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GLOBAL ANALYTIC SOLUTIONS FOR THE

NONLINEAR SCHRÖDINGER EQUATION

DANIEL OLIVEIRA DA SILVA AND MAGZHAN BIYAR

Abstract. We prove the existence of global analytic solutions to
the nonlinear Schrödinger equation in one dimension for a certain
type of analytic initial data in L

2.

1. Introduction

The nonlinear Schrödinger equation is the equation

(1) iut +∆u = |u|p−1u,

where u : R1+d → C. This equation has been studied extensively
for data in the Sobolev spaces Hs. For a detailed discussion the Hs

theory for this equation, see chapter 3 of [19] and the many references
therein. Recently, there has been much interest in developing a theory
of analytic solutions to partial differential equations of all types, and
many results exist in this direction. For a brief sampling of results, see
[1, 2, 3, 8, 7, 15, 6, 13, 10, 9, 18, 17, 4, 5].
In the case of equation (1), there exist several results regarding the

existence of global analytic solutions. An early result in this direction is
that of Hayashi [11], who studied the cubic case in dimensions d ≥ 2 for
small initial data. In the same year, Hayashi and Saitoh [12] obtained
a similar result, but using milder smallness assumptions on the data.
This was later generalized by Nakamitsu [16] to p− 1 = 2κ, where

d

2
− 1 ≤

1

κ
≤

d

2
,

but again requiring smallness assumptions on the initial data. For the
cubic case, these smallness assumptions were later removed by Tesfahun
in [20], who considered the problem in dimensions d = 1, 2, 3.
In the present work, we will extend these results to the one-dimensional

case where p can be any odd number. In particular, we will prove the
following theorem:
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Theorem 1. Let p be an odd natural number, and let f ∈ L2(R).

Suppose that f admits a holomorphic extension f̃ on the set

Sσ0
= {x+ iy ∈ C : |y| < σ0},

and that

sup
|y|<σ0

‖f̃(·+ iy)‖L2
x
< ∞.

Then for any T > 0, the Cauchy problem

(2)
iut +∆u = |u|p−1u,

u(x, 0) = f(x).

has a unique solution u ∈ C([0, T ];L2). Moreover, this solution is the
restriction to the real line of a function ũ which is holomorphic on the
set Sσ, where

σ < min
{
σ0, CT−1−ǫ

}
.

for some constant C > 0 and any ǫ > 0. Thus, the analyticity of u
persists for all time.

For the proof, we first construct local solutions by a standard fixed-
point argument. The procedure is standard, but for completeness,
it will be shown in section 3. In section 4, we then show that the
local solutions can be extended to arbitrarily large time intervals, if we
allow the radius of analyticity σ to decay. The proof uses a bootstrap
argument and an almost conserved quantity, which we control by using
the parameter σ. We begin our discussion by introducing the necessary
tools in section 2.

2. Preliminaries

An important tool in our construction of analytic solutions to (2)
are the Gevrey spaces Gσ(R), which are defined by the norm

‖f‖Gσ = ‖eσ|ξ|f̂(ξ)‖L2
ξ
,

where f̂ denotes the spatial Fourier transform, 〈x〉 = (1+ |x|2)1/2, and
σ > 0. The importance of the Gevrey spaces comes from the following
Paley-Wiener theorem, for which a proof can be found in [14]:

Theorem 2. Let σ > 0. Then, the following are equivalent:

(1) f ∈ Gσ(R);

(2) f is the restriction to the real line of a function f̃ which is
holomorphic in the strip

Sσ = {x+ iy : x, y ∈ R, |y| < σ}
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and satisfies

sup
|y|<σ

‖f̃(x+ iy)‖L2
x
< ∞.

Remark 1. It should be noted that there is no assumption in this
theorem that the function f must be real-valued. This is important,
as initial data and solutions to equation (1) are complex-valued.

In addition to the spaces Gσ, we will also make use of the hybrid
Gevrey-Sobolev spaces Gσ,s(R) defined by the norm

‖f‖Gσ,s = ‖eσ|ξ|〈ξ〉sf̂(ξ)‖L2
ξ
.

It is a simple matter to see that these spaces satisfy the embeddings

(3) Gσ′,s′ →֒ Gσ,s

for σ ≤ σ′ and s, s′ ∈ R, which follow from the inequalities

‖f‖Gσ,s . ‖f‖Gσ′,s′ .

Note that G0,s = Hs, so that for σ = 0 the inequality becomes

(4) ‖f‖Hs . ‖f‖Gσ′,s′

and the associated embedding is

Gσ′,s′ →֒ Hs.

Gevrey-Sobolev spaces also obey the following generalization to the
standard alegbra property of Sobolev spaces.

Lemma 3. If s > 1/2 and σ ≥ 0, then the space Gσ,s(R) is an algebra,
and

‖uv‖Gσ,s . ‖u‖Gσ,s‖v‖Gσ,s.

Proof. By definition, we have

‖uv‖Gσ,s =
∥∥eσ|ξ|〈ξ〉sûv(ξ)

∥∥
L2
ξ

.

Observe that

ûv(ξ) =

∫

R

û(ξ − η)v̂(η) dη.

By the triangle inequality, we also have that

eσ|ξ| ≤ eσ|ξ−η|eσ|η|,

〈ξ〉s . 〈ξ − η〉s + 〈η〉s.
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It follows from these observations that

‖uv‖Gσ,s .

∥∥∥∥
∫

R

[
eσ|ξ−η|〈ξ − η〉s|û(ξ − η)|

] [
eσ|η||v̂(η)|

]
dη

∥∥∥∥
L2
ξ

+

∥∥∥∥
∫

R

[
eσ|ξ−η||û(ξ − η)|

] [
eσ|η|〈η〉s|v̂(η)|

]
dη

∥∥∥∥
L2
ξ

.

Applying Young’s inequality to this, we obtain

‖uv‖Gσ,s .
∥∥eσ|ξ|〈ξ〉s|û(ξ)|

∥∥
L2
ξ

∥∥eσ|ξ||v̂(ξ)|
∥∥
L1
ξ

+
∥∥eσ|ξ||û(ξ)|

∥∥
L1
ξ

∥∥eσ|ξ|〈ξ〉s|v̂(ξ)|
∥∥
L2
ξ

. ‖u‖Gσ,s‖v‖Gσ,s.

Here, we have used the fact that
∫

R

f dx ≤

(∫

R

〈x〉−2s dx

)1/2(∫

R

〈x〉2s|f(x)|2 dx

)1/2

,

and that the first integral on the right converges for s > 1/2. �

With all these facts in mind, we will use the following strategy to
prove Theorem 1:

• The assumptions on f imply that f ∈ Gσ0 . By the embedding
in equation (3), f ∈ Gσ′,s′ for any σ′ < σ0 and s′ ∈ R. We use
this fact to construct local solutions in Gσ′,s′ for s′ > 1/2.

• By a standard argument, it suffices to show that the Gσ′,s′ norm
of the solution u remains finite in the interval [0, T ] for the
solution to exist up to time T > 0. As will be shown in section
4, this will require that we choose σ′ sufficiently small, and
s′ = 1.

• Once it is known that the Gσ′,1 norm remains finite, the em-
bedding (4) will imply that the L2 norm remains bounded up
to time T . Thus, by the standard L2 theory, the solutions may
be continued up to time T in L2. Moreover since u(t) ∈ Gσ′,1,
it will also be analytic.

3. Local Well-Posedness

To begin, let us first recall some basic facts about the Schrödinger
equation. Recall that the Cauchy problem

iut +∆u = F

u(x, 0) = f
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can be rewritten in integral form using the Duhamel formula

u(x, t) = eit∆f − i

∫ t

0

ei(t−τ)∆F (τ) dτ.

Applying this to equation (2), we have

(5) u(x, t) = eit∆f − i

∫ t

0

ei(t−τ)∆|u(τ)|p−1u(τ) dτ.

A strong solution to (2) is a solution to the integral equation (5). With
this definition in mind, we may state our local result in a precise form.

Proposition 4. Let p be an odd natural number, σ′ ≥ 0, and let s′ >
1/2. Then the Cauchy problem (2) is locally well-posed in Gσ′,s′(R).
That is, for any f ∈ Gσ′,s′, there exists a time δ = δ(‖f‖) > 0 such
that the Cauchy problem (2) has a unique strong solution

u ∈ C
(
[0, δ);Gσ′,s′

)
.

Furthermore, the solution map f 7→ u is Lipschitz continuous from
Gσ′,s′ to C

(
[0, δ);Gσ′,s′

)
.

Proof. Fix f ∈ Gσ′,s′, and define an operator Φ on Gσ′,s′ by

Φ(u) = eit∆f − i

∫ t

0

ei(t−τ)∆|u(x, τ)|p−1u(x, τ) dτ.

Since the operator eit∆ is unitary, it is easy to see that this integral
formula implies the inequality

(6) ‖Φ(u)(t)‖Gσ′,s′ ≤ ‖f‖Gσ′,s′ +

∫ t

0

‖|u(x, τ)|p−1u(x, τ)‖Gσ′,s′ dτ.

By Lemma 3 we have, for s′ > 1/2,

‖Φ(u)(t)‖Gσ′,s′ ≤ ‖f‖Gσ′,s′ + C

∫ t

0

‖u(τ)‖p
Gσ′,s′

dτ

for some generic constant C > 0. Taking the supremum over t ∈ [0, δ)
gives us

(7) ‖Φ(u)‖L∞Gσ′,s′ ≤ ‖f‖Gσ′,s′ + Cδ‖u‖p
L∞Gσ,s′

.

It follows that Φ maps C([0, δ);Gσ′,s′) to itself.
Next, we show that Φ is a contraction. The existence of a unique

fixed point will follow from the Contraction Mapping Principle. Let
u, v ∈ C([0, δ);Gσ′,s′) such that

‖u‖L∞Gσ′,s′ ≤ ‖f‖Gσ′,s′ and ‖v‖L∞Gσ′,s′ ≤ ‖f‖Gσ′,s′ .
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By applying equation (6), it is easy to see that

‖Φ(u)− Φ(v)‖L∞Gσ′,s′ ≤ Cδ
(
‖u‖p−1

L∞Gσ′,s′
+ ‖v‖p−1

L∞Gσ′,s′

)
‖u− v‖L∞Gσ′,s′

≤ 2Cδ‖f‖p−1

Gσ′,s′
‖u− v‖L∞Gσ′,s′ .

If

δ <
1

2C‖f‖p−1

Gσ′,s′

then

‖Φ(u)− Φ(v)‖L∞Gσ′,s′ < ‖u− v‖L∞Gσ′,s′ .

Thus Φ is a contraction. The existence of a unique fixed point for
u follows from the Contraction Mapping Principle. This fixed point
satisfies equation (5), and so is a strong solution to the Cauchy problem
(2).
Finally, we must show that the solution map f 7→ u is continuous

from Gσ′,s′ to L∞Gσ′,s′. Suppose for two initial conditions f, g ∈ Gσ′,s′,
respectively with

‖f‖Gσ′,s′ ≤ R and ‖g‖Gσ′,s′ ≤ R

we have the corresponding solutions u and v, respectively. As in the
computations above, we may apply equation (6) and Lemma 3 to obtain

‖u− v‖L∞Gσ′,s′ ≤ ‖f − g‖Gσ′,s′ +

∫ t

0

‖|u|p−1u− |v|p−1v‖Gσ′,s′dτ

≤ ‖f − g‖Gσ′,s′

+ Cδ
(
‖u‖p−1

L∞Gσ′,s′
+ ‖v‖p−1

L∞Gσ′,s′

)
‖u− v‖L∞Gσ′,s′ .

From equation (7) and the choice of δ, it follows that

‖u− v‖L∞Gσ′,s′ ≤ ‖f − g‖Gσ′,s′ + 2CδRp−1‖u− v‖L∞Gσ′,s′ .

If we now further make the assumption that δ also satisfies

2CδRp−1 < 1,

then we may conclude that

‖u− v‖L∞Gσ′,s′ ≤
‖f − g‖Gσ′,s′

1− 2CδRp−1
.

Continuity of the solution map follows. This completes the proof of
Proposition 4.

�
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4. Global Existence

In this section, we will prove the following proposition, from which
the second conclusion of Theorem 1 will follow:

Proposition 5. Let u be the local solution to the Cauchy problem (2),
and let T > 0 be arbitrary. Then there exists σ > 0 such that

sup
t∈[0,T ]

‖u(·, t)‖Gσ,1(R) < C

for some constant C > 0.

To prove this, we first state a preliminary lemma.

Lemma 6. Let n ∈ N, n ≥ 2, and let η1, . . . , ηn ∈ R. Then

eσ
∑n

j=1
|ηj | − eσ|

∑n
j=1

ηj| ≤
n∑

k=1

(
2σmin

(∣∣∣∣∣
∑

j 6=k

ηj

∣∣∣∣∣ , |ηk|
))θ

eσ
∑n

j=1
|ηj |.

for any θ ∈ [0, 1].

Proof. By strong induction on n. The case n = 2 was shown in [17].
Thus, we may assume the result holds for n ≤ m. Consider the case
n = m+ 1. We may write

eσ
∑m+1

j=1
|ηj | − eσ|

∑m+1

j=1
ηj| = eσ|ηm+1|

[
eσ

∑m
j=1

|ηj | − eσ|
∑m

j=1
ηj |
]

+ eσ|ηm+1|eσ|
∑m

j=1
ηj | − eσ|

∑m+1

j=1
ηj|.

Applying the inductive hypothesis to the first line above, we have

eσ
∑m

j=1
|ηj | − eσ|

∑m
j=1

ηj | ≤

m∑

k=1

(
2σmin

(∣∣∣∣∣
∑

j 6=k

ηj

∣∣∣∣∣ , |ηk|
))θ

eσ
∑m

j=1
|ηj |.

Applying the inductive hypothesis and the triangle inequality to the
second line, we have

eσ|ηm+1|eσ|
∑m

j=1 ηj | − eσ|
∑m+1

j=1
ηj|

≤

(
2σmin

(∣∣∣∣∣
m∑

j=1

ηj

∣∣∣∣∣ , |ηm+1|

))θ

eσ
∑m+1

j=1
|ηj |.

The desired result follows. �

Proof of Proposition 5. Recall that

‖f‖Hs ∼ ‖f‖Hs−1 + ‖∇f‖Hs−1
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for f ∈ Hs (see [19], Appendix A). By the commutativity of Fourier
multipliers, this implies that

‖u‖Gσ,1 ∼ ‖u‖Gσ + ‖∇u‖Gσ ∼
(
‖u‖2Gσ + ‖∇u‖2Gσ

)1/2

for u ∈ Gσ,1. Thus, it suffices to estimate the norms above to obtain
the desired result.
Let Λ be the pseudodifferential operator defined by the Fourier mul-

tiplier

Λ̂u = eσ|ξ|û(ξ, t),

and define

U(x, t) = Λu.

We observe that

‖u‖Gσ = ‖U‖L2 and ‖∇u‖Gσ = ‖∇U‖L2 .

Moreover, it is easy to see that U and U satisfy the equations

Ut = i∆U − iΛ
(
|u|p−1u

)

and

U t = −i∆U + iΛ
(
|u|p−1u

)
.

Next, define a quantity S(t) by

S(t) =

∫

R

|U(x, t)|2 + |∇U |2 +
2

p+ 1
|U |p+1 dx.

Observe that in the case σ = 0, this quantity would be conserved for
equation (1). By the Fundamental Theorem of Calculus, we have that

S(t) = S(0) +

∫ t

0

dS(τ)

dt
dτ.

A lengthy computation will show that

dS

dt
= i

∫

R

∇U · ∇N(u)−∇N(u) · ∇U dx

+ i

∫

R

UN(u)−N(u)U dx

+ i

∫

R

|U |p−1UN(u)−N(u)|U |p−1U dx,

where

N(u) = |U |p−1U − Λ(|u|p−1u).
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Applying Hölder’s inequality, we see that

(8)

S(t) ≤ S(0) + 2

∫ t

0

‖∇U(τ)‖L2‖∇N(u)(τ)‖L2 dτ

+ 2

∫ t

0

‖U(τ)‖L2‖N(u)(τ)‖L2 dτ

+ 2

∫ t

0

∥∥|U(τ)|p−1U(τ)
∥∥
L2 ‖N(u(τ))‖L2 dτ.

Note that ∥∥|U(τ)|p−1U(τ)
∥∥
L2 = ‖U(τ)‖pL2p .

We estimate this using the Gagliardo-Nirenberg inequality, giving us

‖U(τ)‖L2p . ‖U(τ)‖1−α
L2 ‖∇U‖αL2

with

α =
1

2

(
1−

1

p

)
.

Thus, equation (8) becomes

(9)

S(t) ≤ S(0) + 2

∫ t

0

‖U(τ)‖L2‖N(u)(τ)‖L2 dτ

+ 2

∫ t

0

‖∇U(τ)‖L2‖∇N(u)(τ)‖L2 dτ

+ 2C

∫ t

0

(
‖U(τ)‖1−α

L2 ‖∇U‖αL2

)p
‖N(u(τ))‖L2 dτ.

Next, we must estimate each of the terms involving the nonlinear
operator N(u). By Plancherel’s theorem, it suffices to consider

‖N̂(u)‖L2
ξ

and ‖∇̂N(u)‖L2
ξ
.

For this, we first rewrite N(u) as

N(u) = |eσ|∇|u|p−1(eσ|∇|u)− Λ
(
|u|p−1u

)
.

We then take the spatial Fourier transform, which we write as the
convolution integral

N̂(u) =

∫

H

(
e
∑2k+1

j=1
σ|ηj | − eσ|ξ|

)[ k∏

j=1

û(η2j−1)û(η2j)

]
û(η2k+1) dη,

where H denotes the hyperplane ξ = η1 + · · ·+ η2k+1 and

dη = dη1 · · · dη2k+1.
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To estimate |N̂(u)|, we apply Lemma 6 to obtain

(10)

|N̂(u)| ≤ Cσθ
2k+1∑

m=1

∫

H

(
min

{∣∣∣∣∣
∑

m6=j

ηj

∣∣∣∣∣ , |ηm|
})θ

G(η) dη

≤ Cσθ
2k+1∑

m=1

∫

H

|ηm|
θG(η) dη,

where C > 0 is a generic constant which may be different in each line,
η = (η1, . . . , η2k+1), and

G(η) =

[
k∏

j=1

∣∣eσ|η2j−1|û(η2j−1)
∣∣ ∣∣eσ|η2j |û(η2j−1)

∣∣
]
∣∣eσ|η2k+1 û(η2k+1)

∣∣

=

[
k∏

j=1

∣∣∣Û(η2j−1)
∣∣∣
∣∣∣Û(η2j−1)

∣∣∣
] ∣∣∣Û(η2k+1)

∣∣∣ .

If we define v̂j = |Û(ηj)| or |Û(ηj)|, as appropriate, then we can rewrite
each of the integrals in equation (10) as a convolution of the form

v̂1 ∗ . . . ∗ v̂j−1 ∗ |̂∇|θvj ∗ v̂j+1 ∗ · · · ∗ v̂2k+1.

Thus we have that

‖N̂(u)‖L2 . σθ
2k+1∑

m=1

‖v̂1 ∗ . . . ∗ v̂m−1 ∗ ̂|∇|θvm ∗ v̂m+1 ∗ · · · ∗ v̂2k+1‖L2

. σθ
2k+1∑

m=1

‖v1 . . . vm−1(|∇|θvm)vm+1 · · · v2k+1‖L2

. σθ
2k+1∑

m=1

(∏

j 6=m

‖vj‖L∞

)
‖|∇|θvm‖L2

. σθ
2k+1∑

m=1

(∏

j 6=m

‖vj‖H1

)
‖vm‖H1

. σθ

2k+1∏

m=1

‖vj‖H1

. σθ
(
‖U‖2L2 + ‖∇U‖2L2

)p/2
.

It follows that

(11) ‖N(u)‖L2 . σθ
(
‖U‖2L2 + ‖∇U‖2L2

)p/2
.
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For the ∇N(u) terms, we observe that |∇̂N(u)| = |ξ||N̂(u)|. Analo-

gously, the problem of estimating the norm of ∇̂N(u) can be reduced
by Lemma 6 to estimating a sum of terms of the form

σθ

∫

H

|ξ|

(
min

{∣∣∣∣∣
∑

j 6=ℓ

ηj

∣∣∣∣∣ , |ηℓ|
})θ

×

×

[
k∏

j=1

|eσ|η2j |û(η2j)||e
σ|η2j−1|û(η2j−1)|

]
|eσ|η2k+1|û(η2k+1)| dη.

To estimate these integrals, we recall that ξ = η1 + · · ·+ η2k+1, so that

|ξ| ≤

∣∣∣∣∣
∑

j 6=ℓ

ηj

∣∣∣∣∣+ |ηℓ|.

In the case where ∣∣∣∣∣
∑

j 6=ℓ

ηj

∣∣∣∣∣ ≥ |ηℓ|,

we obtain that

|ξ| ≤ 2

∣∣∣∣∣
∑

j 6=ℓ

ηj

∣∣∣∣∣ ≤ 2
∑

j 6=ℓ

|ηj | .

It follows that |∇̂N(u)| can be estimated by a sum of terms of the form

σθ

∫

H

|ηℓ|
θ|ηn|

[
k∏

j=1

|Û(η2j)||Û(η2j−1)|

]
|Û(η2k+1)| dη,

where ℓ 6= n. The case
∣∣∣
∑

j 6=ℓ ηj

∣∣∣ ≤ |ηℓ| is similar. For both of these

cases, we observe that these integrals can be written in convolution
form as

v̂1 ∗ · · · ∗ v̂j−1 ∗
(
|̂∇|θvj

)
∗ v̂j+1 ∗ · · · ∗ v2k ∗ (∇̂v2k+1).

We estimate these terms by

‖v1 · · · vj−1

(
|∇|θvj

)
vj+1 · · · v2k∇v2k+1‖L2

x

. ‖|∇|v2k+1‖L2‖|∇|θvj‖L∞

∏

ℓ 6=j,2k+1

‖vℓ‖L∞

.

2k+1∏

j=1

‖vj‖H1

.
(
‖U‖2L2 + ‖∇U‖2L2

)p/2
.
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We remark that we have once again used the Gagliardo-Nirenberg in-
equality to estimate

‖|∇|θvj‖L∞ . ‖|∇|θvj‖
β
L2‖|∇|θvj‖

1−β

Ḣ1−θ
. ‖vj‖H1,

which requires that
1

2
= β(1− θ).

Thus, it is necessary that 0 ≤ θ < 1. We may now conclude that

(12) ‖∇N(u)‖L2 . σθ
(
‖U‖2L2 + ‖∇U‖2L2

)p/2

If we now combine equations (9), (11), and (12), we obtain that

(13) S(t) ≤ S(0) + Cσθ

∫ t

0

S
p

2 (τ)
(
2S1/2(τ) + Sp/2(τ)

)
dτ.

Our next step is to show that this quantity remains bounded for
t ∈ [0, T ]. We apply a simple bootstrap argument. Let H(t) and C(t)
be the statements

• H(t): S(τ) ≤ 4S(0) for 0 ≤ τ ≤ t.
• C(t): S(τ) ≤ 2S(0) for 0 ≤ τ ≤ t.

To close the bootstrap, we must prove the following four statements:

(a) H(t) ⇒ C(t);
(b) C(t) ⇒ H(t′) for all t′ in a neighborhood of t;
(c) If t1, t2, . . . is a sequence in [0, T ] such that tn → t ∈ [0, T ], with

C(tn) true for all tn, then C(t) is also true;
(d) H(t) is true for at least one t ∈ [0, T ].

Proof of (a). Assuming the statement H(t), equation (13) gives us the
estimate

S(t) ≤ S(0) + Cσθ(4S(0))
p

2

(
2(4S(0))1/2 + (4S(0))p/2

)
t.

Taking the supremum, this gives us

sup
t∈[0,T ]

S(t) ≤ S(0) + Cσθ(4S(0))
p
2

(
2(4S(0))1/2 + (4S(0))p/2

)
T.

Choose σ so that

σ ≤
[
C(4S(0))

p

2

(
2(4S(0))1/2 + (4S(0))p/2

)
T
]−1/θ

,

then the conclusion C(t) follows. Note that this requires that θ > 0. �

Proof of (b). Assume S(τ) ≤ 2S(0) for all τ with 0 ≤ τ ≤ t. We may
then apply the local existence theory to construct solutions which exist
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on an interval [t, t+ δ) ⊂ [0, T ] for some small δ > 0. In particular, we
can do this so that

sup
τ∈[t,t+δ)

S(τ) ≤ 4S(0).

Since
sup

τ∈(t−δ,t]

S(τ) ≤ 2S(0)

by assumption, the statement H(t′) holds for all t′ ∈ (t− δ, t + δ). �

Proof of (c). The statement in (c) follows immediately from the fact
that our solutions are constructed so that the norm ‖u(t)‖Gσ,1 defines
a continuous function in time. �

Proof of (d). H(0) holds by assumption. �

Based on the above, we may close the bootstrap, and it follows that
C(t) holds for all t ∈ [0, T ]. �

To conclude the proof of Theorem 1, we summarize what we have
accomplished: our assumptions on f imply that f ∈ Gσ0 . By the
Gevrey embedding (3), f ∈ Gσ,1 for σ given by

σ < min

{
σ0,
[
C(4S(0))

p

2

(
2(4S(0))1/2 + (4S(0))p/2

)
T
]−1−ǫ

}
.

Using the local theory of section 3, we can construct a solution u up
to some small time δ > 0. By the global theory of section 4, the norm
of u remains bounded, so we may continue our solution past time δ to
the desired time T .
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