac and
Mutihac, 2007; Tan et al., 2014; Kairov et al., 2017; Sompairac
et al., 2019). A significant proportion of these studies reported the
performance stability and reproducibility of the results obtained
by multiple runs of ICA. For example, there was a validation of
the outperformance of ICA over PCA using regulatory element
and phenotype-pathway databases. Moreover, the application of
ICA by statisticians for electroencephalograms (EEG) analysis
revealed that a more useful data representation was obtained by
ICA-based methodology compared to PCA (Bugli and Lambert,
2007). During the application of ICA and PCA algorithms to the
same data, it was proved that PCA cannot be used for the
extraction of signals with low magnitude and capture only
major signals (Sun et al., 2015).

Esophageal cancer (EC) is the eighth most commonmalignant
tumor worldwide accounting for one in every 18 cancer deaths in
2020 (Sung et al., 2021). The two most common histological
subtypes are differentiated among EC patients: esophageal
squamous cell carcinoma (ESCC) which accounts for about
90% of all incidents and adenocarcinoma (AC). Low survival
and highmortality rates for EC are due to the asymptomatic onset
of the disease. The 5-years relative survival rate for patients with
esophageal squamous cell carcinoma was less than 20% (Abnet
et al., 2018). The main symptoms of EC are dysphagia, chest pain,
and weight loss occur more often in stage II of the disease.
Investigation of the molecular mechanisms of carcinogenesis will
allow us to better understand the causes and the triggering
mechanisms for the development of the tumor. On the other
hand, the identification of genes involved in carcinogenesis will
make it possible to identify promising genetic markers for early
diagnosis and course prediction of diseases. During the
development of EC, cells acquire characteristics of self-
sufficiency for growth, evading apoptosis, uncontrolled
proliferation, promotion of angiogenesis, invasion of
underlined epithelial tissue, and initiation of metastasis. These

transformations are characterized by pathologic and homeostatic
changes in histological structure, immunological response, as well
as the formation of the tumor microenvironment which are
reflected in the genomic, transcriptomic, proteomic, and
metabolomic levels. Therefore, potential biomarkers from these
sources can be obtained for the early diagnosis of cancer.

The ICA-based methodology was suggested to apply for the
prediction of tumor subtypes and describe the tumor-related
changes using data of gene expression profiles from different data
types (single-cell data, RNA-seq data, transcriptomes, and
methylomes) (Zhang et al., 2005; Frigyesi et al., 2006; Huang
and Zheng, 2006; Zinovyev et al., 2013; Pham et al., 2014;
Nascimento et al., 2017; Nazarov et al., 2019). Moreover, ICA
was extended to be applied to proteogenomic data of human
breast cancer (Teschendorff et al., 2007; Czerwinska et al., 2018;
Zhou and Altman, 2018). The results of a recently published
article showed the potential of ICA in the identification of
pathway-level mechanisms of cancer development (Liu W.
et al., 2019). The biological meaning of computed components
and their contribution to tumor development were assessed
during the analysis of 198 bladder cancer transcriptomes with
ICA (Biton et al., 2014). Another study conducted by Cantini
et al. showed the application of ICA to colorectal cancer (CRC)
which resulted in the cancer-specific and cancer-shared
components of CRC subtypes (Cantini et al., 2019).

The aim of this research is to search for potential genetic
biomarkers and pathways for early diagnosis of EC using ICA for
transcriptomic datasets using the ICA-based deconvolution
method. From a fundamental point of view, the results of this
proposed investigation may reveal potential biomarkers of tumor
processes, functional subsystems dysregulated in the tumor cells,
and be helpful in predicting the early development of a tumor
process.

MATERIALS AND METHODS

Experimental Data
The four gene expression datasets GSE26886, GSE69925,
GSE32701, and GSE21293 were downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/) that were processed on the Affymetrix HG-U133
Plus 2.0 platform (GPL570). Further information on the sample
size and the microarray platforms used for the creation of these
datasets is presented in Table 1.

Normalization
GC Robust Multi-array Average (GCRMA) algorithm
including background correction, normalization, and
summarization was performed to convert the CEL raw file to
expression data which is based on R 3.5.1 script
(Supplementary File S1). GCRMA normalization uses GC
content of probes in normalization with RMA and gives one
value for each probe set instead of keeping probe-level
information. To run these analyses free affy (Gautier et al.,
2004) and gcrma packages in R for the Affymetrix
oligonucleotide array probe level data analysis, developed as
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part of the Bioconductor project, were downloaded (https://
bioconductor.org/packages/affy/andhttps://bioconductor.org/
packages/gcrma/). For each set of transcriptomes filtering and
centering procedures were carried out using the Matlab R2019a
(TheMathWorks, Inc.) development environment. Combining
probsets corresponding to one gene was carried out according
to the median value.

Independent Component Analysis
In order to run the ICA, the BIODICA tool (ICA of BIg Omics
Data), available athttps://github.com/LabBandSB/BIODICA was
used. It provides both a command-line and a user-friendly
Graphical User Interface for high-performance ICA analysis,
including bootstrapping and further stability analysis. It allows
the computation of the Maximally Stable Transcriptome
Dimensionality (MSTD) index, which can be used to
determine the optimal number of independent components
(Kairov et al., 2017). ICA was applied to each transcriptomic
dataset separately. For each analyzed transcriptomic dataset, 30
independent components (ICs) were computed.

Comparison of Independent Components
Across Datasets Using Correlation-Based
Graphs
The similarity of two ICs obtained in different datasets was
assessed by calculating the absolute value of Pearson’s
correlation coefficient for the projection values of their
common genes using corr () function in R. The highly
correlated ICs with correlation coefficient r > 0.3 were
selected and the results of the correlation computation
across various datasets were summarized in a correlation
graph. Construction and visualization of gene networks and
graphs were performed using the Cytoscape v3.7.1 (http://
www.cytoscape.org/) (Killcoyne et al., 2009), BiNoM plug-in
(Zinovyev et al., 2008).

PPI Network Construction
Cancer-associated protein-protein interactions networks were
built by mapping highly expressed top 1,000 genes from each
independent component into The Human Protein Reference
Database (HPRD) (Prasad et al., 2009).

Gene Set Enrichment Analysis (GSEA)
In order to identify the gene sets which are enriched in the list of
selected (contributing) genes, computational software GSEA
(http://software.broadinstitute.org/gsea/) implemented in
BIODICA was used (Reimand et al., 2019). FDR threshold was
set at 0.01 and p-value threshold at 0.01.

ToppGene Analysis
Functional annotation-based candidate gene prioritization
method for gene list enrichment analysis and candidate gene
prioritization based on functional annotations and protein
interactions network was performed using the interface to
ToppGene web-service implemented in the BIODICA software
(Chen et al., 2009).

Methodological workflow of this study is presented in
Figure 1.

RESULTS

Experimental Data
GSE26886 contains patient samples from 19 healthy subjects, 20
specimens from patients with Barrett’s esophagus, 21 cases of
esophageal adenocarcinoma, and 9 cases of esophageal squamous
cell carcinoma.

GSE69925 contains gene expression profiles of 274 biopsy
specimens in esophageal squamous cell carcinomas.

GSE32701 contains gene expression profiles between 20
biopsies (BPY) and 20 surgical samples derived from the
cancerous portion of the esophagus of 20 esophageal cancer
patients. GSE21293 contains the mRNA profiles of 35 invasive
and non-invasive genetically engineered human esophageal cell
samples.

Correlation Graph Between Independent
Components
An analysis of the relationships between the calculated
independent components from different sets of cancer
transcriptomes was conducted by calculating Pearson’s
correlation coefficients. On the basis of the values of the
correlation coefficients (Supplementary File S2), undirected

TABLE 1 | Clinical characteristics of metabolic syndrome-related traits.

Dataset_ID Types of tissue and
samples

Total # of
samples

# Of target
samples
(ESCC)

References

GSE26886 20 specimens of Barrett’s esophagus patients, 21 specimens of adenocarcinoma
patients, 19 biopsies from patients with normal esophageal squamous epithelium, 9
specimens of squamous cell carcinoma

69 50 Wang et al. (2013) BMC
Cancer

GSE69925 274 biopsy specimens in esophageal squamous cell carcinomas 274 274 Aoyagi et al. (2011)
PLoS One

GSE32701 20 biopsy (BPY) and 20 surgical samples derived from the cancerous portion of the
esophagus of 20 esophageal cancer patients

40 40 Aoyagi et al. (2011)
PLoS One

GSE21293 35 genetically engineered human esophageal cells with different invasive abilities 35 35 Michaylira et al. (2010)
Cancer Res
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correlation graphs were obtained, reflecting the relationship
between the IC (Supplementary File S3). The correlation
graph is a connected structure in the form of pseudocliques,

the nodes of which are correlated independent components. Each
color corresponds to a specific cancer dataset: pink—GSE26886,
green—GSE69925, yellow—GSE32701, blue—GSE21293. In the

FIGURE 1 | Schematic representation of the methodology.
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correlation graph with correlation coefficients R > 0.3
pseudocliques were observed, which are characterized by
multiple relationships with independent components from
different sets. The thickness of the edges between the nodes of
the pseudoclique depends on the correlation coefficient (the
larger the coefficient, the greater the thickness of the edges).
The 12 pseudocliques were selected for constructing signal
pathways for gene interaction.

PPI Network Analysis
The analysis of constructed PPI networks using the IC3_2, IC3_3
and IC3_4 components (Figure 2). Identified pseudoclique
consisted of a hub of genes with the central PTPRC gene
network, CD2, CD19, CD14, CD48, CD53, CD8A,
CD79A, CD38.

The analysis of constructed PPI network using the IC7_3 and
IC14_4 showed the interaction of the following genes (Figure 3):

CDK1, CCNA2, CDKN3, FOXM1, MYC, KRT18, RPA2, KIF11,
TK1, SPAG5, PTTG1, CDC20, MAD2L1, MAD21BP, TRIP13,
UBO, BUB1B, CENPE, CDC6, RUVBL1, ACTL6A all of these
genes being known player of cell cycle machinery.

The analysis of constructed proteın-proteın network between
the IC1_2 and IC8_4 revealed the interaction of the several
proteins associated with Epithelial-mesenchymal transition
(EMT) including keratin genes (KRT13, KRT6B, KRT6A,
KRT19, KRT15) (Supplementary File S4).

The analysis of constructed proteın-proteın network between
the IC20_3, IC24_2 and IC6_4 revealed the interaction of the
several proteins associated with extracellular matrix genes
(Supplementary File S5): FN1, DCN, FBLN2, FBLN5, FBN1,
COL1A2, COL3A1, COL5A1, SPARC, MMP1, MMP7, APOC1,
APOE, SPP1, CTSK, SERPING1, SFRP2, VCAN, BGN, A2M,
LUM, CTSK, MFAP2, WISP1, DDR2, PDGFA, SPP1, IGDCC4,
TGFBI.

FIGURE 2 | PPI network between IC3_2, IC3_3, and IC3_4. PPI network between IC3_2, IC3_3, and IC3_4. Proteins are illustrated with circles and directed
interactions are illustrated with edges. Color of the edges represents the type of experiments used in HPRD database: blue—in vitro, red—in vivo, green—Y2H. This
representation was obtained using Cytoscape software according to the HPRD database.
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The hub genes identified from this PPI network of IC5_4 and
IC21_3 included STAT1 gene, C-C chemokine ligand family
genes (CCl3, CCL4, CCL5, CCL3 like-1 (CCL3L1), CCL3 like-
3 (CCL3L3)), C-Cmotif chemokine receptor family genes (CCR1,
CCR5), MHC-I genes for human leukocyte antigens (HLA-C, -E,
-F, -B), the β2 microglobulin (B2M) and genes of toll-like
receptors (TLR3, TLR5, TLR8) (Supplementary File S6).

Results of GSEA and ToppGene analysis are summarized in
Supplementary File S7.

DISCUSSION

Obtained results present the molecular pathways derived from
four esophageal transcriptomic datasets. We focused on the
deconvolution of gene expression profiles into independent
components and combined those results with GSEA and
ToppGene enrichment analysis.

Figure 2 reflects the gene interaction network of one of the
identified pseudocliques composed of IC3_2, IC3_3 and IC3_4.
In the central part of the network, there is one of the “hubs” of the
PTPRC gene network—protein tyrosine phosphatase receptor
type C, a factor for stimulating cell growth, differentiation, and
oncogenic transformation. PTPRC, also known as CD45 antigen,
has an important role in T and B cell activation and is associated
with a poor prognosis of papillary thyroid carcinoma (Wu et al.,
2019). Also, other clusters of differentiation or CD antigens (CD2,
CD19, CD14, CD48, CD53, CD8A, CD79A, CD38) play

important roles in the T and B cell receptor signaling
pathways. In previous studies, the important roles of identified
candidate biomarkers associated with immune processes of EC
development were reported. For example, CD2 is responsible for
the adhesion between T-cells and other cell types and T-cell
activation, while CD8A identifies cytotoxic/suppressor T-cells
that interact with MHC class I bearing targets. Furthermore,
CD79A, also known as the B-cell antigen receptor complex, plays
a functional role in the tumor-promoting effects of myeloid cells
(Luger et al., 2013). It was identified that CD19 serves as B cell
markers. All stages of B cell differentiation are accompanied by
the expression of CD19 with the exception of final differentiation
to plasma cells. In addition, the study of Li et al. showed that high
expression of CD38 can indicate poor survival of ESCC patients
(Li et al., 2017). Based on this gene network analysis, as well as the
results of ToppGene (GO: Biological Process: humoral immune
response, immune response-activating cell surface receptor
signaling pathway) and GSEA (HALLMARK_COMPLEMENT,
HALLMARK_INTERFERON_GAMMA_RESPONSE,
H A L LMARK _ E P I TH E L I A L _ME S ENCHYMAL _
T RANSITION), this pseudoclique can be interpreted as
representing signals of immune-related response.

In Figure 3, PPI networks composed of IC7_3 and IC14_4
components were illustrated. The results of GSEA of this
pseudoclique showed the enrichment of the gene sets
involved in the cell cycle proliferation
(HALLMARK_E2F_TARGETS, HALLMARK_G2M_CHECKPOINT,
HALLMARK_MITOTIC_SPINDLE). Cell cycle progression has a

FIGURE 3 | PPI network between the IC7_3 and IC14_4. PPI network between the IC7_3 and IC14_4. Proteins are illustrated with circles and directed interactions
are illustrated with edges. Color of the edges represents the type of experiments used in HPRD database: blue—in vitro, red—in vivo, green—Y2H. This representation
was obtained using Cytoscape software according to the HPRD database.
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critical role in cell proliferation, the deregulation of which has
been identified as one of the cancer hallmarks. This checkpoint
is responsible for the transition of the cell from the G2 phase to
the M phase after DNA synthesis. As expected, the regulation of
G2/M checkpoint by CDK1 gene (Cyclin-Dependent Kinase 1)
was identified as an essential factor in multiple tumor
progressions (Sedlacek et al., 1996; Damiens and Meijer,
2000; Knudsen and Witkiewicz, 2017; Chung et al., 2019). It
also serves as the only CDK that can trigger the progression of
mitosis (Santamaria et al., 2007). In addition, the study of
Cyclin-dependent kinase inhibitor-3 (CDKN3) revealed that
overexpression of CDKN3 promoted cell proliferation,
migration, and invasion in esophageal squamous cell
carcinoma (Liu J. et al., 2019). CDKN3 itself is a
phosphatase, which acts as a tumor suppressor and mediates
the cell cycle by dephosphorylation of cyclin-dependent kinases
which mainly include CDK1. It was found that overexpression
of CDKN3 in ESCC tissues could accelerate the proliferation of
ESCC cells by accelerating G1/S transition, which suggested the
oncogenic role of CDKN3 in human ESCC. Cell division cycle
20 homolog (CDC20) is also studied as one of the significant
regulators of the cell cycle in multiple cancer types including
breast cancer (Karra et al., 2014), prostate cancer (Zhang et al.,
2019), and colorectal cancer (Wu et al., 2013). Also, studies have
shown that overexpression of BUB1B (budding uninhibited by
benzimidazole-related 1) was associated with progression of
bladder cancer (Yamamoto et al., 2007), hepatocellular
carcinoma (Liu et al., 2009), and prostate cancer (Fu et al.,
2016). BUB1B is necessary for normal progression of mitosis, as
its activity delays the initiation of anaphase-promoting
complex/cyclosome (APC/C) by inhibiting the binding of
CDC20 to APC/C. The other function of BUB1B is to
regulate the kinetochore activities that depend on the
kinetochore motor CENPE, which stands for Centromere-
associated protein E. CENPE has an essential role in
chromosome compression, microtubule-kinetochore
conjugation, and spindle assembly checkpoint activation
(Abrieu et al., 2000). While the Cell division cycle 6
homologue (CDC6) has been identified as an important
regulator of DNA synthesis, and activator of checkpoints
mechanisms (Deng et al., 2016). While the Kinesin family
member 11 (KIF11) is mainly associated with the formation
of bipolar mitotic spindles during cell division. There is
evidence that KIF11 was overexpressed in the early stages of
the breast (Jiang et al., 2017), colorectal, and ESCC (Imai et al.,
2017). As the analysis showed the enrichment of the genes
associated with the G2/M checkpoint and with the targets of E2F
transcription factors, this clique can be associated with cell cycle
proliferation.

The analysis of constructed proteın-proteın network between
the IC1_2 and IC8_4 in Supplementary File S4 revealed the
interaction of the several proteins associated with Epithelial-
mesenchymal transition (EMT) including keratin genes
(KRT13, KRT6B, KRT6A, KRT19, KRT15). Moreover, the
enrichment of the following hallmark gene sets was identified:
HA L LMA R K _ E P I T H E L I A L _M E S E N CH YMA L _
T RANSITION, HALLMARK_ESTROGEN_RESPONSE_LATE.

EMT is a biological event in which epithelial cells lose their
polarity and cell-cell adhesion and concomitantly acquire
mesenchymal traits (Xiao et al., 2017). It has been reported that
by combining two mesenchymal markers, vimentin and
E-cadherin, EMT statues of many cancer types can be
identified. For instance, in the study of Yamada et al. EMT
stages of human pancreatic cancer was revealed and its
correlation with lymph node metastasis was demonstrated
(Yamada et al., 2013). According to the findings of Liu et al. it
has been identified that tumor invasion, metastasis, and future
prognosis of EC were also significantly correlated with EMT status
(Liu et al., 2014). Thus, our study revealed other potential tumor-
associated biomarker genes, namely keratin genes (KRTs), involved
in EMT. The genes of the keratin family are responsible for the
expression of various intermediate filament proteins found in
epithelial tissues of various organs and they are differentially
expressed in numerous human tumor malignancies as they are
involved in tumor related processes such as invasion, metastasis,
proliferation, and apoptosis of tumor cells (Zheng et al., 2021).
Several studies showed the association of KRT13 with multiple
cancer types including prostate, head and neck cancer, urothelial
cancer (Li et al., 2016). Also, the KRT6A gene plays a critical role in
epidermalization of squamous epithelium and in the EMT of
nasopharyngeal carcinoma. Overexpression of KRT6A was
associated with a poor prognosis of lung adenocarcinoma, as it
promotes proliferation and metastasis of lung cancer via EMT and
cancer stem cells transformation (Yang et al., 2020). Moreover, the
KRT6B and KRT15 were reported as the markers of basal-like
breast cancers (Charafe-Jauffret et al., 2006). In addition, KRT19,
which is responsible for maintaining the structural integrity of
epithelial cells, was reported as tumor-associated proteins as its
down-expression was identified in ESCC in a proteomic study.
While the KRT13 was overexpressed in ESCC tissue compared to
adjacent normal tissues (Zhang et al., 2011). The results of He et al.
revealed that KRT13 was responsible for the cell cycle arrest and
inhibition of growth in response to the EC (He et al., 2015). By
analysis of this clique, it can be concluded that genes of these
components are involved in the induction of the EMT process of
cancer metastatic progression.

Correlation analysis of network between IC20_3, IC24_2 and
IC6_4 in Supplementary File S5 showed the interaction of following
genes: FN1, DCN, FBLN2, FBLN5, FBN1, COL1A2, COL3A1,
COL5A1, SPARC, MMP1, MMP7, APOC1, APOE, SPP1, CTSK,
SERPING1, SFRP2, VCAN, BGN, A2M, LUM, CTSK, MFAP2,
WISP1, DDR2, PDGFA, SPP1, IGDCC4, TGFBI. The results of
GSEA of this clique showed the enrichment of the gene sets involved
in extracellular matrix (ECM)-receptor interaction
(HALLMARK_INTERFERON_GAMMA_RESPONSE,
HALLMARK _ E P I TH E L I A L _ME S ENCHYMAL _ T
RANSITION, HALLMARK_TNFA_SIGNALING_VIA_NFKB).
COL1A2, COL3A1, COL5A1 encode the collagen family, whose
members are the main components of the tumor-stromal
environment and play an important role in behavior of cancer
cells. Collagen III (COL3A1 gene) forms reticular fibers that keep
the ECM together. The dysregulation of COL1A2 (Collagen, type I,
alpha 2) and its receptor DDR2 (Discoidin domain receptor 2) can
cause various collagen-associated effects in tumors. The study
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investigating the association between expression of COL1A2 and
EC revealed the abnormal expression of this collagen gene in EC
tissues. Moreover, COL1A2 served as a direct target gene of miR-
133a-3p and showed inhibition of its function by promotion of
apoptosis of ECSS (Li et al., 2020a). FN1 (Fibronectin 1) is a
heterodimeric form of glycoprotein on the surface cells and
participates in the adhesion of cells to the ECM, as well as in
the processes of cell migration, wound healing, blood clotting and
immune response. Authors of a recent study found that FN1 was
associated with tumorigenesis of esophageal carcinoma as its
overexpression correlated with a higher pathological stage of EC
(Li et al., 2020b). TGFBI (transforming growth factor-beta-induced
protein) is secretory extracellular matrix protein induced by TGF-
β. Cell adhesion of ECM proteins including collagen, fibronectin,
and laminin is mediated by TGFBI and its function was widely
investigated in various tumor progression. Ozawa et al. have
reported that overexpression of TGFBI was associated with poor
prognosis in ESCC samples (Ozawa et al., 2016). Matrix
metalloproteinases (MMPs) have been reported to be a crucial
factor during tumor invasion and metastasis through degradation
of ECM compartments. For instance, MMP-7 degrades various
components of basement membrane such as laminin and specific
collagens as well as it activates other MMP family members
including MMP1 (Yamashita et al., 2000). Authors of another
study also have reported that MMP7 expression via transcription
factor activin A correlates with the aggressiveness of EC (Yoshinaga
et al., 2008). Finally, these analyses reported the overexpression of
MMP7 as a significant prognostic marker of EC. VCAN, gene that
encodes stromal protein of cancer-associated fibroblasts—versican,
is an important component of ECM due to its function in
inflammation and immunity during progression of various
cancers including breast, gastric cancers and leukemia (Wight
et al., 2020). The recent findings indicated that stromal
overexpression of versican can serve as prognostic biomarker of
ESCC (Yamauchi et al., 2021). According to the analysis of this PPI
network, it was reported that the most commonly enriched
function of these genes was ECM-receptor interaction. As the
proteins of ECM such as collagens, fibronectin, matrix
metalloproteinases play crucial role in tumor invasion and
metastasis, comprehensive understanding of ECM-cell
interaction and its underlying mechanism in tumor initiation
and progression would contribute to the development of
potential biomarkers and therapeutic targets for EC treatment.

According to the GSEA results of identified PPI network
between the IC5_4 and IC21_3 in Supplementary File S6,
several pathways were related to immune processes
(HALLMARK_INTERFERON_ALPHA_RESPONSE ,
HALLM A R K _ I N F L A MM A T O R Y _ R E S P O N S E ,
HALLMARK_COMPLEMENT), developmental process
(HA L LMARK _ E P I TH E L I A L _ME S ENCHYMAL _
T RANSITION) as well as to signaling process
(HALLMARK_KRAS_SIGNALING_UP).

The hub genes identified from this PPI network included STAT1
gene, C-C chemokine ligand family genes (CCl3, CCL4, CCL5,
CCL3 like-1 (CCL3L1), CCL3 like-3 (CCL3L3)) and C-C motif
chemokine receptor family genes (CCR1, CCR5). STAT1 (signal
transducer and activator of transcription) gene is reported as a tumor

suppressor in ESCC (Liu et al., 2018). CCL3, also known as
macrophage inflammatory protein-1α (MIP-1α), is a ligand for
CC chemokine receptor 1 (CCR1) and CC chemokine receptor 5
(CCR5). It was identified that CCL3 and CCL5 have been associated
with the progression of various malignancies (Aldinucci and
Colombatti, 2014). For instance, CCL3–CCR5 axis lead to the
process of osteolysis in multiple myeloma, lung metastasis in
murine renal cell carcinoma, angiogenesis in osteosarcoma,
whereas the CCL3–CCR1 axis is also involved in the progression
of hepatocellular carcinoma. Moreover, CCL3–CCR5 axis appear to
be involved in the progression of ESCC by activating Akt and ERK
signaling pathways and by promoting the migration and invasion of
cancer cells and angiogenesis (Kodama et al., 2020). In addition, both
of these axes are involved in leukemogenesis of chronic myeloid
leukemia and in the progression of oral squamous cell carcinoma.
Another cluster of genes consists of MHC-I genes for human
leukocyte antigens (HLA-C, -E, -F, -B) and the β2 microglobulin
(B2M). It was found that HLA-F was associated with several HLA
complexes including HLA-B, HLA-C, and HLA-E. Furthermore,
HLA-B and HLA-C mainly present antigens to CD8T cells and
participate in the regulation of several immunologic functions.
Whereas, HLA-E and HLA-F found to be involved in the
regulation of NK cell function through its receptor (Dulberger
et al., 2017). In esophageal squamous cell carcinoma, the
expression of HLA-F was significantly correlated with the poor
survival in patients (Zhang et al., 2013). One of the networks includes
genes encoding Toll-like receptors (TLR3, TLR5, TLR8) andmyeloid
differentiation primary response-88 (MyD88) adaptor protein which
has been identified to mediate inflammation (Zheng et al., 2020). A
variety of TLRs such as TLR3 and TLR5 have been shown to be
overexpressed in esophageal squamous cell carcinoma and
esophageal adenocarcinoma (Kauppila and Selander, 2014). The
major interactions of this network show the association with
immune related processes such as antigen processing and
presentation, immune response and inflammatory response.

In conclusion, our study aimed to propose an investigative
approach for meta-analysis of esophageal cancer
transcriptomes with implementation of matrix factorization
method. Our implemented approach of applying ICA and
deconvolution of signals from gene expression profiles
revealed several molecular pathways enriched in EC.
Comprehensive analysis including GSEA, toppGene and PPI
network analysis provided the significant correlation between
immune-related genes, EMT-associated genes, ECM-receptor
interaction genes, and cell cycle-related biomarkers with the
development of EC. These findings may reveal esophageal
cancer-related genomic signatures that can be used as
predictive biomarkers and potential targets for early
diagnosis and antitumor therapies. However, since our
findings were based only on the meta-analysis of
independent esophageal cancer transcriptomes, further
experimental studies on these identified pathways and genes
are still needed. Also, integration of different multilevel «
multi-omics » datasets with the systematic application of
ICA may improve the methodology and reveal additional
non-transcriptomics biomarkers associated with esophageal
cancer.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 6836328

Seisenova et al. Meta-Analysis of EC Transcriptomes using ICA

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

AS and UK wrote the manuscript. AS, UK, AD, AS, AM, and AZ
contributed to data analysis and implementation of software/
code. UK and AZ conceptualized and supervised the research,
contributed to critical revision of the manuscript. UK involved in
funding acquisition. All authors contributed to the article and
approved the submitted version.

FUNDING

The present study was supported by the research grants of the
Ministry of Education and Science of the Republic of

Kazakhstan (AP09058660), CRP NU grant 021220CRP222
“Identification of a long non-coding RNA (lncRNA) and
microRNA in ESCC”, by the Ministry of Science and Higher
Education of the Russian Federation (Project No. 075-15-2021-
634) and by the French government under management of
Agence Nationale de la Recherche as part of the
“Investissements d’Avenir” program, reference ANR-19-
P3IA-0001 (PRAIRIE 3IA Institute).

ACKNOWLEDGMENTS

This work is dedicated to the blessed memory of Dr. Petr
Dmitriev.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.683632/
full#supplementary-material

REFERENCES

Abnet, C. C., Arnold, M., and Wei, W. Q. (2018). Epidemiology of Esophageal
Squamous Cell Carcinoma. Gastroenterology 154, 360–373. doi:10.1053/
j.gastro.2017.08.023

Abrieu, A., Kahana, J. A., Wood, K. W., and Cleveland, D. W. (2000). CENP-E as
an Essential Component of the Mitotic Checkpoint In Vitro. Cell 102, 817–826.
doi:10.1016/s0092-8674(00)00070-2

Aldinucci, D., and Colombatti, A. (2014). The Inflammatory Chemokine CCL5
and Cancer Progression. Mediators Inflamm. 2014, 1–12. doi:10.1155/2014/
292376

Aoyagi, K., Minashi, K., Igaki, H., Tachimori, Y., Nishimura, T., Hokamura, N.,
et al. (2011). Artificially Induced Epithelial-Mesenchymal Transition in
Surgical Subjects: its Implications in Clinical and Basic Cancer Research.
PloS One 6 (4 ), e18196. doi:10.1007/978-1-60761-232-2_6

Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., et al.
(2011). NCBI GEO: Archive for Functional Genomics Data Sets--10 Years on.
Nucleic Acids Res. 39, D1005–D1010. doi:10.1093/nar/gkq1184

Biton, A., Bernard-Pierrot, I., Lou, Y., Krucker, C., Chapeaublanc, E., Rubio-Pérez,
C., et al. (2014). Independent Component Analysis Uncovers the Landscape of
the Bladder Tumor Transcriptome and Reveals Insights into Luminal and Basal
Subtypes. Cell Rep. 9, 1235–1245. doi:10.1016/j.celrep.2014.10.035

Bugli, C., and Lambert, P. (2007). Comparison between Principal Component
Analysis and Independent Component Analysis in Electroencephalograms
Modelling. Biom. J. 49, 312–327. doi:10.1002/bimj.200510285

Cantini, L., Kairov, U., de Reyniès, A., Barillot, E., Radvanyi, F., and Zinovyev, A.
(2019). Assessing Reproducibility of Matrix Factorization Methods in
Independent Transcriptomes. Bioinformatics 35, 4307–4313. doi:10.1093/
bioinformatics/btz225

Carpentier, A.-S., Riva, A., Tisseur, P., Didier, G., and Hénaut, A. (2004). The
Operons, a Criterion to Compare the Reliability of Transcriptome Analysis
Tools: ICA IsMore Reliable Than ANOVA, PLS and PCA. Comput. Biol. Chem.
28, 3–10. doi:10.1016/j.compbiolchem.2003.12.001

Charafe-Jauffret, E., Ginestier, C., Monville, F., Finetti, P., Adélaïde, J., Cervera, N.,
et al. (2006). Gene Expression Profiling of Breast Cell Lines Identifies Potential
New Basal Markers. Oncogene. 25, 2273–2284. doi:10.1038/sj.onc.1209254

Chen, J., Bardes, E. E., Aronow, B. J., and Jegga, A. G. (2009). ToppGene Suite for
Gene List Enrichment Analysis and Candidate Gene Prioritization. Nucleic
Acids Res. 37, W305–W311. doi:10.1093/nar/gkp427

Chung, S., Vail, P., Witkiewicz, A. K., and Knudsen, E. S. (2019). Coordinately
Targeting Cell-Cycle Checkpoint Functions in Integrated Models of Pancreatic
Cancer. Clin. Cancer Res. 25, 2290–2304. doi:10.1158/1078-0432.ccr-18-1620

Czerwinska, U., Cantini, L., Kairov, U., Barillot, E., and Zinovyev, A. (2018).
“Application of Independent Component Analysis to Tumor Transcriptomes
Reveals Specific and Reproducible Immune-Related Signals,” in International
Conference on Latent Variable Analysis and Signal Separation Guilford, United
Kingdom. doi:10.1007/978-3-319-93764-9_46

Damiens, E., and Meijer, L. (2000). Chemical Inhibitors of Cyclin-dependent
Kinases: Preclinical and Clinical Studies. Pathol. Biol. Apr 48, 340–351.
doi:10.3892/ijo_00000027 https://pubmed.ncbi.nlm.nih.gov/10858966/.

Deng, Y., Jiang, L., Wang, Y., Xi, Q., Zhong, J., Liu, J., et al. (2016). High Expression
of CDC6 Is Associated with Accelerated Cell Proliferation and Poor Prognosis
of Epithelial Ovarian Cancer. Pathol. Res. Pract. 212, 239–246. doi:10.1016/
j.prp.2015.09.014

Dulberger, C. L., McMurtrey, C. P., Hölzemer, A., Neu, K. E., Liu, V., Steinbach, A.
M., et al. (2017). Human Leukocyte Antigen F Presents Peptides and Regulates
Immunity through Interactions with NK Cell Receptors. Immunity 46 (6),
1018–1029. doi:10.1016/j.immuni.2017.06.002

Frigyesi, A., Veerla, S., Lindgren, D., and Höglund, M. (2006). Independent
Component Analysis Reveals New and Biologically Significant Structures in
Micro Array Data. BMC Bioinformatics 7, 290. doi:10.1186/1471-2105-7-290

Fu, X., Chen, G., Cai, Z. D., Wang, C., Liu, Z. Z., Lin, Z. Y., et al. (2016).
Overexpression of BUB1B Contributes to Progression of Prostate Cancer
and Predicts Poor Outcome in Patients with Prostate Cancer. Onco Targets
Ther. 9, 2211–2220. doi:10.2147/OTT.S101994

Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. (2004). affy--analysis of
Affymetrix GeneChip Data at the Probe Level. Bioinformatics 20, 20307–20315.
doi:10.1093/bioinformatics/btg405

He, H., Li, S., Hong, Y., Zou, H., Chen, H., Ding, F., et al. (2015). Krüppel-like
Factor 4 Promotes Esophageal Squamous Cell Carcinoma Differentiation by
Up-Regulating Keratin 13 Expression. J. Biol. Chem. 290 (21), 13567–13577.
doi:10.1074/jbc.m114.629717

Huang, D.-S., and Zheng, C.-H. (2006). Independent Component Analysis-Based
Penalized Discriminant Method for Tumor Classification Using Gene
Expression Data. Bioinformatics 22, 1855–1862. doi:10.1093/bioinformatics/
btl190

Imai, T., Oue, N., Sentani, K., Sakamoto, N., Uraoka, N., Egi, H., et al. (2017). KIF11
Is Required for Spheroid Formation by Oesophageal and Colorectal Cancer
Cells. Anticancer Res. 37, 47–56. doi:10.21873/anticanres.11287

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 6836329

Seisenova et al. Meta-Analysis of EC Transcriptomes using ICA

https://www.frontiersin.org/articles/10.3389/fgene.2021.683632/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.683632/full#supplementary-material
https://doi.org/10.1053/j.gastro.2017.08.023
https://doi.org/10.1053/j.gastro.2017.08.023
https://doi.org/10.1016/s0092-8674(00)00070-2
https://doi.org/10.1155/2014/292376
https://doi.org/10.1155/2014/292376
https://doi.org/10.1007/978-1-60761-232-2_6
https://doi.org/10.1093/nar/gkq1184
https://doi.org/10.1016/j.celrep.2014.10.035
https://doi.org/10.1002/bimj.200510285
https://doi.org/10.1093/bioinformatics/btz225
https://doi.org/10.1093/bioinformatics/btz225
https://doi.org/10.1016/j.compbiolchem.2003.12.001
https://doi.org/10.1038/sj.onc.1209254
https://doi.org/10.1093/nar/gkp427
https://doi.org/10.1158/1078-0432.ccr-18-1620
https://doi.org/10.1007/978-3-319-93764-9_46
https://doi.org/10.3892/ijo_00000027
https://pubmed.ncbi.nlm.nih.gov/10858966/
https://doi.org/10.1016/j.prp.2015.09.014
https://doi.org/10.1016/j.prp.2015.09.014
https://doi.org/10.1016/j.immuni.2017.06.002
https://doi.org/10.1186/1471-2105-7-290
https://doi.org/10.2147/OTT.S101994
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1074/jbc.m114.629717
https://doi.org/10.1093/bioinformatics/btl190
https://doi.org/10.1093/bioinformatics/btl190
https://doi.org/10.21873/anticanres.11287
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Jiang, M., Zhuang, H., Xia, R., Gan, L., Wu, Y., Ma, J., et al. (2017). KIF11 Is
Required for Proliferation and Self-Renewal of Docetaxel Resistant Triple
Negative Breast Cancer Cells. Oncotarget 8 (8), 92106–92118. doi:10.18632/
oncotarget.20785

Kairov, U., Cantini, L., Greco, A., Molkenov, A., Czerwinska, U., Barillot, E., et al.
(2017). Determining the Optimal Number of Independent Components for
Reproducible Transcriptomic Data Analysis. BMC Genomics 18, 712.
doi:10.1186/s12864-017-4112-9

Karra, H., Repo, H., Ahonen, I., Löyttyniemi, E., Pitkänen, R., Lintunen, M., et al.
(2014). Cdc20 and Securin Overexpression Predict Short-Term Breast Cancer
Survival. Br. J. Cancer 110, 2905–2913. doi:10.1038/bjc.2014.252

Kauppila, J. H., and Selander, K. S. (2014). Toll-like Receptors in Esophageal
Cancer. Front. Immunol. 5, 200. doi:10.3389/fimmu.2014.00200

Killcoyne, S., Carter, G. W., Smith, J., and Boyle, J. (2009). Cytoscape: a
Community-Based Framework for Network Modeling. Methods Mol. Biol.
563, 219–239. doi:10.1007/978-1-60761-175-2_12

Knudsen, E. S., and Witkiewicz, A. K. (2017). The Strange Case of CDK4/6
Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends
Cancer 3, 39–55. doi:10.1016/j.trecan.2016.11.006

Kodama, T., Koma, Y.-i., Arai, N., Kido, A., Urakawa, N., Nishio, M., et al.
(2020). CCL3-CCR5 axis Contributes to Progression of Esophageal
Squamous Cell Carcinoma by Promoting Cell Migration and Invasion via
Akt and ERK Pathways. Lab. Invest. 100, 1140–1157. doi:10.1038/s41374-
020-0441-4

Lee, S.-I., and Batzoglou, S. (2003). Application of Independent Component
Analysis to Microarrays. Genome Biol. 4, R76. doi:10.1186/gb-2003-4-11-r76

Li, G., Jiang, W., Kang, Y., Yu, X., Zhang, C., and Feng, Y. (2020a). High Expression
of Collagen 1A2 Promotes the Proliferation and Metastasis of Esophageal
Cancer Cells. Ann. Transl. Med. 8 (24), 1672. doi:10.21037/atm-20-7867

Li, M., Wang, K., Pang, Y., Zhang, H., Peng, H., Shi, Q., et al. (2020b). Secreted
Phosphoprotein 1 (SPP1) and Fibronectin 1 (FN1) Are Associated with Progression
and Prognosis of Esophageal Cancer as Identified by Integrated Expression Profiles
Analysis. Med. Sci. Monit. 26, e920355. doi:10.12659/MSM.920355

Li, Q., Yin, L., Jones, L. W., Chu, G. C.-Y., Wu, J. B.-Y., Huang, J.-M., et al. (2016).
Keratin 13 Expression Reprograms Bone and Brain Metastases of Human
Prostate Cancer Cells. Oncotarget 7, 84645–84657. doi:10.18632/
oncotarget.13175

Li, Y., Lu, Z., Che, Y., Wang, J., Sun, S., Huang, J., et al. (2017). Immune Signature
Profiling Identified Predictive and Prognostic Factors for Esophageal Squamous
Cell Carcinoma. Oncoimmunology 6 (11), e1356147. doi:10.1080/
2162402x.2017.1356147

Liu, A.-W., Cai, J., Zhao, X.-L., Xu, A.-M., Fu, H.-q., Nian, H., et al. (2009). The
Clinicopathological Significance of BUBR1 Overexpression in Hepatocellular
Carcinoma. J. Clin. Pathol. 62, 1003–1008. doi:10.1136/jcp.2009.066944

Liu, J., Chen, L., Deng, H., Xu, B., Li, M., Zheng, X., et al. (2014). Epithelial-to-
Mesenchymal Transition in Human Esophageal Cancer Associates with Tumor
Progression and Patient’s Survival. Int. J. Clin. Exp. Pathol. 7 (10), 6943–6949.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230146/

Liu, J., Min, L., Zhu, S., Guo, Q., Li, H., Zhang, Z., et al. (2019a). Cyclin-Dependent
Kinase Inhibitor 3 Promoted Cell Proliferation by Driving Cell Cycle from G1
to S Phase in Esophageal Squamous Cell Carcinoma. J. Cancer 10, 1915–1922.
doi:10.7150/jca.27053

Liu, W., Payne, S. H., Ma, S., and Fenyö, D. (2019b). Extracting Pathway-Level
Signatures from Proteogenomic Data in Breast Cancer Using Independent
Component Analysis. Mol. Cell Proteomics 18, S169–S182. doi:10.1074/
mcp.tir119.001442

Liu, Z., Zhang, Y., Chen, Y., Lin, Y., Lin, Z., and Wang, H. (2018). STAT1 Inhibits
STAT3 Activation in Esophageal Squamous Cell Carcinoma. Cmar 10 (10),
6517–6523. doi:10.2147/CMAR.S182105

Luger, D., Yang, Y. A., Raviv, A., Weinberg, D., Banerjee, S., Lee, M. J., et al. (2013).
Expression of the B-Cell Receptor Component CD79a on Immature Myeloid
Cells Contributes to Their Tumor Promoting Effects. PLoS One 8, e76115.
doi:10.1371/journal.pone.0076115

Michaylira, C. Z., Wong, G. S., Miller, C. G., Gutierrez, C. M., Nakagawa, H.,
Hammond, R., et al. (2010). Periostin, a Cell Adhesion Molecule, Facilitates
Invasion in the Tumor Microenvironment and Annotates a Novel Tumor-
Invasive Signature in Esophageal Cancer. Cancer Res. 70 (13), 5281–5292.
doi:10.1158/0008-5472.CAN-10-0704

Mutihac, R., and Mutihac, R. C. (2007). A Comparative Study of Independent
Component Analysis Algorithms for Electroencephalography. Rom. Rep. Phys.
59, 831–860. doi:10.1007/s10847-007-9310-7

Nascimento, M., Silva, F. F. e., Sáfadi, T., Nascimento, A. C. C., Ferreira, T. E. M.,
Barroso, L. M. A., et al. (2017). Independent Component Analysis (ICA) Based-
Clustering of Temporal RNA-Seq Data. PLoS One 12, e0181195. doi:10.1371/
journal.pone.0181195

Nazarov, P. V., Wienecke-Baldacchino, A. K., Zinovyev, A., Czerwińska, U.,
Muller, A., Nashan, D., et al. (2019). Deconvolution of Transcriptomes and
miRNomes by Independent Component Analysis Provides Insights into
Biological Processes and Clinical Outcomes of Melanoma Patients. BMC
Med. Genomics 12, 132. doi:10.1186/s12920-019-0578-4

Ozawa, D., Yokobori, T., Sohda, M., Sakai, M., Hara, K., Honjo, H., et al. (2016).
TGFBI Expression in Cancer Stromal Cells Is Associated with Poor Prognosis
and Hematogenous Recurrence in Esophageal Squamous Cell Carcinoma. Ann.
Surg. Oncol. 23 (1), 282–289. doi:10.1245/s10434-014-4259-4

Pham, H. P., Dérian, N., Chaara, W., Bellier, B., Klatzmann, D., and Six, A.
(2014). A Novel Strategy for Molecular Signature Discovery Based on
Independent Component Analysis. IJDMB 9, 277–304. doi:10.1504/
ijdmb.2014.060052

Prasad, T. S. K., Kandasamy, K., and Pandey, A. (2009). “Human Protein Reference
Database and Human Proteinpedia as Discovery Tools for Systems Biology,” in
Methods in Molecular BiologyTM (Methods and Protocols). Editor
T. KogaTotowa, NJ: Humana Press Vol. 577. doi:10.1007/978-1-60761-232-2_6

Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar,
A., et al. (2019). Pathway Enrichment Analysis and Visualization of Omics Data
Using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 14,
482–517. doi:10.1038/s41596-018-0103-9

Riva, A., Carpentier, A.-S., Torrésani, B., and Hénaut, A. (2005). Comments on
Selected Fundamental Aspects of Microarray Analysis. Comput. Biol. Chem. 29,
319–336. doi:10.1016/j.compbiolchem.2005.08.006

Santamaría, D., Barrière, C., Cerqueira, A., Hunt, S., Tardy, C., Newton, K., et al.
(2007). Cdk1 Is Sufficient to Drive the Mammalian Cell Cycle. Nature 448,
811–815. doi:10.1038/nature06046

Sedlacek, H., Czech, J., Naik, R., Kaur, G., Worland, P., Losiewicz, M., et al. (1996).
Flavopiridol (L86 8275; NSC 649890), a New Kinase Inhibitor for Tumor
Therapy. Int. J. Oncol. 9, 1143–1168. doi:10.3892/ijo.9.6.1143

Sompairac, N., Nazarov, P. V., Czerwinska, U., Cantini, L., Biton, A., Molkenov, A.,
et al. (2019). Independent Component Analysis for Unraveling the Complexity
of Cancer Omics Datasets. Int. J. Mol. Sci. 20, 20. doi:10.3390/ijms20184414

Sudhagar, A., Kumar, G., and El-Matbouli, M. (2018). Transcriptome Analysis
Based on RNA-Seq in Understanding Pathogenic Mechanisms of Diseases and
the Immune System of Fish: A Comprehensive Review. Int. J. Mol. Sci. 19, 19.
doi:10.3390/ijms19010245

Sun, L., Xu, J., and Yin, Y. (2015). Principal Component-Based Feature Selection
for Tumor Classification. Biomed. Mater. Eng. 26 (Suppl. 1), S2011–S2017.
doi:10.3233/BME-151505

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71,
209. doi:10.3322/caac.21660

Tan, C. S., Ting, W. S., Mohamad, M. S., Chan, W. H., Deris, S., and Shah, Z. A.
(2014). A Review of Feature Extraction Software for Microarray Gene
Expression Data. Biomed. Res. Int. 2014, 213656. doi:10.1155/2014/213656

Teschendorff, A. E., Journée, M., Absil, P. A., Sepulchre, R., and Caldas, C. (2007).
Elucidating the Altered Transcriptional Programs in Breast Cancer Using
Independent Component Analysis. Plos Comput. Biol. 3, e161. doi:10.1371/
journal.pcbi.0030161

Wang, Q., Ma, C., and Kemmner, W. (2013). Wdr66 is a Novel Marker for Risk
Stratification and Involved in Epithelial-Mesenchymal Transition of
Esophageal Squamous Cell Carcinoma. BMC Cancer 13 (1), 1–10.
doi:10.1007/978-1-60761-232-2

Wight, T. N., Kang, I., Evanko, S. P., Harten, I. A., Chang, M. Y., Pearce, O. M. T.,
et al. (2020). Versican-A Critical Extracellular Matrix Regulator of Immunity
and Inflammation. Front. Immunol. 11, 512. doi:10.3389/fimmu.2020.00512

Wu,W. J., Hu, K. S., Wang, D. S., Zeng, Z. L., Zhang, D. S., Chen, D. L., et al. (2013).
CDC20 Overexpression Predicts a Poor Prognosis for Patients with Colorectal
Cancer. J. Transl. Med. 11, 142. doi:10.1186/1479-5876-11-142

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 68363210

Seisenova et al. Meta-Analysis of EC Transcriptomes using ICA

https://doi.org/10.18632/oncotarget.20785
https://doi.org/10.18632/oncotarget.20785
https://doi.org/10.1186/s12864-017-4112-9
https://doi.org/10.1038/bjc.2014.252
https://doi.org/10.3389/fimmu.2014.00200
https://doi.org/10.1007/978-1-60761-175-2_12
https://doi.org/10.1016/j.trecan.2016.11.006
https://doi.org/10.1038/s41374-020-0441-4
https://doi.org/10.1038/s41374-020-0441-4
https://doi.org/10.1186/gb-2003-4-11-r76
https://doi.org/10.21037/atm-20-7867
https://doi.org/10.12659/MSM.920355
https://doi.org/10.18632/oncotarget.13175
https://doi.org/10.18632/oncotarget.13175
https://doi.org/10.1080/2162402x.2017.1356147
https://doi.org/10.1080/2162402x.2017.1356147
https://doi.org/10.1136/jcp.2009.066944
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230146/
https://doi.org/10.7150/jca.27053
https://doi.org/10.1074/mcp.tir119.001442
https://doi.org/10.1074/mcp.tir119.001442
https://doi.org/10.2147/CMAR.S182105
https://doi.org/10.1371/journal.pone.0076115
https://doi.org/10.1158/0008-5472.CAN-10-0704
https://doi.org/10.1007/s10847-007-9310-7
https://doi.org/10.1371/journal.pone.0181195
https://doi.org/10.1371/journal.pone.0181195
https://doi.org/10.1186/s12920-019-0578-4
https://doi.org/10.1245/s10434-014-4259-4
https://doi.org/10.1504/ijdmb.2014.060052
https://doi.org/10.1504/ijdmb.2014.060052
https://doi.org/10.1007/978-1-60761-232-2_6
https://doi.org/10.1038/s41596-018-0103-9
https://doi.org/10.1016/j.compbiolchem.2005.08.006
https://doi.org/10.1038/nature06046
https://doi.org/10.3892/ijo.9.6.1143
https://doi.org/10.3390/ijms20184414
https://doi.org/10.3390/ijms19010245
https://doi.org/10.3233/BME-151505
https://doi.org/10.3322/caac.21660
https://doi.org/10.1155/2014/213656
https://doi.org/10.1371/journal.pcbi.0030161
https://doi.org/10.1371/journal.pcbi.0030161
https://doi.org/10.1007/978-1-60761-232-2
https://doi.org/10.3389/fimmu.2020.00512
https://doi.org/10.1186/1479-5876-11-142
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wu, Y., Han, J., Vladimirovna, K. E., Zhang, S., Lv, W., Zhang, Y., et al. (2019).
Upregulation of Protein Tyrosine Phosphatase Receptor Type C Associates to
the Combination of Hashimoto’s Thyroiditis and Papillary Thyroid Carcinoma
and Is Predictive of A Poor Prognosis. Ott 12, 8479–8489. doi:10.2147/
ott.s226426

Xiao, J., Lu, X., Chen, X., Zou, Y., Liu, A., Li, W., et al. (2017). Eight Potential
Biomarkers for Distinguishing between Lung Adenocarcinoma and Squamous
Cell Carcinoma. Oncotarget 8 (8), 71759–71771. doi:10.18632/
oncotarget.17606

Yamada, S., Fuchs, B. C., Fujii, T., Shimoyama, Y., Sugimoto, H., Nomoto, S., et al.
(2013). Epithelial-to-mesenchymal Transition Predicts Prognosis of Pancreatic
Cancer. Surgery 154 (5), 946–954. doi:10.1016/j.surg.2013.05.004

Yamamoto, Y., Matsuyama, H., Chochi, Y., Okuda, M., Kawauchi, S., Inoue, R.,
et al. (2007). Overexpression of BUBR1 Is Associated with Chromosomal
Instability in Bladder Cancer. Cancer Genet. Cytogenet. 174, 42–47.
doi:10.1016/j.cancergencyto.2006.11.012

Yamashita, K., Mori, M., Shiraishi, T., Shibuta, K., and Sugimachi, K. (2000).
Clinical Significance of Matrix Metalloproteinase-7 Expression in Esophageal
Carcinoma. Clin. Cancer Res. 6 (3), 1169–1174. https://clincancerres.
aacrjournals.org/content/6/3/1169.long.

Yamauchi, N., Kanke, Y., Saito, K., Okayama, H., Yamada, S., Nakajima, S., et al.
(2021). Stromal Expression of Cancer Associated Fibroblast Related Molecules,
Versican and Lumican, is Strongly Associated with Worse Relapsefree and
Overall Survival Times in Patients with Esophageal Squamous Cell Carcinoma.
Oncol. Lett. 21 (6), 445. doi:10.3892/ol.2021.12706

Yang, B., Zhang, W., Zhang, M., Wang, X., Peng, S., and Zhang, R. (2020). KRT6A
Promotes EMT and Cancer Stem Cell Transformation in Lung
Adenocarcinoma. Technol. Cancer Res. Treat. 19, 1533033820921248.
doi:10.1177/1533033820921248

Yoshinaga, K., Mimori, K., Inoue, H., Kamohara, Y., Yamashita, K., Tanaka, F.,
et al. (2008). Activin A Enhances MMP-7 Activity via the Transcription Factor
AP-1 in an Esophageal Squamous Cell Carcinoma Cell Line. Int. J. Oncol. 33 (3),
453–459. doi:10.3892/ijo_00000027

Zhang, J., Wang, K., Zhang, J., Liu, S. S., Dai, L., and Zhang, J.-Y. (2011). Using
Proteomic Approach to Identify Tumor-Associated Proteins as Biomarkers in
Human Esophageal Squamous Cell Carcinoma. J. Proteome Res. 10 (6),
2863–2872. doi:10.1021/pr200141c

Zhang, Q., Huang, H., Liu, A., Li, J., Liu, C., Sun, B., et al. (2019). Cell Division
Cycle 20 (CDC20) Drives Prostate Cancer Progression via Stabilization of
β-catenin in Cancer Stem-like Cells. Ebiomedicine. 42, 397–407.
doi:10.1016/j.ebiom.2019.03.032

Zhang, X., Lin, A., Zhang, J.-G., Bao, W.-G., Xu, D.-P., Ruan, Y.-Y., et al. (2013).
Alteration of HLA-F and HLA I Antigen Expression in the Tumor Is Associated
with Survival in Patients with Esophageal Squamous Cell Carcinoma. Int.
J. Cancer 132, 82–89. doi:10.1002/ijc.27621

Zhang, X. W., Yap, Y. L., Wei, D., Chen, F., and Danchin, A. (2005). Molecular
Diagnosis of Human Cancer Type by Gene Expression Profiles and
Independent Component Analysis. Eur. J. Hum. Genet. 13, 1303–1311.
doi:10.1038/sj.ejhg.5201495

Zheng, C., Chen, J., Chu, F., Zhu, J., and Jin, T. (2020). Inflammatory Role of TLR-
MyD88 Signaling in Multiple Sclerosis. Front. Mol. Neurosci. 12, 314.
doi:10.3389/fnmol.2019.00314

Zheng, Q., Huang, K., andMin, S. (2021). Comprehensive Analysis of the Expression
and Prognosis for KRTs in LUSC Based on Bioinformatics Analysis.
doi:10.21203/rs.3.rs-775034/v1

Zhou, W., and Altman, R. B. (2018). Data-driven Human Transcriptomic Modules
Determined by Independent Component Analysis. BMC Bioinformatics 19,
327. doi:10.1186/s12859-018-2338-4

Zinovyev, A., Kairov, U., Karpenyuk, T., and Ramanculov, E. (2013). Blind Source
Separation Methods for Deconvolution of Complex Signals in Cancer Biology.
Biochem. Biophys. Res. Commun. 430 (3), 1182–1187. doi:10.1016/j.bbrc.2012.12.043

Zinovyev, A., Viara, E., Calzone, L., and Barillot, E. (2008). BiNoM: a Cytoscape
Plugin for Manipulating and Analyzing Biological Networks. Bioinformatics 24,
876–877. doi:10.1093/bioinformatics/btm553

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Seisenova, Daniyarov, Molkenov, Sharip, Zinovyev and Kairov.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 68363211

Seisenova et al. Meta-Analysis of EC Transcriptomes using ICA

https://doi.org/10.2147/ott.s226426
https://doi.org/10.2147/ott.s226426
https://doi.org/10.18632/oncotarget.17606
https://doi.org/10.18632/oncotarget.17606
https://doi.org/10.1016/j.surg.2013.05.004
https://doi.org/10.1016/j.cancergencyto.2006.11.012
https://clincancerres.aacrjournals.org/content/6/3/1169.long
https://clincancerres.aacrjournals.org/content/6/3/1169.long
https://doi.org/10.3892/ol.2021.12706
https://doi.org/10.1177/1533033820921248
https://doi.org/10.3892/ijo_00000027
https://doi.org/10.1021/pr200141c
https://doi.org/10.1016/j.ebiom.2019.03.032
https://doi.org/10.1002/ijc.27621
https://doi.org/10.1038/sj.ejhg.5201495
https://doi.org/10.3389/fnmol.2019.00314
https://doi.org/10.21203/rs.3.rs-775034/v1
https://doi.org/10.1186/s12859-018-2338-4
https://doi.org/10.1016/j.bbrc.2012.12.043
https://doi.org/10.1093/bioinformatics/btm553
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Meta-Analysis of Esophageal Cancer Transcriptomes Using Independent Component Analysis
	Introduction
	Materials and Methods
	Experimental Data
	Normalization
	Independent Component Analysis
	Comparison of Independent Components Across Datasets Using Correlation-Based Graphs
	PPI Network Construction
	Gene Set Enrichment Analysis (GSEA)
	ToppGene Analysis

	Results
	Experimental Data
	Correlation Graph Between Independent Components
	PPI Network Analysis

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


