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Spatial control of localized oscillations in arrays of coupled laser dimers
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Arrays of coupled semiconductor lasers are systems possessing radically complex dynamics that makes
them useful for numerous applications in beam forming and beam shaping. In this work, we investigate the
spatial controllability of oscillation amplitudes in an array of coupled photonic dimers, each consisting of
two semiconductor lasers driven by differential pumping rates. We consider parameter values for which each
dimer’s stable phase-locked state has become unstable through a Hopf bifurcation and we show that, by
assigning appropriate pumping rate values to each dimer, high-amplitude oscillations coexist with negligibly low-
amplitude oscillations. The spatial profile of the amplitude of oscillations across the array can be dynamically
controlled by appropriate pumping rate values in each dimer. This feature is shown to be quite robust, even for
random detuning between the lasers, and suggests a mechanism for dynamically reconfigurable production of a
large diversity of spatial profiles of laser amplitude oscillations.
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I. INTRODUCTION

Laser arrays constitute a large family of nonlinear cou-
pled systems which can exhibit a wide variety of complex
dynamical behaviors. Although the emission from an indi-
vidual laser is often stable, the coupled system can display
synchronization, spatiotemporal collective phenomena [1–3],
and chaotic responses [4–7]. In recent years, there have been
many studies concerning semiconductor lasers and their syn-
chronization properties including the occurrence of chimera
states [8–11]. This rich set of dynamical features supported
by coupled-laser arrays is a result of the interplay between
three key characteristics related to nonlinearity due to the
coupling between photon and carrier population dynamics
[12], non-Hermiticity due to the presence of gain and loss
[13,14], and inhomogeneity due to the differential pumping
and varying properties of individual lasers.

Moreover, these dynamical features allow for many tech-
nological applications in photonic integrated devices that can
be dynamically controlled in order to provide a reconfig-
urable and multifunctional response [15]. In this direction, the
consideration of differentially pumped coupled lasers has re-
vealed a new set of interesting dynamical features enabling the
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control of the output spectrum of the system in terms of the ex-
istence of exceptional points and spectral transitions [16,17],
tunable oscillations [18], and tailored modulation responses
[19], as well as the spatial distribution of the electric field am-
plitude in terms of the existence of stable asymmetric phase-
locked states [20] and localized synchronization [18,21]. The
latter enables important technological applications related to
beam forming and steering [22,23]. In these studies, the role
of the current injection provides an efficient mechanism for
control of the phase-locked and the oscillatory states of the
system under a rich set of alternative options in the parameter
values of the system that facilitate practical applications. The
inhomogeneous pumping as well as the frequency detuning
between coupled lasers introduces a system asymmetry and
results in carrier densities above and below threshold, with
gain and loss coefficients of opposite signs in each laser,
so that the respective electric fields experience varying gain
and loss resulting in a large variety of spatial profiles for the
electric field accross the coupled-laser array. It is noteworthy
that the existence of a large variety of spatially localized wave
profiles in photonic structures with inhomogeneous gain and
loss distributions has also been shown in other discrete [24]
and continuous [25] photonic systems; however, in these cases
the gain and loss distributions were fixed and could not be
controlled dynamically as in the case of inhomogeneously
pumped laser arrays.

2470-0045/2020/102(1)/012201(9) 012201-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4254-3500
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.012201&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1103/PhysRevE.102.012201


SHENA, KOMINIS, BOUNTIS, AND KOVANIS PHYSICAL REVIEW E 102, 012201 (2020)

In the present work, we investigate the collective behav-
ior of a large array of evanescently coupled semiconductor
dimers with nearest-neighbor interactions and focus on the
possibilities of controlling the spatial profile of amplitude
oscillations by applying appropriate pumping distribution
patterns. In order to understand the underlying mechanism
allowing for large differences in the oscillation amplitude
between different lasers in the same array, we start our
investigation with a simple dimer and show that the two lasers
can demonstrate remarkably large differences in oscillation
amplitude. Proceeding to a linear array of two coupled dimers
we show that an appropriate pumping pattern can be applied
in order to have large oscillations in only one laser while
the electric fields of the other three remain almost constant.
Based on these results we investigate the possibility of con-
trolling the oscillation amplitude of specific groups of lasers
in a large circular array by applying appropriate pumping
schemes, characterized by different values in different groups
of lasers. We show that, similarly to the smaller arrays, we
have coexistence of high-amplitude oscillations for selected
groups compared with negligibly low-amplitude oscillations
for other groups. These groups of lasers can be either dis-
tributed along the array or localized, as we show for the
extreme case where the pumping scheme is chosen in order
to result in high-amplitude oscillations of only one laser in
the array. The characteristic cases suggest that by choosing an
appropriate pumping scheme it is possible to control (a) the
part of the array where large oscillations take place and (b)
the distribution of the oscillation amplitudes within this part.
Among the crucial parameters for the control of the dynamical
features, namely, the coupling, the optical frequency detuning
between the lasers, and the pumping rates, only the latter is
dynamically controllable and can be used to control the spatial
profile of the oscillation amplitudes of the electric fields

across the array. This results in a remarkable reconfigurability
of the system since different spatial patterns of oscillations
can be dynamically generated in the same array, suggesting
a mechanism with potential applications in multifunctional
photonic devices.

II. THE MODEL

The dynamics of an array of coupled laser dimers is gov-
erned by the following rate equations for the slowly varying
complex amplitude Ej of the electric field of each laser and
the corresponding population inversion Nj [10,13,20],

dEj

dt
= (1 − ia)NjEj + iη(Ej+1 + Ej−1) + iω jE j, (1a)

T
dNj

dt
= Pj − Nj − (1 + 2Nj )|Ej |2 , (1b)

where 1 � j � M, M being the number of lasers. The di-
mensionless time t and the population inversion decay time
T are measured in units of the photon lifetime τp. a is the
line-width enhancement factor resulting in the amplitude –
phase coupling. Pj are the normalized pumping rates. η is
the normalized coupling rate between neighboring lasers due
to interaction through their evanescent fields [26], and the
normalized angular frequency ω j measures the detuning of
each laser from a common reference value.

Before proceeding to the investigation of the dynamics of a
large array of coupled lasers, we consider the case of a single
dimer to gain a better understanding of its dynamics. For equal
pumping rates and in the absence of detuning, there exist two
phase-locked states with 0 and π phase differences between
the two electric fields, which are stable for η > aP/(1 + 2P)
and η < (1 + 2P)/2aT , respectively [27].
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FIG. 1. Bifurcation diagrams for a single laser dimer. (a) Dependence of the extrema of the electric field amplitudes on the coupling
strength for two identical lasers with P1 = P2 = 1.5. Red color refers to the first laser, and blue to the second laser. The steady state is shown
to undergo a Hopf bifurcation at η = 0.001pl, 13. Beyond the Hopf point, for values of η greater than 0.002, we observe different amplitude
extrema for each laser. (b), (c) Extrema of the amplitudes of the electric fields as the second laser’s pumping rate is varied, at a constant coupling
strength η = 0.0005 and P1 = 1.5. First laser (b) and second laser (c). The steady state undergoes a reverse Hopf bifurcation at P2 = 0.42. The
asymmetry of the pumping rates drives the system to a stable limit cycle, with very low amplitudes of oscillation in (b) coexisting with much
higher oscillation amplitudes shown in (c). Other parameters are a = 5, T = 400, and ω j = 0.
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FIG. 2. Ratio of the peak-to-peak oscillation amplitudes R1,2 = E1(p-p)/E2(p-p) for the single dimer as a function of the pumping rates P1,2

and the coupling strength η. (a) Varying η and pumping rate ratio P2/P1 for P1 = 0.5. (b), (c) Varying pumping rates P1,2 for η = 0.0005
and η = 0.0012, respectively. The ratio deviates significantly from unity when the pumping rates are sufficiently far from P1 = P2, with the
coupling strength determining the appropriate distance from the line P1 = P2 for a significant asymmetry of oscillation amplitudes. All other
parameters are as in Fig. 1.

To understand the effect of the coupling strength, we plot in
Fig. 1(a) a bifurcation diagram of the maxima and minima of
the amplitudes of the electric fields when the lasers have equal
pumping rates set to P = 1.5. Varying the coupling parameter,
we see that a Hopf bifurcation to a stable limit cycle occurs at
η = 0.001 13. As the coupling is further increased, to values
of η greater than 0.002, the limit cycle of the system is
characterized by oscillations with different amplitude extrema
for each individual laser. This leads to a slightly asymmetric

limit cycle bifurcating from a symmetric one, even under
symmetric pumping [18].

Next, keeping the coupling strength at the steady-state
value η = 0.0005, we calculate in Figs. 1(b) and 1(c) a bifur-
cation diagram, varying P2 and keeping P1 = 1.5 fixed. The
steady state is now seen to undergo a reverse Hopf bifurcation
at P2 = 0.42. Below this value, the first laser demonstrates
multiple harmonics with amplitudes of different magnitudes
corresponding to the same limit cycle [28]. Remarkably, the
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FIG. 3. Bifurcation diagrams for two coupled dimers. Dependence of extrema of the electric field amplitudes on the second laser’s pumping
rate for each laser, under inhomogeneous pumping. (a) First laser; (b) second laser; (c) third laser; (d) fourth laser. The phase-locked state
undergoes a Hopf bifurcation at P2 = 0.82. All field amplitudes of the system are oscillating close to a fixed point, except for the second laser,
which exhibits much larger amplitude extrema. The pumping rates are P1 = P3 = 1.5 and P4 = 1. All other parameters are as in Fig. 1.
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FIG. 4. (a) Peak-to-peak oscillation amplitude for the second and fourth lasers of a coupled dimer as a function of the pumping rate ratios
P2/P1 and P4/P3 for P1 = P3 = 1.5 and η = 0.0005. The peak-to-peak oscillation amplitudes for the first and the third lasers (not shown here)
are very low. (b) Peak-to-peak oscillation amplitude for the second and fourth groups of lasers of the circular array as a function of the pumping
rate ratios PII/PI and PIV/PIII for PI = PIII = 1.5 and η = 0.0005. The peak-to-peak oscillation amplitudes for the first and the third groups (not
shown here) are very low. All other parameters are as in Fig. 3 and Fig. 5. Remarkably the same dependence of the dynamical behavior on the
pumping rates holds for either four different lasers or four different groups of lasers.

oscillation amplitude of the first laser is much lower than
that of the second one, as shown in Figs. 1(b) and 1(c),
respectively. Both lasers oscillate around mean values that
correspond to a previously stable asymmetric phase-locked
state. However, although the oscillations of the second laser
have small mean values, they possess considerably higher
peak-to-peak amplitude values in comparison to the first
one. As shown in Figs. 1(b) and 1(c), in the case where
P2 = 0.2 (marked by arrows), the peak-to-peak oscillation
amplitude for the second laser is E2(p-p) = 0.4214, whereas the
first laser has a peak-to-peak oscillation amplitude E1(p-p) =
0.0072, resulting in a ratio R1,2 = E1(p-p)/E2(p-p) = 0.0170.
This behavior is absent for equal pumping and is crucial for
the study of a large array of coupled dimers carried out in
the next section. The asymmetry characteristics as well as
the frequencies of such limit cycles at the Hopf points have
recently been studied by Kominis et al. [18]. Moreover, as
shown in Fig. 2 this behavior is typical in the parameter
space of the dimer; for sufficiently different pumping rates,
the ratio of the peak-to-peak oscillation amplitudes of the
two lasers can be made significantly different from unity (up
to many orders of magnitude) with the appropriate pumping
difference as well as the maximum ratio values, depending on
the coupling strength.

Following the same steps as in the above analysis, it is
instructive to plot in Fig. 3 similar bifurcation diagrams for
a system of two coupled dimers with different pumping rates
(P1 = P3 = 1.5 and P4 = 1), keeping the coupling strength at
the value η = 0.0005 and varying P2 as a control parameter.
For low values of P2, a limit cycle exists with multiple
harmonics, until P2 = 0.82, where the Hopf bifurcation oc-
curs. Beyond that value, the system regains stability of the
steady state and remains stable as P2 continues to increase
up to P2 = 1. Thus, through this choice of pumping param-

eters, it is shown that, in analogy to the previous case of a
single dimer, the system as a whole supports an asymmetric
localized oscillation where the second laser undergoes high
oscillation amplitudes, whereas the other three oscillate with
much lower amplitudes for a large range of P2 values. More
specifically, in the case where P2 = 0.4, the peak-to-peak
oscillation amplitude of the second laser is E2(p-p) = 0.4851,
where the ratio of the peak-to-peak oscillation amplitudes
of the other lasers to that of the second laser are R1,2 =
0.053, R3,2 = 0.064, and R4,2 = 0.0049. The dependence of
the peak-to-peak oscillation amplitude on the pumping rate
ratios is depicted in Fig. 4, where it is shown that the lasers
with lower pumping rates have significantly higher oscilla-
tion amplitudes. A generalization of this effect to the case
of a large array of coupled dimers is studied in the next
section.

III. AN ARRAY OF COUPLED-LASER DIMERS

Let as now turn to a large circular array of coupled diode
lasers, with nearest-neighbor coupling and an inhomogeneous
pumping distribution, as shown in Fig. 5(a). The network
is divided into two clusters with two interfaces or into four
groups where the elements in the first group are pumped at
rates PI

j = 1.5 for j ∈ [1, 3, 5, . . . , M/2 − 1], the elements
in the second group at PII = 0.4 for j ∈ [2, 4, 6, . . . , M/2],
and those in the third group at PIII = 1.5 for j ∈ [M/2 +
1, M/2 + 3, . . . , M − 1], while in the fourth we set PIV

j = 1.0
for j ∈ [M/2 + 2, M/2 + 4, . . . , M]. To reveal its dynamics
we integrate Eqs. (1) using a fourth-order Runge-Kutta algo-
rithm and employ initial conditions with random phases taken
from a uniform distribution over the interval [−π to π ], as
well as random amplitudes and inverse populations. In all the
numerical calculations performed in arrays consisting of 200
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FIG. 5. (a) Schematic of a circular array of 200 coupled lasers
with inhomogeneous pumping. The array has been divided into two
parts consisting of differently pumped dimers (four groups), where
the dimers on the left are pumped with PI = 1.5 (red symbols; first
group) and PII = 0.4 (blue symbols; second group) while the dimers
on the right have PIII = 1.5 (red symbols; third group) and PIV = 1
(green symbols; fourth group). (b) Snapshots of the amplitude of the
electric fields in an array of M = 200 lasers with inhomogeneous
pumping as in the model shown in (a). Only group II is shown
to oscillate with high amplitudes, while all others undergo small
oscillations close to the fixed point. All other parameters are as in
Fig. 1.

lasers, we have not observed any dependence on the initial
conditions.

In Fig. 5(b), we plot snapshots of the amplitude of the
electric field for an array of M = 200 lasers with inhomoge-
neous pumping distributed as in Fig. 5(a), after a sufficiently
long time, t = 2 × 105, to show the system’s response after
transient effects. The coupling strength between the neighbors
is equal to η = 0.0005. The present system represents an
extension of the four-laser model depicted in Fig. 3 for the
specific value of P2 = 0.4 (marked by arrows). Under the
applied distribution of pumping rates, the lasers in group II
(blue) support high amplitudes, whereas the remaining groups
demonstrate low amplitudes very close to the steady state.
Remarkably, the dependence of the oscillation amplitudes of
the four groups on the pumping rates is similar to the case of
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FIG. 6. Snapshots of (a) the complex electric field distributions
in the complex plane and (b) the electric field amplitude for all four
groups as in Fig. 5.

two coupled dimers, as shown in Fig. 4. This pumping scheme
is indicative of the possibility of controlling not only the part
of the array where high-amplitude oscillations take place (half
of the circular array) but also the spatial pattern of amplitude
oscillations within this part (binary pattern of alternating high
and negligible amplitudes).

Snapshots of complex electric field distributions for every
particular group are shown in Fig. 6(a). The behavior is
similar to that of the four coupled lasers, where the second
cluster attains high field amplitudes, while the other three
oscillate close to the steady state. In Fig. 6(b) we display the

FIG. 7. (a) Average peak-to-peak oscillation amplitudes for each group of lasers for different sets of initial conditions (labeled by an
increasing number Nr), for the circular array system with parameters as in Fig. 5. (b) Dependence of the average peak-to-peak oscillation
amplitudes for each group of lasers on the system size M (all other parameters as in Fig. 5). (c) Dependence of the average peak-to-peak
oscillation amplitudes for each group of lasers on the randomness of laser detunings. The detunings ω j for all four groups are chosen from a
normal random distribution with mean 0 and standard deviation σω normalized to the coupling strength (all other parameters as in Fig. 5).
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normalized free-running laser relaxation oscillation frequencies of
each individual laser in groups I and II, respectively, with �I

R � 2�II
R .

magnitudes and phases of these states depicted in the complex
plane. Evidently, groups I, III, and IV exhibit low-amplitude
oscillations, whereas group II undergoes high-amplitude os-
cillations. Groups III and IV have a smooth amplitude distri-
bution, in sharp contrast to groups I and II. All groups have
randomly distributed phases.

The dependence of the peak-to-peak oscillation amplitudes
of the different groups of lasers on the initial conditions is
depicted in Fig. 7(a) for a circular array with parameters as in
Fig. 5; it is clearly shown that the same behavior of localized
oscillations holds for a large number of different sets of initial
conditions. Moreover, as shown in Fig. 7(b) this behavior is
typical for different system sizes (M ). Finally, the coexistence
of high and low oscillation amplitudes in the different groups
of lasers is shown to be robust under quite large randomness
of the detunings of each laser, as shown in Fig. 7(c). The
above properties facilitate the experimental observation and
the exploitation of this dynamical behavior for technological
applications.

Regarding the spectral content of the oscillations in each
group, shown in Fig. 8, both group I and group II have

the same fundamental frequency, which is close to the
free-running relaxation frequency of group II, given as �II

R =√
2P2
T , and also have a second spectral peak close to 2�II

R ,

which is also very close to �I
R = 1.94�II

R for the specific
choice of pumping parameters. However, the relative power
of the two spectral components is reversed in the two groups
of lasers.

In order to investigate the phase coherence of each group in
time, we calculate the radius of the complex order parameter
[29]

r(t ) = 1

N

∣∣∣∣∣∣
N∑

j=1

eiφ j

∣∣∣∣∣∣
, (2)

where N is the number of lasers in each group and φ j the phase
of the jth laser. If the group is coherent in phase, we have
r(t ) � 1. On the other hand, if the group is incoherent, then
r(t ) � 0. In Figs. 9(a)–9(d) we present the order parameter for
groups I, II, III, and IV oscillating as in Fig. 5, respectively.
The oscillations of the order parameter for all the groups under
0.5 indicate the lack of phase synchronization between the
lasers in each group as also shown in the snapshot in Fig. 6.

To estimate the spatial coherence of the electric field ampli-
tudes under time evolution, we use, as an appropriate quantity,
the local curvature of the electric field amplitude distribution
within each laser group calculated for the sufficiently long
time interval of 2 × 105 [30]. This is done by applying the
discrete Laplacian DE on the spatial data of the amplitude of
the electric field as follows:

DE j (t ) = |Ej+1(t )| + |Ej−1(t )| − 2|Ej (t )|. (3)

Figure 10 shows the spatiotemporal evolution of the ab-
solute values of the local curvature on a logarithmic scale
corresponding to the oscillations shown in Fig. 5(b). The local
curvature, properly rescaled with respect to its maximum and
minimum values, is shown to be significantly larger for group
II in comparison to the other laser groups. This particular
behavior holds for any system size and suggests the possibility

r 
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FIG. 9. (a)–(d) Radius of the complex order parameter for laser oscillations in groups I, II, III, and IV for a system as in Fig. 5, on average
over time, indicating the lack of phase synchronization.
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FIG. 10. Temporal evolution of the local curvature |DE(t )| on
a logarithmic scale, for the array in Fig. 5. For low oscillation
amplitudes close to the steady state, as in groups I, III, and IV, the
local curvature, properly rescaled with its maximum and minimum,
is lower than 10−4, indicating very uniform amplitude distributions,
in contrast with the high amplitudes in case II, where the local
curvature takes values close to unity. All other parameters are as in
Fig. 5.

of achieving control of spatial patterns of large and small
oscillations.

In all previous calculations, it has been assumed that
the frequency detuning between all lasers is equal to 0.
However, we have carried out an extensive study of what
happens in the presence of detuning as follows: In Fig. 11,
the temporal evolution of the local curvature is presented
for the electric field amplitudes shown in Fig. 5(b), where
the detunings ω j have been chosen from a normal random
distribution with mean 0 and standard deviation equal to
σω = 3η. Note that a proper consideration of the level of
detuning must be made in relation to the coupling strength
[31,32]. In comparison to Fig. 10, it is evident that all the
qualitative characteristics of oscillation amplitude behaviors
are quite robust even under the presence of strong random
detuning.

As an example of extremely localized oscillations, we
consider the case where only one laser in the array ex-
hibits high-amplitude oscillations, while all other lasers in the
system are close to a steady state. Such a configuration is
schematically presented in Fig. 12(a), where all lasers are as-
signed pumping rate values alternating between P = 1.5 and
P = 1.0 except the central laser, which has P = 0.4. Under
this pumping distribution, Fig. 12(b) displays a snapshot of
the electric fields for the whole system, where the middle
laser undergoes “breatherlike” localized oscillations [33,34].
The temporal evolution of the local curvature corresponding

FIG. 11. Temporal evolution of the local curvature |DE(t )| on
a logarithmic scale as in Fig. 10, in the presence of detuning.
The detunings ω j for all four groups are chosen from a normal
random distribution with mean 0 and standard deviation σω = 3η.
The behavior of the system is similar to that shown in Fig. 10,
implying that the coexistence of small and large oscillations remains
robust even for large values of detuning. All other parameters are as
in Fig. 5.

to this configuration is plotted in Fig. 12(c). The coupling
strength η = 0.0005 is sufficient to induce high-amplitude
oscillations for the middle laser, while the remaining part of
the system is unaffected by the middle laser’s oscillations.
In a similar manner, high-amplitude oscillations can be in-
duced in more than one selected distant laser within the same
array.

In all previous cases of coupled-laser arrays, including
small and large arrays, it is shown that the underlying mech-
anism of spatially localized oscillations is based on the dif-
ferential pumping in the following way: Differential pumping
results in the existence of strongly asymmetric phase-locked
states with significantly different electric field amplitudes
[20]. These states are stable up to the Hopf bifurcation point,
where they give rise to stable limit cycles that are also
asymmetric both in terms of the mean values of the electric
field oscillations (that are close to the asymmetric phase-
locked state from which they emerged) and in terms of the
electric field oscillation amplitudes [18]. In all cases, it is
shown that when the pumping difference is large, the lasers
with the strongest pumping have almost-constant electric
field values, whereas the other lasers undergo high-amplitude
oscillations as shown in Figs. 1, 3, and 5. On the other
hand, small pumping differences are not capable of fixing
some of the electric fields at constant values and all lasers
oscillate with comparable amplitudes [18]. From the above
considerations, the guidelines for achieving a specific pattern
of localized amplitude oscillations are (a) to operate the
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FIG. 12. (a) Schematic of a circular array where the blue laser
in the middle has P = 0.4, while the red ones have P = 1.5 and the
green ones P = 1.0. (b) Snapshots of the amplitude of the electric
field in an array of M = 200 lasers with inhomogeneous pumping
as in (a). (c) Temporal evolution of the local curvature |DE(t )| on
a logarithmic scale, for the whole system. The coupling strength
η = 0.0005 is sufficient for large oscillations of the dimer in the
middle, whereas the remaining part of the system exhibits oscilla-
tions of negligible amplitude. Other parameters: a = 5, T = 400, and
ω j = 0.

system beyond the Hopf bifurcation point in order to support
stable limit cycles and (b) to have significant differences
in pumping strengths between the lasers with almost-fixed
electric field amplitudes and the oscillating lasers, with the
former having the higher pumping strengths. The appropriate
pumping scheme depends weakly on the coupling strength
and on the system size and the behavior of the system,
whereas the output of the system is shown to be robust under
the presence of random frequency detunings between the
lasers.

IV. CONCLUSIONS

In conclusion, we have theoretically shown that high-
amplitude oscillations coexist with very low-amplitude os-
cillations in small as well as large arrays of coupled lasers,
depending on the distribution of their pumping rates. We have
demonstrated that, by judiciously choosing the pumping rate
scheme, we can control the spatial extent of the part of the
array where high-amplitude oscillations take place as well as
the distribution of the oscillation amplitudes within this part.
Our findings provide guidelines for the generation of a desired
spatially localized oscillation pattern for the output electric
field, suggesting that the system has to operate beyond the
Hopf bifurcation point in order to support stable self-sustained
oscillations and that the pumping scheme should consist of
high values of pumping rates for the lasers with constant
electric field amplitudes and significantly lower values for the
lasers with electric fields undergoing high-amplitude oscilla-
tions. Although the presented mechanism is capable of con-
trolling the amplitudes, the phases of the electric fields remain,
in general, uniformly distributed. The dynamical behavior of
the system is also shown to be robust under different initial
conditions, random frequency detuning, and different system
size.

These results provide understanding of the underlying
mechanism for the coexistence of high- and low-amplitude os-
cillations and its crucial dependence on the electrical pumping
scheme. Since the latter is the most conveniently accessible
parameter and can be dynamically controlled in a laser array,
the results are promising for applications in reconfigurable
and multifunctional photonic devices.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education
and Science of the Russian Federation in the framework
of the Increase Competitiveness Program of NUST “MI-
SiS” (Grant No. K4-2018-049), the ORAU grant “Taming
Chimeras to Achieve the Superradiant Emitter,” 2017–2020,
from Nazarbayev University, and a grant from the Ministry
of Education and Science of the Republic of Kazakhstan, via
Contract No. 059-2019.

[1] F. Rogister and R. Roy, Phys. Rev. Lett. 98, 104101 (2007).
[2] M. Chabanol and V. Zehnlé, Phys. Rev. A 63, 053809 (2001).
[3] J. Shena, J. Hizanidis, N. E. Kouvaris, and G. P. Tsironis, Phys.

Rev. A 98, 053817 (2018).
[4] S. S. Wang and H. G. Winful, Appl. Phys. Lett 52, 1774 (1988).
[5] H. G. Winful and L. Rahman, Phys. Rev. Lett. 65, 1575 (1990).
[6] L. Fabiny, P. Colet, R. Roy, and D. Lenstra, Phys. Rev. A 47,

4287 (1993).
[7] K. S. Thornburg, M. Möller, R. Roy, T. W. Carr, R.-D. Li, and

T. Erneux, Phys. Rev. E 55, 3865 (1997).
[8] H. G. Winful, Phys. Rev. A 46, 6093 (1992).
[9] F. Böhm, A. Zakharova, E. Schöll, and K. Lüdge, Phys. Rev. E

92, 069905(E) (2015).

[10] J. Shena, J. Hizanidis, V. Kovanis, and G. P. Tsironis, Sci. Rep.
7, 42116 (2017).

[11] J. Shena, J. Hizanidis, P. Hövel, and G. P. Tsironis, Phys. Rev.
E 96, 032215 (2017).

[12] T. Erneux and P. Glorieux, Laser Dynamics (Cambridge Uni-
versity Press, Cambridge, UK, 2010).

[13] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J.
Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, and
M. Khajavikhan, Phys. Rev. Lett. 120, 113901 (2018).

[14] L. Feng, R. El-Ganainy, and L. Ge, Nat. Photon. 11, 752 (2017).
[15] L. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers
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