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In this paper, I review a number of results that my co-workers and I have obtained in
the field of 1–Dimensional (1D) Hamiltonian lattices. This field has grown in recent years,
due to its importance in revealing many phenomena that concern the occurrence of chaotic
behavior in conservative physical systems with a high number of degrees of freedom. After the
establishment of the Kolomogorov–Arnol’d–Moser (KAM) theory in the 1960s, a wealth of
results were obtained about such systems as small perturbations of completely integrable N-
degree-of-freedom Hamiltonians, where ordered motion is dominant in the form of invariant
tori. Since the 1980s, however, and particularly in the last two decades, there has been
great progress in understanding the properties of Hamiltonian 1D lattices far from the KAM
regime, where "weak" and "strong" forms of chaos begin to play an increasingly significant
role. It is the purpose of this review to address and highlight some of these advances, in
which the author has made several contributions concerning the dynamics and statistics of
these lattices.
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1. Introduction

Hamiltonian systems constitute one of
the most active fields of research in what
we call today Nonlinear Science. They are
among the first to which the ideas and
methods of Nonlinear Dynamics and Chaos were
successfully applied and yielded a wealth of
results that revolutionized many areas of Classical
and Quantum Mechanics, Astronomy, Plasma
Physics, Statistical Mechanics and Solid State
Physics. They constitute dynamical systems said
to possess N degrees of freedom, whose time
evolution occurs in an n = 2N dimensional phase
space of position and momentum coordinates
qk(t), pk(t) respectively, k = 1, 2, . . . , N , with
n = 2N , and whose equations of motion are given
by [1–4]:

dqk
dt

=
∂H

∂pk
,
dpk
dt

= −∂H
∂qk

, k = 1, 2, . . . , N (1)

where H = H(p1, p2, . . . , pN , q1, q2, . . . , qN ) is the
Hamiltonian function. Since we assume in (1) that
H does not explicitly depend on time t,H is a first
integral of the motion and its value E equals the
total energy of the system. Let us now consider

an H that can be expanded in power series as a
sum of homogeneous polynomials Hm of degree
m ≥ 2.

H =
∑

m,m≥2
Hm(q1, . . . , qN , p1, . . . , pN ) = E, (2)

so that the origin qk(t) = pk(t) = 0, k =
1, 2, . . . , N , is an equilibrium point of the system.
Thus, H = E defines a (2N − 1) dimensional
manifold called the (constant) energy surface,
on which the dynamics evolves. We also assume
that linearizing equations (1) about the origin
generates a matrix, whose eigenvalues arise in
conjugate imaginary pairs, ±iωk, k = 1, . . . , N ,
providing the N frequencies of the normal mode
oscillations of the linear problem. Then, according
to a famous theorem by Lyapunov [5], if there
are no rationals among the ratios ωj/ωk, for
any j, k = 1, 2, . . . , N where j 6= k, then the
linear modes persist as periodic solutions of the
nonlinear problem, with frequencies close to those
of the linear modes and will be called simple
periodic orbits (SPOs) as all particles return to
their original position after one oscillation.

Consider one simple example of such a
system, with N = 2 degrees of freedom, described
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by the Hamiltonian

H = H0+εH1 =
1

2
p2x+

1

2
p2y+

x4

2
+
y4

2
+εx2y2 = E

(3)
where we have set px = p1, py = p2 and q1 = x,
q2 = y to denote the two degrees of freedom of the
problem. To study the dynamics, we introduce
the so–called Poincaré Surface of Section (PSS)
defined in the x, px plane, for different initial
conditions, by points where y = 0 and py > 0, at
a given value of E, see Fig. 1. In fact, in Fig. 1(a)
we set ε = 0 in eq. (3) and note that the PSS is
filled with closed orbits, which are either periodic
or quasiperiodic, depending on whether the ratio
of the frequencies of the two oscillators is rational
or irrational. Since the motion is governed by two
independent integrals of the motion, no chaos is
expected in this case as all orbits are regular [1–4].

We now impose coupling between the
oscillators, letting ε = 0.02, and consider the
PSS obtained for the same energy value E as
in Fig. 1(a). What we find now in Fig. 1(b), as
expected from the theory, is that, while many
regular quasiperiodic solutions still exist, the
periodic curves of Fig. 1(a) have split into chains
of stable orbits (represented by islands) interlaced
by chains of unstable orbits (shown as saddle
points). At this scale, no chaotic motions are
visible. Magnifying, however, the figure near one
of its saddle points, reveals in the inset of Fig. 1(b)
a highly complex type of dynamics, whose most
distinctive feature is the presence of thin layers
of chaos, which in fact extend around the islands
and join with the corresponding chaotic regions
of other saddles belonging to the same family.

Interestingly, these chaotic domains grow in
size significantly on PSS that correspond to higher
values of ε = 0.2, see Fig. 1(c). Several important
questions arise from this simple example, which
we will venture to address in the present paper:

• What happens at higher values of ε or,
equivalently, higher values of the energy
E in such examples? Will there always
exist “wide” and “thin” chaotic regions
at different scales and if so, how can
we characterize their dynamics? Can we
say that within the thinner such layers a
“weaker” form of chaos occurs, compared
to the wider domains where the chaos is
“stronger”?

• If indeed such distinction between “strong”
and “weak” chaos can be made, how can we
differentiate between them studying their
dynamical and statistical properties?

• What about those stable low period orbits
lying at the center of the largest islands of
regular motion shown in Fig. 1(b,c)? Will
they continue to be stable for larger values
of ε (or E), and if they do destabilize, what
happens immediately after they become
unstable? Will we find “strong” or ”weak”
chaos in their vicinity?

• Last and most important: How do all these
phenomena manifest themselves in the case
of many degrees of freedom where N is
allowed to grow indefinitely?

In Section 2, I will consider all these
questions on the fundamental paradigm of a N–
degree of freedom 1-D Hamiltonian called the
Fermi-Pasta-Ulam-Tsingou model, widely known
as the β−FPU system [6], described by the
Hamiltonian

H =
1

2

N∑
j=1

p2j +
N∑
j=1

1

2
(xj+1 − xj)2

+
β

4

N∑
j=1

(xj+1 − xj)4 = E

(4)

where xj are the displacements of the particles
from their equilibrium positions and pj = dxj/dt
are the momenta, β is a positive real constant and
E is the total energy. Let us now ask: What would
be the simplest periodic solutions of this systems,
lying at the center of large islands, similar to those
we found in the above N = 2 example?

In an early work, Chris Antonopoulos and I
[7] observed that the FPU system possesses some
examples of what we called SPOs, which exist for
all energies due to translational symmetries of the
1-D lattice, and are obtained in terms of a single
periodic function x̂(t) as follows:

• the out of phase mode (OPM)

x̂j(t) = −x̂j+1(t) = x̂(t), j = 1, 2, . . . , N (5)

where N is even, under periodic boundary
conditions, i.e. x1(t) = xN+1(t), and
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 FIG. 1. (color online) (a) Poincaré Surface of Section (PSS) of the solutions in the x, px plane, defined by y = 0
and py > 0 of the uncoupled oscillators (3) with ε = 0. (b) Setting ε = 0.02 we observe that alternating stable
(islands) and unstable (saddle points) periodic orbits have appeared, with no chaos visible at that scale. However,
magnifying the region near one of the saddles in the inset, we see that “thin” chaotic regions emerge about these
saddle points. (c) Increasing the coupling parameter to ε = 0.2 the chaotic regions grow significantly and “wide”
chaotic domains emerge in the figure.

FIG. 2. Examples of SPOs that we have called the Out
of Phase Mode (above), the SPO1 (middle) and the
SPO2 (below).

• the SPO1 mode, where for every 2 particles
one is stationary while those on its either
side move out of phase,

• the SPO2 mode, where for every 3 particles

one is stationary and the two on either
side move out of phase with respect to
each other. Both SPO1 and SPO2 have
fixed boundary conditions, i.e. x0(t) =
xN+1(t) = 0, p0(t) = pN+1(t) = 0.

One can prove the existence of SPOs for the
FPU as continuations of the linear normal modes
of the system, whose energies and frequencies are
given by [7, 8]:

Eq =
1

2
(P 2

j + ω2
qQ

2
q), ωq = 2 sin(

πq

2(N + 1)
),

q = 1, 2, . . . , N
(6)

applying Lyapunov’s Theorem mentioned above,
noting that the ratios of any two of the normal
mode frequencies in (6) are irrational, while
Pq, Qq are the corresponding normal mode
coordinates [2]. SPO1 and SPO2 orbits, for
example, are two such nonlinear normal modes
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FIG. 3. (color online) Schematic drawing of how the
GALI index is defined in terms of two unit deviation
vectors (GALI2) in the case of a chaotic orbit: ŵ1(0)
and ŵ2(0) are initially chosen in two arbitrary linearly
independent directions off the chaotic orbit at the
point P (0). After some time t > 0, they become ŵ1(t)
and ŵ2(t) and are closer to the direction of the orbit,
denoted by a dashed line tending to align with the
MLE. As a result the area of the parallelogram they
form becomes smaller and tends to zero as t grows.
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FIG. 4. (color online) Schematic drawing of how the
GALI index is defined in terms of two unit deviation
vectors (GALI2) in the case of a regular orbit lying
on a 2-D torus: ŵ1(0) and ŵ2(0) are initially chosen
in two arbitrary linearly independent directions off
the torus at the point P (0). After some time t > 0,
they become ŵ1(t) and ŵ2(t), are closer to the torus
and tend to fall on its tangent space. As they remain
linearly independent, the area of the parallelogram
they define tends to a constant value.

identified by the indices q = N+1
2 and q = 2(N+1)

3 ,
respectively, in equations (6).

In [7, 8], the linear stability analysis of the
above orbits was presented, which due to their
simplicity can be carried out for as high N
as we desire. Thus, we discovered that, while
these orbits are stable at low energies, as E >
0 grows, they first become unstable at critical
values Ec(N) which tend to zero as N → ∞
following specific power laws. We thus ask what
happens near some of them when they do become
unstable. How wide is the chaotic domain in their

vicinity? Does the motion evolve in thin layers of
“weak” chaos or does it immediately spread out in
wide,“strongly” chaotic domains?

Next, in Section 2, I recall two different
approaches that my co-workers and I have
employed in such investigations: The first makes
use of the Maximum Lyapunov Exponent (MLE)
[22] and its extension, the Generalized Alignment
Index (GALI), to distinguish between dynamical
properties of order and chaos [9, 10]. The second
appeals to probability density functions (pdfs)
of position and momentum coordinates, which
reveal the statistical properties of different chaotic
regimes and are thus able to distinguish between
“weak” and “strong” chaos [11]. Both of these
approaches will be applied here to the above FPU
model to study the dynamics and statistics of its
SPO1 solution, in the case of N = 5 particles (or
degrees of freedom).

Note now that 1-D Hamiltonian lattices
like (4) involve only interactions between nearest
neighbors, which are of the shortest possible
range, since each particle is affected only by its
two closest neighbors. An interesting question,
therefore, taken up by Helen Christodoulidi,
Constantino Tsallis, Lambros Drossos and myself
is what happens to the dynamics and statistics of
the model in the case of “long range interactions”
(LRI) where each particle is allowed to interact
with all others through a coefficient of the form
1/rα where r denotes the inter-particle distance
and 0 ≤ α ≤ ∞ [13, 14]. We will pick up this
topic in Section 3, where we will show that LRI
appear to have a globally “stabilizing” effect” on
the system! In other words, we will discover that
as the particles tend to interact equally with
all others, the system becomes dynamically more
ordered and statistically more “weakly chaotic”!

In Section 4, I will revisit more recent
results obtained by Jorge Macias Diaz, Helen
Christodoulidi and myself, concerning what
happens to the FPU 1-D lattice under LRI,
when the first particle at the left obeys the
moving boundary condition x1(t) = AsinΩt.
Other researchers had already discovered, on a
number of nearest-neighbor 1-D Hamiltonians,
the fascinating phenomenon of supratransmission
where, for a well-defined range of Ω values, a
precise amplitude Ac exists such that for A >
Ac a sudden surge of energy propagates in the
lattice. We first showed that supratransmission
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also occurs in the FPU model under LRI, albeit
at considerably higher Ac values than the nearest
neighbor case! We then went on to study this
phenomenon on LRI lattices of the Sine Gordon
type in the presence of on site potentials, which
allow for localized oscillations called breathers
[15, 16].

The paper ends with a section on Future
Outlook where I discuss work in progress on
Hamiltonian 1-D lattices with non analytic
potentials, arising in problems of complex
materials and nonlinear elasticity. Performing
similar studies of their dynamical stability
and chaotic behavior based on their SPOs,
preliminary results suggest that they possess
strikingly different properties than what we have
found for Hamiltonians of the FPU type.

2. Dynamical and statistical
analysis of the β− FPU model

2.1. The dynamical criteria of Lyapunov
exponents and GALI indicators

The Lyapunov characteristic exponents
(LCEs) of a Hamiltonian dynamical system

Li, i = 1, . . . , 2N, L1 ≡ Lmax > L2 > . . . > L2N

(7)
measure the rate of exponential divergence of
initially nearby orbits in the phase space of
the dynamical system. The LCEs come in pairs
of opposite sign, and two are equal to zero
corresponding to deviations along the orbit. If the
largest one, L1 ≡ Lmax > 0 (MLE), the orbit
is chaotic, i.e. almost all nearby orbits diverge
exponentially in time, while if Lmax = 0 the
orbit is stable. The numerical algorithm used
most often for the computation of all LCEs was
proposed in [17]. The Li for a given orbit x(t)
expresses the limit for t→∞ of a quantity of the
form

Ki
t =

1

t
ln
‖ wi(t) ‖
‖ wi(0) ‖

, Li = lim
t→∞

Ki
t (8)

where wi(0) and wi(t), i = 1, . . . , 2N −
1 are infinitesimal deviation vectors from the
given orbit x(t) that are orthogonal to the
vector tangent to the orbit. Note now that, in
the computation of LCEs, one considers only

one deviation from the orbit each time. We
decided, therefore, in [9, 10] to find out what
happens if we consider more deviations and
defined the index GALIk as the volume of
the k-parallelepiped having as edges the k unit
deviation vectors ŵi(t) = wi(t)/||wi(t)||, i =
1, 2, . . . , k, determined through the wedge product
of these vectors as

GALIk(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)‖ (9)

where ‖ · ‖ denotes the usual norm. From this
definition it is evident that if at least two of
the deviation vectors become linearly dependent,
the wedge product in (9) becomes zero and the
GALIk vanishes. Geometrically, of course, GALIk
represents the volume of the k−“parallelepiped”
formed by these vectors and thus, if at least 2 of
the deviations are linearly dependent, the GALIk
vanishes.

Let us see how all this works for the case
of k = 2 such deviations. In Fig. 3, we see
schematically that GALI2 represents the area
of the parallelogram formed by the deviation
vectors, and goes to zero as t > 0 increases, since
these vectors tend to align with the most unstable
direction identified by the MLE. We thus conclude
that the orbit under study in this case is chaotic.
On the other hand, if the orbit were regular and
evolved on a 2-D torus (e.g. in the case of a
Hamiltonian system ofN = 2 degrees of freedom),
see Fig. 4, the two deviation vectors would tend to
fall on the tangent space of the torus and hence the
area of the parallelogram they define would never
vanish. This means that GALI2 ≈ constant and
the orbit would be termed regular. Writing (9)
as a single determinant, expanding it in a sum
of subdeterminants of decreasing magnitude, as
t → ∞, and keeping the largest one, we studied
in [9, 10] the asymptotic behavior of the GALIk,
and obtained the following analytical result: In
the case of a chaotic orbit, all deviation vectors
tend to become linearly dependent, aligning in the
direction defined by the MLE, and all GALIk tend
to zero exponentially following the law:

GALIk(t) ≈ e−[(L1−L2)+(L1−L3)+···+(L1−Lk)]t

(10)
where L1, . . . , Lk are the k largest LCEs. On the
other hand, if the orbit under study is regular,
matters are more subtle: All deviation vectors
tend to fall on the s-dimensional tangent space
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of the torus on which the motion lies. Thus, if
we start with k ≤ s general deviation vectors
they will remain linearly independent on the s-
dimensional tangent space of the torus, since there
is no reason for them to become aligned. As a
consequence, GALIk remains practically constant
and different from zero for k ≤ s. On the other
hand, GALIk tends to zero for k > s, since some
deviation vectors will eventually become linearly
dependent. In particular, the generic behavior
of GALIk for quasiperiodic orbits lying on s-
dimensional tori is given by [9, 10]:

GALIk(t) ∝


constant if 2 ≤ k ≤ s
1

tk−s if s < k ≤ 2N − s
1

t2(k−N) if 2N − s < k ≤ 2N
.

(11)
At this point we make a crucial observation: Note
that the above criterion allows us to determine the
dimension s of any torus under study! Starting
with many deviation vectors, i.e. k > s and
gradually decreasing k, the torus dimension is
determined by the particular value of k = s at
which GALIs cease to tend to zero and become
constant. To this day, I do not know of a better
way to determine the dimension of a torus,
especially in spaces of high dimensionality.

Let us apply these criteria to regular orbits
of two specific examples of 2 and 3 degree of
freedom Hamiltonians respectively, as shown in
Fig. 5. In the case of Fig. 5(a) the torus is two
dimensional soGALI2 is nearly constant, while all
higher order GALIs tend to zero following power
laws that agree with the analytical result shown in
(11). A similar situation is depicted in Fig. 5(b),
only here GALI2 and GALI3 are nearly constant,
since the torus is 3-dimensional.

2.2. A statistical criterion based on the
Central Limit Theorem

As is well-known, multi-particle systems
belong to different universality classes, according
to their statistical properties at equilibrium. In
the most widely studied class, if the system
can be at any one of i = 1, 2, . . . ,W states
with probability pi, its entropy is given by the

celebrated Boltzmann-Gibbs (BG) formula

SBG = −k
W∑
i=1

pi ln pi (12)

where k is Boltzmann’s constant, under the
constraint

W∑
i=1

pi = 1. (13)

As is well-known, the BG entropy is additive in
the sense that, for any two independent systems
A and B, the entropy of their sum is the sum
of the individual entropies, i.e. SBG(A + B) =
SBG(A)+SBG(B). It is also extensive, as it grows
linearly with N , as N → ∞. These properties
are associated with the fact that different parts
of BG systems are highly uncorrelated and their
dynamics is statistically independent in phase
space.

There is, however, an abundance of physical
systems characterized by strong correlations,
for which the assumptions of extensivity and
additivity are not generally valid [18]. In
fact, Hamiltonian systems provide a wealth of
examples governed by such correlated statistics,
especially near the boundaries of islands of regular
motion where orbits “stick” for very long times
and the dynamics becomes very weakly chaotic.
It is for this kind of systems that Tsallis proposed
the entropy formula

Sq = k
1−

∑W
i=1 p

q
i

q − 1
with

W∑
i=1

pi = 1 (14)

that depends on an index q, for a set of W states
with probabilities pi i = 1, . . . ,W , obeying the
constraint (13). The Sq entropy is not additive,
since Sq(A + B) = Sq(A) + Sq(B) + k(1 −
q)Sq(A)Sq(B) and generally not extensive. The
pdf replacing the Gaussian in this case is the q-
Gaussian distribution

P (s) = a expq(−βs2) ≡ a
[
1− (1− q)βs2

] 1
1−q

(15)
obtained as an extremum of the Tsallis entropy
(14), under appropriate constraints [18]. The
q index satisfies 1 < q < 3 to make (15)
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FIG. 5. Computation of GALIk(t) as time evolves, for a regular orbit belonging to: (a) a Hamiltonian system
of 2 degrees of freedom and (b) a 3 degree of freedom Hamiltonian. Note that in (a) only GALI2 is nearly
constant, since the torus has dimension 2, while in (b) both GALI2 and GALI3 are nearly constant since the
torus is 3-dimensional. All other GALIs tend to zero with power laws that are in very good agreement with our
asymptotic result (11) (after [9, 10]).

normalizable, β is an arbitrary parameter and a
a normalization constant. Note that in the limit
q → 1 (15) tends to the Gaussian distribution,
i.e. expq(−βx2) → exp(−βx2) of BG statistical
mechanics.

Our approach, concerning N degree of
freedom Hamiltonians, is in the spirit of the well-
known Central Limit Theorem and is described in
detail in [4, 19]. In particular, we solve Hamilton’s
equations of motion for a large set of initial
conditions and obtain pdfs of suitably rescaled
sums of the system’s positions or momenta,
centered about their mean value and rescaled
by their standard deviation. What we find is
that, in cases of “strong” chaos the pdfs converge
to the BG exponential law, as time increases,
while in “weakly” chaotic situations they tend
to follow a q-Gaussian distribution. Let us see
how all this applies to the case of an SPO1 orbit
of our FPU Hamiltonian (4) with N = 5 at
an energy value where the orbit has just turned
unstable, see Fig. 6. Plotting its intersections with
the plane of position and momentum coordinates
of the first particle, q1, p1, at times when the
third particle has q3 = 0, we observe in Fig.
6, starting very close to the SPO1 orbit, that
successive intersections form a “figure 8” type of
chaotic domain in phase space. This thin layer
of chaos expands a little when we move further
away from the SPO1 orbit, while moving even
further away the solutions eventually abandon
the “figure 8” and explore a much larger chaotic
component of phase space. Let us see now
what happens when we compute pdfs of position
coordinates for the three cases of chaotic domains

obtained for the three initial conditions of Fig. 6.
As we show in Fig. 7, as long as our orbit
remains “trapped” within the “ figure 8” region
of weak chaos (what is often referred as “sticking
phenomenon”) its statistical distribution is well
represented by a q-Gaussian and hence obeys
Tsallis thermostatistics, while as it moves further
away to strong chaos its pdf tends towards a
pure Gaussian associated with BG statistical
mechanics.

3. The effect of long range
interactions

Note that the results we have described
so far, connecting regions of weak and strong
chaos in the β−FPU chain to Tsallis and BG
thermostatistics respectively, originally came as a
surprise to many researchers. The reason is that
the FPU chain is a system that involves only
nearest–neighbor particle interactions, which are
of the shortest range type. How then can such a
system exhibit Tsallis thermostatistics, which is
expected to arise only in systems involving long
range interactions (LRI)?

The answer to this question is rather evident:
LRI does not only refer to a global property
characterizing a given system; it can also be a
local property governing the dynamics in localized
domains of phase space. Thus, even though the
β−FPU lattice with nearest neighbor interactions
is not a globally long range system, it possesses
LRI locally, e.g. in cases where the orbit displays
the phenomenon of “stickiness”, in thin chaotic
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layers and very close to the boundaries of islands
of regular motion.

3.1. LRI only on the nonlinear
interactions

To study, therefore, what happens in a
system which has global LRI, we chose initially
to take a β−FPU 1D lattice described by the
Hamiltonian [11]

H =
1

2

N∑
n=1

p2n +
1

2

N∑
n=0

(xn+1 − xn)2 +
b

4Ñ

×
N∑
n=0

N+1∑
m=n+1

(xn − xm)4

|n−m|α
= U(N), b > 0; α ≥ 0

(16)

with fixed boundary conditions, i.e. x0 = xN+1 =
p0 = pN+1 = 0. Note here that LRI is applied
only to the quartic part of the potential, scaled
by a factor Ñ−1, which varies with N as follows:

Ñ(N,α) ≡ 1

N

N∑
i=0

N+1∑
j=i+1

1

(j − i)α

=
1

N

N∑
i=0

N + 1− i
(i+ 1)α

(17)

and whose role is to make the total kinetic and
potential energy extensive (i.e. proportional to N)
for all values of α. The two limits (i) α → 0
and (ii) α → ∞ correspond to the extremal
cases where (i) each particle interacts equally
with all others, and (ii) only interactions with
nearest neighbors apply, recovering exactly the
Hamiltonian of the FPU-β model. We began
our study with a systematic investigation of the
largest Lyapunov exponent λmax characterizing
the ergodicity of the dynamics for different values
of α, N and specific energies ε = U(N)/N . In
Fig.8 we thus plotted the λmax versus the system
size N for different α values, ranging from 0 to
10. The critical value α = 1, similar to what was
found in [12], clearly distinguishes between the
following two distinct regimes:

i) For α ≥ 1 the Lyapunov exponent λmax
tends to stabilize at a finite and positive value as
N increases.

ii) For α < 1 the largest Lyapunov exponents
are observed to decrease with system size as
N−κ(α) where the dependence of the exponent
κ(α) on α is shown in the inserted panel of
Fig.8. We therefore expect that the system
with short–range interactions tends to a BG
type of equilibrium in the thermodynamic limit,
characterized by “strong” chaos. On the other
hand, we observe that the case of long range
interactions is much more “weakly” chaotic.

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

-0.2 -0.1  0  0.1  0.2

p 1

q1

FIG. 6. (color online) A thin “figure 8” chaotic region
is observed in the (q1, p1) plane computed when q3 =
0 for an initial condition starting very close to the
unstable SPO1 mode passing by the saddle point at
q3 = 0 and p3 > 0. A slightly more extended “figure
8” appears for an initial condition further away, while
a much wider chaotic region arises for a more distant
initial condition. In all cases, we integrate up to tf =

105 with E = 7.4, and β = 1.04 (after [19]).

Fig. 9 displays the momentum distributions
for α = 0.7 and 1.4 for N = 8192. In the strong
LRI case of α < 1, the histograms on the left,
after sufficiently long times, are well fitted by
a q–Gaussian pdf with q = 1.249. However, on
the right histogram of Fig. 9 where α > 1, the
distribution follows a pure Gaussian pdf (q → 1
in (15)) with β = 0.043. The q–dependence on α
is shown in Fig. 10 where the transition from q–
statistics to BG–statistics is evident as α exceeds
1. Starting around q ' 1.32, q reaches 1 at α = 1.4
for N = 16384 particles calculated during the
time interval [5 · 105, 9 · 105]. The data of Fig. 10
is averaged over several realizations.

What is most important about these results
is that they allow us to draw a “universal phase
diagram” in a suitably scaled plane plotted in
Fig.11, which displays the crossover between two
regimes separated by a straight line in the 1/N vs.
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FIG. 7. (a) The (q1, p1) surface of section of an orbit integrated up to tf = 105 and starting close to the unstable
SPO1 orbit of Fig. 6. (b) and (c) are same as (a) but for tf = 107 and tf = 108 respectively. (d)-(f) Plots in
linear-log scale of numerical (solid curve), of q-Gaussian (dashed curve) and Gaussian (dotted curve) for the
initial conditions of (a)-(c) respectively. On the vertical axis of (c), (d) and (e) s(j)M represents averaged sums of
position coordinates (after [19]).
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FIG. 8. (color online) Maximal Lyapunov exponent
for increasing N and various values of α calculated
at t = 106, when U(N)/N = 9, for fixed boundary
conditions. Initial conditions are xj(0) = 0, while
pj(0) are chosen randomly from a uniform interval
(after [11]).

bδ/tγc plane. Each point in the graph corresponds
to a value of t = tc which represents the maximum
time that q remains constant, after which it tends
to the BG value q = 1.

As a final remark, we point out the
nonuniformity of the (N, t) → (∞,∞) limit
implied by the diagram of Fig.11. Clearly, in
the limN→∞ limt→∞ ordering it is the q =

1 BG behavior that prevails, while in the
limt→∞ limN→∞ ordering it is the Tsallis q > 1
statistics that becomes dominant.

3.2. LRI on the nonlinear as well as
linear interactions

Continuing this line of research in [13], we
studied the Fermi–Pasta–Ulam (FPU) β–model
with LRI in both the quadratic and quartic terms
in the potential, introducing two independent
exponents α1 and α2 respectively. Our results
demonstrate that weak chaos, in the sense of
decreasing Lyapunov exponents, and q–Gaussian
probability density functions (pdfs) of sums of the
momenta, occurs only when LRI are included in
the quartic part. On the other hand, when LRI are
imposed only on the quadratic part, strong chaos
and purely Gaussian pdfs are always obtained.

To see all this, let us modify the classical
form of the FPU β–model introducing particle
interactions that decay with distance as 1/rα1

and 1/rα2 respectively. Thus, the modified
Hamiltonian function that describes our system
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FIG. 9. (color online) Momentum distributions for the
system with N = 8192 and: (up) α = 0.7 in two
time intervals, (down) α = 1.4. Initial conditions are
xj(0) = 0, while pj(0) are chosen randomly from a
uniform interval (after [11]).

has the form [13]

HLRI =
1

2

N∑
n=1

p2n +
a

2Ñ1

N∑
n=0

N+1∑
m=n+1

(xn − xm)2

(m− n)α1

+
b

4Ñ2

N∑
n=0

N+1∑
m=n+1

(xn − xm)4

(m− n)α2

(18)

where a and b are positive constants. The
rescaling factors Ñi, i = 1, 2 in (16) are given
by the expression

Ñi(N,αi) ≡
1

N

N∑
n=0

N+1∑
m=n+1

1

(m− n)αi
, i = 1, 2(19)

and are necessary for making the Hamiltonian
extensive. Indeed, without this factor the
corresponding sums in (16) would increase as
O(N2) in the thermodynamic limit. Notice that
Ñi ' 1 in the limit αi → ∞, and thus for large
N Hamiltonian (18) reduces to Hamiltonian (16).
In the four panels of Fig. 12 typical momentum
histograms are shown, which correspond to
the four representative cases we studied, as
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FIG. 10. (color online) α-dependence of the index
q for b = 10 and U(N)/N = 9 averaged over 4
independent realizations when N is 2048, 4096, 8192
and 2 realizations for N = 16384, all taken in the
time interval t ∈ [5 · 105, 9 · 105]. Inserted panel shows
(q∞ − q)−1 versus N , for the data of the main figure
with α = 0. q∞ has a value estimated around 1.48,
and is the intercept of the linear dependence of q
on 1/ logN . The fitting line shown is (q∞ − q)−1 =
1.76 logN − 0.9 (after [11]).
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FIG. 11. (color online) (a) “Phase diagram”
depicting the crossover between Gaussian and q–
Gaussian thermostatistics for the system sizes N =
1024, 2048, 4096, 8192 at specific energy ε = 9 (after
[11])

different combinations of short and long–range
interactions. More specifically, in panels (a) and
(c) a classical Gaussian shape is observed, either
under purely short–range interactions or when
LRI apply only to the quadratic part, by setting
α1 = 0.7 and α2 → ∞ in the Hamiltonian
(18). Instead in the panels (b) and (d) a clear q–
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Gaussian shape emerges when long–range applies
to the quartic interactions, independently of the
type of interactions in the quadratic part, i.e. for
α1 →∞, α2 = 0.7 and α1 = 0.7, α2 = 0.7 in (18)
respectively.

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(a)

(c)

(b)

Nonlinear  
      LRI 

Mixed 
 LRI Linear 

  LRI

 ( 1, 2)=(inf,inf),a=1,b=10,N=2048, =9
 q=1, =0.043

 

 

P
m
(p
) /
P

m
(0
)  

FPU 

(a)  ( 1, 2)=(inf,0.7),a=1,b=10,N=2048, =9
 q=1.238, =0.065
 q=1,         =0.065

 

 

-30 -20 -10 0 10 20
10-6

10-5

10-4

10-3

10-2

10-1

100
(d) ( 1, 2)=(0.7,inf),a=1,b=10,N=2048, =9

 q=1, =0.043

 

 

P
m
(p
) /
P

m
(0
)  

 

p
-30 -20 -10 0 10 20

 ( 1, 2)=(0.7,0.7),a=1,b=10,N=2048, =9
 q=1.235, =0.065
 q=1,        =0.065

 

FIG. 12. (color online) The momentum distributions
for N = 2048 particles for the system (16). The
upper panels show the cases: α1 → ∞, α2 → ∞,
i.e. FPU (left) and α1 → ∞, α2 = 0.7 (right).
Lower panels show: α1 = 0.7, α2 → ∞ (left) and
α1 = α2 = 0.7 (right). The yellow lines correspond
to the uniform distribution, from which the momenta
where randomly extracted (after [13]).

3.3. The effect of LRI in 1D lattices with
on–site potential

More recently, I examined in [14] with H.
Christodoulidi and L. Drossos, the effect of LRI
on 1D Hamiltonian lattices in the presence of on–
site potentials that are known to support discrete
breathers: the Klein–Gordon (KG) lattice with
only quadratic interactions [20] and the Gorbach–
Flach (GF) [21] lattice with purely quartic
interactions. Our purpose was to investigate how
the localization properties of these lattices are
affected by the presence of LRI. The KG lattice,
with quadratic and quartic on site potential
and linear dispersion terms, is described by the
Hamiltonian (LRI with α = 0):

HKG−LRI(p, x) =
∑
n

{
1

2
p2n +

1

2
x2n +

1

4
x4n

+
1

2(N − 1)

∑
m

(xm − xn)2

} (20)

while the GF model consists of N coupled
oscillators with the same KG on–site potential,
but with only quartic interactions (LRI with α =
0),

HGF−LRI(p, x) =
∑
n

{
1

2
p2n +

1

2
x2n +

1

4
x4n

+
1

2(N − 1)

∑
m

(xm − xn)4

}
.

(21)

Observe that here we have taken interactions
to be of the longest possible range, since the
exponent α in the denominator of the double
sums (see e.g. (16) or (18) is set to zero, with
all interparticle forces having equal strength.

An interesting result is discovered in these
models regarding the behavior of the maximal
Lyapunov exponent λ as the number of particles
N grows to larger and larger values. When we
compare its behavior in the short and long–range
KG and GF models, we find a striking difference
between short and long interactions. As Fig. 13
clearly shows, LRI has a dramatic effect on the
chaotic properties of both systems: While, under
short–range interactions, λ tends to saturate to
a positive value, under LRI λ decreases towards
zero, thus indicating that both systems become
less and less chaotic as N increases.

Finally, under LRI, momentum distributions
of KG and GF are clearly non–Gaussian, which
suggests the presence of weak chaos in these
systems as N grows indefinitely. However, the
associated pdfs we obtain are not exactly q–
Gaussian either [14]. Thus, 1D lattices with on–
site potentials need to be studied further, under
LRI, regarding their statistical properties in the
thermodynamic limit.

4. Supratransmission and long
range interactions

4.1. Supratransmission and LRI in the
absence of on–site potentials

Supratransmission is a phenomenon that
has been extensively studied to date in a
wide variety of physical systems. Since its
discovery in a 1-D Hamiltonian chain consisting
of nonlinear oscillators [23], the process of
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FIG. 13. (color online) The maximal Lyapunov
exponent for an increasing number of particles N .
In the LRI cases, the maximal Lyapunov exponent
decreases as λ ∝ N−0.12 in the KG model, while
λ ∝ N−0.27 in the GF (here KG, GF refer to
nearest neighbor interactions). (a) KG (diamonds)
and KG–LRI (circles). (b) GF (diamonds) and GF–
LRI (circles) (after[14])

nonlinear supratransmission has been found in
many other systems, including discrete arrays
consisting of anharmonic oscillators [24], linear
arrays of Josephson junctions attached through
superconducting wires [25] and a nearest–
neighbor β−FPU chain [27], to mention some
examples. Recently, J. C. E. Macias Diaz and I
studied the phenomenon of supratransmission on
an N–particle 1D β−FPU lattice, under different
ranges of interactions [26]. More specifically, we
set the first particle in sinusoidal motion at a
frequency Ω that lies in the “forbidden gap”
(i.e. outside the spectrum of normal modes)
of the linear nearest–neighbor FPU chain and
used suitable computational techniques to extend
earlier results of supratransmission to FPU chains
with longer ranges of particle interactions than
simply nearest neighbors. In other words, as I
explained in Section 3, we considered interactions
between all particles and introduced scaling
exponents 0 < α1, α2 <∞ to quantify the extent
of LRI in the model as follows:

H =
1

2

N∑
n=1

p2n +
a

2M1

N∑
n=0

N+1∑
m=n+1

(xm − xn)2

(m− n)α1

+
b

4M2

N∑
n=0

N+1∑
m=n+1

(xm − xn)4

(m− n)α2
,

(22)

where the scaling factors

Mi =
1

N + 1

N∑
n=0

N+1∑
m=n+1

1

(m− n)αi
, ∀i ∈ {1, 2}.

(23)

are introduced to make all three parts of the
Hamiltonian extensive, i.e. proportional toN [26].
Our first discovery was that, for a very wide range
of α1,2 values, supratransmission occurs at similar
amplitude thresholds as in the nearest neighbor
case. However, as the interaction range becomes
longer (and α1,2 values decrease towards zero), the
threshold amplitude for supratransmission rises
to higher and higher values!.

To see exactly what happens we first
computed supratransmission kinetic energy
thresholds as a function of the driving amplitude,
fixing the value of α1 and varying the value of α2.
Next, we repeated the same experiment fixing the
value of α2 in each frame and varying the value of
α1. Remarkably, as long as the α1 increases and
the quadratic interaction become short–range,
supratrasmission occurs at higher and higher
thresholds, which reach (for 0 < α2 < 1) the
value 10 and above (see Fig. 14).

Thus, our main results in this subsection can
be summarized as follows:

• Nonlinear supratransmission exists in the
system (22) for every pair (α1, α2) ∈
[0,∞]× [0,∞].

• The critical amplitude at which
supratransmission occurs depends
continuously on α1 and α2, and increases
monotonously as α1 and α2 decrease. This
was true for all Ω we tried within the
forbidden band-gap [2,∞).

• Moreover, when α1, α2 ≥ 5 the
supratransmission threshold coincides
with that of the β-FPU chain with
nearest-neighbor interactions.

• Interestingly, we found that as long as
α2 = 0, i.e. in the case of maximal
LRI in the quartic part of the potential,
the supratransmission threshold amplitude
reaches a maximum value of As(α1, 0) ≈
7.6 independent of the value of α1 ∈ [0,∞).

• In fact, when we considered stronger long
range values of 0 < α2 < 1 the threshold
amplitude increased further to a value
about 10.3, as α1 −→∞ (see Fig. 14).
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FIG. 14. (color online) Graphs of the total kinetic energy versus driving amplitude A of the system (22) with
Ω = 3.5. The results were obtained using (left) α1 = 10 and (right) α1 = ∞. The graphs correspond to α2 = 0
(solid), α2 = 0.3 (dashed), α2 = 0.6 (dash-dotted) and α2 = 0.9 (dotted) (after [26]).
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FIG. 15. (color online) Graphs of the approximate critical amplitude at which supratransmission is triggered
versus Ω, for (a) α = 2 and (b) α = 3. The parameters are as in previous figures. The solid curve is the short
range interaction function (28), the dashed lines are the numerical approximations, and the dotted curve is the
plot of the empirical formula (28) (after [16]).
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FIG. 16. (color online) The supertransmission
threshold As as a function of α for Ω = 0.9
(diamonds), Ω = 0.8 (circles) and Ω = 0.7 (triangles)
(after [16]).

4.2. Supratransmission and LRI in the
presence of on–site potentials

A suprising result awaited us, however,
when we studied recently the effect of LRI on
supratransmission thresholds, in the case of 1D
Hamiltonians, whose potential includes on–site

potentials [16]. Our system is initially at rest at
the equilibrium position, and is described by the
Hamiltonian

H =

N∑
n=1

(
1

2
p2n + V (xn)

)

+
1

pM

N∑
n=0

N+1∑
m=n+1

W (xm − xn)

(m− n)α
.

(24)

Here, the number α governs the “length” of
the particle interactions, with α = ∞ denoting
the shortest possible range of nearest neighbor
interactions. Thus, we shall say that the system
possesses long range interactions if α < ∞, with
the strongest LRI corresponding to 0 ≤ α ≤ 1.
The scaling factor

M =
1

N + 1

N∑
n=0

N+1∑
m=n+1

1

(m− n)α
(25)

is used to make the last term at the right-hand
side of (24) extensive, that is, proportional to

Nonlinear Phenomena in Complex Systems Vol. 23, no. 2, 2020



146 Anastasios Bountis

N . As a consequence, the associated equations of
motion of our model are given by

ẍn =
1

pM

N∑
m=1
m 6=n

W ′(xm − xn)

|m− n|α
− V ′(xn), (26)

for each n ∈ {1, . . . , N}. It is worth noting
that (26) extends various well known models
of mathematical physics to account for LRI. In
[16], we treated the classical sine-Gordon chain
when V (u) = 1 − cos(u) and checked that the
solutions and phenomena observed with (26) are
very similar with what one finds for the potential
V (u) = 1

2!u
2 − 1

4!u
4 + 1

6!u
6, and the double sine-

Gordon chains when V (u) = 1
2 −

1
6 [2 cosu +

cos(2u)].
We will, therefore consider a system of unit

mass particles whose positions satisfy the initial-
boundary-value problem

ẍn = −γnẋn +
1

pM

N∑
m=1
m 6=n

W ′(xm − xn)

|m− n|α
− V ′(xn),

such that

 x0(t) = A sin(Ωt), t ≥ 0,
xN+1(t) = xN (t), t ≥ 0,
xn(0) = ẋn(0) = 0, 1 ≤ n ≤ N + 1

(27)
where 1 ≤ n ≤ N and A, Ω are positive. Clearly,
(27) represents a system of particles which is
initially at rest, and is perturbed harmonically at
the left end, with the presence of a free boundary
at the last particle on the right. Moreover, to
model a long chain we let N be relatively large,
and use damping coefficients, γn ∈ R+ ∪ {0} to
simulate an absorbing boundary at the right.

We now assume that the frequency Ω
belongs to a “forbidden” band-gap, here 0 <
Ω < 1, that lies (together with its harmonics)
outside the phonon spectrum of the system. As
the driving amplitude is increased, a critical
value As is reached above which the system
suddenly absorbs great amounts of energy from
the oscillating boundary. The number As is
called the supratransmission threshold, and in the
case of Klein-Gordon type systems an analytical
approximation of its value at α = ∞, p = 2 and
γn = 0 for each n ∈ {1, . . . , N}, is known [23]

As(Ω) = 4 arctan

[
c

Ω
arccosh

(
1 +

1− Ω2

2c2

)]
(28)

for each Ω ∈ (0, 1), and c = a/
√
M . It is

worth noting that this approximation is valid for
relatively large values of c, and for values of Ω < 1
which are close to 1.

Now let us set Ω = 0.7 and study the
behavior of the solution of (27) versus n and t,
for various values of α and A [16]. In the strong
LRI case, α = 0, 0.5, 1, we found clear evidence
of supratransmission at threshold amplitudes As,
which decrease as α decreases in this range! In
fact, this holds for all other values of Ω > 0.7.
This aspect of our results suggests a complex
relationship between the driving frequency and
the critical amplitude at which supratransmission
is triggered in the regime of strong LRI. In
Figure 16 we have plotted the supratransmission
threshold As(α) for the full range of α LRI
values for three values of the driving frequency:
Ω = 0.9 (diamonds), Ω = 0.8 (circles) and
Ω = 0.7 (triangles). We suggest the following
explanation for this sudden decrease of As as
α goes to zero: As was observed in our recent
study of Klein–Gordon type systems [14], in
the limit of α → 0 the phonon band shrinks
to a line and all particles become so strongly
correlated that energy transmission can occur for
very small driving amplitudes, as shown in Figure
16. Now, what happens exactly in that limit is not
clear, since the very nature of supratransmission
becomes doubtful in the strong LRI regime α <
0.5.

5. Future outlook

As is well–known, the field of modeling
complex materials has been expanding rapidly
in recent years, with the aim of understanding
the dynamical response of metallic structures
used in mechanical engineering applications.
In this regard, I have been studying recently
with Dr. Kostas Kaloudis and Dr. Thomas
Oikonomou [34]1-D Hamiltonian lattices of
particles interacting via 1) graphene type
interactions [28–30], 2) Hollomon’s power–law of
materials exhibiting “work hardening” [31–33].
Earlier studies have focused on the dynamics
of single oscillators governed by suitable non-
analytic potentials describing the motion in the
above two cases. Our main aim in this direction
is to extend these studies to 1-D Hamiltonian
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lattices and perform a local and global stability
analysis of simple periodic oscillations to identify
energy and parameter regions associated with
globally stable motion as well as regimes of strong
and weak chaos. Thus, we have begun to carry out
an analysis similar to what was described in the
first four sections of this paper, to the following
1-D lattices:

H =
n∑
j=1

1

2
ẋj

2+
n∑
j=0

K

2
(xj+1 − xj)2−

D

3
|xj+1−xj |3

(29)
as a graphene 1-D model and

H =
1

2

N∑
j=1

mj ẋ
2
j +

k

2

N∑
j=0

(xj+1 − xj)2

+
λ

q + 1

N∑
j=0

|xj+1 − xj |q+1

(30)

as a Hollomon’s law model. Here K is an elastic
constant and D > 0 represents material stiffness,
λ > 0 and the exponent 0 < q < 1 captures
the relevant fractional nonlinearities of the model.
For q = 1 the former equation recovers the
Hamiltonian of a system of coupled harmonic
oscillators, while for q = 3 it reduces to the
Hamiltonian of the β− FPU lattice.

Preliminary results demonstrate that the
above systems possess stability properties that
are strikingly different than those of FPU 1-
D Hamiltonian lattices [34]. In particular, the
graphene type Hamiltonian (29) possesses SPO1
and SPO2 orbits that first destabilize along Ec/N
vs. N curves that go to zero as N grows with
quite different power laws than in the FPU case.

On the other hand, the behavior of the Hollomon
Hamiltonian (30) is even more remarkable: Its
SPO1 and SPO2 solutions are unstable at low
energies and first stabilize along curves that grow
with positive powers of N as the number of
particles increases!

Both models have so far been studied
under fixed boundary conditions and nearest–
neighbor interactions [34]. However, motivated
by the approaches described in this review, we
also plan, in the near future, to analyze their
dynamics under LRI and investigate whether
they also exhibit the phenomenon of nonlinear
Supratransmission.

Acknowledgements

In this paper, I review a number of results
that my co-workers and I have obtained over
many years. Many of them are former Ph.D.
students of mine that now hold positions at
international academic and research institutions.
Of the more senior collaborators that crucially
participated in the research described here, I
would like to thank Professor Constantino Tsallis,
and Professor Jorge Macias Diaz. I am grateful
to Professor Angela de Sanctis for organizing
the 6th Ph.D. Conference- Summer School in
July of 2019 at Pescara, and I wish to thank
Professor George Krylov and the Journal of
Nonlinear Phenomena in Complex Systems for
their initiative to publish some of the papers
presented during that event. Finally, I would like
to acknowledge my Nazarbayev University ORAU
grant, 2017–2020, under whose auspices many of
the results of Sections 3 and 4 of this paper have
been obtained.

References

[1] V.I. Arnold. Mathematical Methods of Classical
Mechanics. (Springer, New York, 1989).

[2] A.J. Lichtenberg, M.A. Lieberman. Regular and
Chaotic Dynamics. Second edition. (Springer,
New York, 1992).

[3] S. Wiggins. Applied Nonlinear Dynamical
Systems and Chaos. (Springer, New York, 1990).

[4] T. Bountis, H. Skokos. Complex Hamiltonian

Dynamics. Vol. 10. (Springer Science & Business
Media, Berlin, 2012).

[5] A.M. Lyapunov. The General Problem of the
Stability of Motion. (Taylor and Francis, London,
1992).

[6] G.P. Berman, F.M. Izrailev. The Fermi-Pasta-
Ulam problem: Fifty Years of Progress. Chaos,
15, 015104 (2005).

Nonlinear Phenomena in Complex Systems Vol. 23, no. 2, 2020



148 Anastasios Bountis

[7] Ch. Antonopoulos, T. Bountis. Stability of
Simple Periodic Orbits and Chaos in a Fermi-
Pasta-Ulam Lattice. Phys. Rev. E. 73, 56-206
(2006).

[8] Ch. Antonopoulos, T.C. Bountis, Ch. Skokos.
Chaotic Dynamics of N-degree of Freedom
Hamiltonian Systems. Int. J. Bifurcat. Chaos,
16, 1777-1793 (2006).

[9] Ch. Skokos, T. Bountis, C. Antonopoulos.
Geometrical Properties of Local Dynamics
in Hamiltonian Systems: The Generalized
Alignment (GALI) Method. Physica D. 231, 30
(2007).

[10] Ch. Skokos, T. Bountis, C. Antonopoulos.
Detecting Chaos, Determining the Dimensions
of Tori and Predicting Slow Diffusion in
Fermi–Pasta–Ulam Lattices by the Generalized
Alignment Method. European Physics Journal,
Special Topics. 165, 5 - 14 (2008).

[11] H. Christodoulidi, C. Tsallis, T. Bountis.
Fermi–Pasta–Ulam Model with Long Range
Interactions: Dynamics and Thermostatistics.
European Physics Journal Lett. 108, 40006
(2014).

[12] C. Anteneodo, C. Tsallis. Breakdown of
Exponential Sensitivity to Initial Conditions:
Role of the Range of Interactions. Phys. Rev.
Lett. 80, 5313 (1998).

[13] H. Christodoulidi, T. Bountis, C. Tsallis, L.
Drossos. Chaotic Behavior of the Fermi-Pasta-
Ulam Model with Different Ranges of Particle
interactions. J. Stat. Mech. 12 (12), 123206
(2016).

[14] H. Christodoulidi, A. Bountis, L. Drossos.
The Effect of Long–range Interactions on the
Dynamics and Statistics of 1D Hamiltonian
Lattices with On–Site Potential. EPJST.
227(5,6) 563 (2018).

[15] J.C. Macias Diaz, A. Bountis. On the
Transmission of Energy in β-Fermi–Pasta–
Ulam Chains with Different Ranges of Particle
Interactions. CNSNS. 63, 307-321 (2018).

[16] J. E. Macias-Diaz, A. Bountis, H. Christodoulidi.
Energy Transmission in Hamiltonian Systems
with Globally Interacting Particles and On-Site
Potentials. Mathematics in Engineering. 1(2),
343-358 (2019).

[17] G. Benettin, L. Galgani, A. Giorgilli, J.-M.
Strelcyn. Lyapunov Characteristic Exponents
for Smooth Dynamical Systems and for
Hamiltonian Systems; a Method for Computing
All of Them. Meccanica 15, 9–30 (1980).

[18] C. Tsallis. Introduction to Nonextensive
Statistical Mechanics: Approaching a Complex
World. (Springer, New York, 2009).

[19] Ch. Antonopoulos, T. Bountis, V. Basios. Quasi-
Stationary Chaotic States of Multidimensional

Hamiltonian Systems. Physica A. 390, 3290–
3307 (2011).

[20] R.S. MacKay, S. Aubry. Proof of Existence of
Breathers for Time-Reversible or Hamiltonian
Networks of Weakly Coupled Oscillators.
Nonlinearity. 7, 1623 (1994).

[21] A.V. Gorbach, S. Flach. Compactlike Discrete
Breathers in Systems with Nonlinear and
Nonlocal Dispersive Terms. Phys. Rev. E. 72,
056607 (2005).

[22] Ch. Skokos. The Lyapunov Characteristic
Exponents and Their Computation. Lect. Notes
Phys. 790, 63-135 (2010).

[23] F. Geniet, J. Leon. Energy Transmission in the
Forbidden Band Gap of a Nonlinear Chain. Phys.
Rev. Lett. 89(13), 134102 (2002).

[24] R. Khomeriki, S. Lepri, S. Ruffo. Nonlinear
Supratransmission and Bistability in the Fermi-
Pasta-Ulam model. Phys. Rev. 70(6), 066626
(2004).

[25] D. Chevriaux, R. Khomeriki, J. Leon. Theory
of a Josephson Junction Parallel Array Detector
Sensitive to Very Weak Signals, Phys. Rev. B.
73(21), 214516 (2006) .

[26] J.C.E. Macias Diaz, A. Bountis. On the
Transmission of Energy in β-Fermi–Pasta–
Ulam Chains with Different Ranges of Particle
Interactions. CNSNS. 63, 307-321 (2018).

[27] J.C.E. Macias Diaz, Numerical Simulation of
the Nonlinear Dynamics of Harmonically Driven
Riesz-Fractional Extensions of the Fermi–Pasta–
Ulam Chains. CNSNS. 55, 248 (2018).

[28] E. Cadelano, P.L. Palla, S. Giordano, L.
Colombo. Nonlinear Elasticity of Monolayer
Graphene. Phys. Rev. Lett. 102(23), 235502
(2009).

[29] H. Hazim, D. Wei, M. Elgindi, Y. Souklassian. A
Lumped–Parameter Model for Nonlinear Waves
in Graphene. World J. Eng. Tech. 3, 57 -69
(2015).

[30] D. Wei, S. Kadyrov, Z. Kazbek. Periodic
Solutions of a Graphene Based Model in a Micro-
Electro-Mechanical Pull-in Device. Appl. Comp.
Mech. 11(1), 1-10 (2017).

[31] J.H. Hollomon. Tensile deformation.
Transactions of the Metallurgical Society of
AIME. 162, 268-290 (1945).

[32] D. Wei, Yu Liu. Some generalized trigonometric
sine functions and their applications. Applied
Mathematical Sciences 6(122), 6053-6068 (2012).

[33] D. Wei, A. Sarria, M. Elgindi. Critical Buckling
Loads of the Perfect Hollomon’s Power-law
Columns. Mech. Res. Comm. 47, 69-76 (2013).

[34] A. Bountis, K. Kaloudis, T. Oikonomou.
Stability and chaos in 1-D Hamiltonian lattices
with non-analytic potentials. In preparation
(2019).

Нелинейные явления в сложных системах Т. 23, № 2, 2020


