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Abstract

We consider the gravitational collapse of a self-gravitating spherical dust cloud in the

Hamiltonian formalism. We address both homogeneous and inhomogeneous cases. Our

novel derivation of the Hamiltonian of the system is based on an improved variational prin-

ciple. It differs from usual treatments due to the presence of an extra boundary term added

to the Hilbert action. As expected, the standard equations of motion are retrieved. How-

ever, differently from other treatments, the total Hamiltonian obtained with our procedure

in the Schwarzschild time-gauge is identical to the total mass of the system as measured

from infinity, as it would be expected. Implications for the quantization of the system are

suggested.
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I. INTRODUCTION

Analytical toy models for gravitational collapse in General Relativity (GR) are of
great importance from several perspectives. Firstly, they provide dynamical scenarios
that lead to the formation of black holes from regular initial data [2]. Secondly, they
can be used to investigate the mathematical properties of the theory, for example
in the Hamiltonian formalism [3]. Thirdly, they provide a simple test-bed to study
possible pathways towards the quantization of the gravitational field, since we expect
that the singularities that generically arise in GR should not be present in a fully
quantum-gravitational model (see, e.g. [4, 5]).

Einstein’s equations for collapse of perfect fluids are formally identical to the
equations describing the universe expansion in the Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmological models. The simplest and most studied solution of
Einstein’s equations describing collapse is the so-called Oppenheimer-Snyder-Datt
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(OSD) model which describes the complete collapse of a spherical cloud composed of
homogeneous pressureless matter (i.e. dust) [6]. It is well known that OSD collapse
in co-moving coordinates leads to the formation of a static black hole in a finite
co-moving time, even though far away observers never see the boundary of the cloud
crossing the horizon.

The simplest extension of the OSD solution is the so-called Lemaître-Tolman-
Bondi (LTB) collapse model, which describes a spherical cloud composed of inho-
mogeneous dust [7]. The interest in the LTB solution as a theoretical toy model for
collapse resides in the fact that, depending on the radial dependence of the energy-
density at the initial time, the complete collapse may produce a naked singularity,
i.e. at the instant of formation, the central singularity may not be covered by the
horizon [8].

Obtaining the Hilbert action and a global Hamiltonian for an asymptotically flat
solution of Einstein’s equations is not a trivial matter since typically integrals diverge
at spatial infinity. However, one would expect the Hamiltonian of the system to be
related to the total energy as measured by observers at spatial infinity. In [9] it was
shown that by performing the Legendre transformations on an appropriate finite
surface one obtains a quasi-local Hamiltonian which in turn leads to the correct
global Hamiltonian once the surface is shifted to infinity.

In the present article we apply the above idea to the OSD and LTB cases. The
same procedure was used in the case of collapse of a thin shell in [1], where the
Hamiltonian for an observer at infinity was found to be equal to the total mass of
the collapsing shell regardless of the equation of state of the matter content. As
expected, the equations of motion obtained from the improved variational principle
coincide with the equations of motion obtained by different procedures. For different
derivation of this equality see [10] and references therein.

The importance of finding the Hamiltonian that correctly describes the energy of
the system however appears when one attempts to quantize the system. It is well
known that different quantization procedures, based on different Hamiltonian for-
mulations, provide different results, making nontrivial the issue of quantizing even
the simplest gravitating systems [4]. The hope is that the results obtained for col-
lapse with the improved variational principle may provide a path towards a viable
quantization of gravitational systems.

The paper is organized as follows: In section II we review the matching between
the collapsing dust cloud and the exterior Schwarzschild spacetime. Section III is
devoted to the application of the variational principle developed in [9] to the case of
dust collapse. In section IV we obtain the Hamiltonian for dust collapse using the
above variational principle. Finally, in section V we summarize the results of this
article and mention the possible implications for quantum gravity.

Throughout the paper we make use of natural units setting c = G = 1.
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II. MATCHING DUST COLLAPSE TO SCHWARZSCHILD EXTERIOR

The general theory for matching two manifolds across a hyper-surface was devel-
oped by Darmois and Israel [11] and it was applied to spherical symmetry by many
authors [12]. In the following we will consider the matching between the collapsing
dust and an exterior Schwarzschild metric across a spherical surface. Cosmological
models can be used, to some extent, for describing collapse to a black hole (BH)
after implementing the condition that one deals with an isolated object. In our case
this reduces to the problem of matching a finite region of FLRW or LTB spacetime
with the Schwarzschild geometry. Therefore, in what follows the interior region is
described by a portion of FLRW or LTB that extends up to a finite boundary radius,
whereas the exterior region is described by the Schwarzschild line element. The in-
terface between the matter field in the interior and the vacuum exterior is used to
match both spacetimes. In what follows we apply the standard method of match-
ing thus requiring continuity of the first and second fundamental forms across the
hypersurface separating the two manifolds (see, e.g. [13]).

A. Matching conditions for FLRW

For the interior, we consider the homogeneous collapse of dust with the line ele-
ment in co–moving hyperspherical coordinates {τ, χ, θ, φ} given by

ds2− = −dτ 2 + a(τ)2
[

dχ2 + h2(χ)dΩ2
]

. (1)

We consider the marginally bound (corresponding to flat cosmological models) and
bound (corresponding to closed cosmological models) cases simultaneously. The
unbound (i.e. open) case is somehow less relevant for collapse as it describes a
matter cloud with positive initial velocity at spatial infinity. The function h(χ) is
given by

h(χ) =











χ , in the flat case (k=0)

sin(χ) , in the closed case (k=+1)

sinh(χ) , in the open case (k=-1)

. (2)

The interior is filled with a homogeneous field of comoving dust particles, that is,
the energy-momentum tensor is given by

T µν− = ǫuµuν , where u = uµ∂µ = ∂τ . (3)
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The conservation of energy-momentum implies that ǫ = ǫ0/a
3 with ǫ0 > 0. For the

exterior, we have the Schwarzschild geometry in Schwarzschild coordinates {t, r, θ, φ}

ds2+ = −
(

1− 2M

r

)

dt2 +
1

1− 2M
r

dr2 + r2dΩ2 . (4)

The matching will be performed on the hypersurface Σ defined in parametric form
by Φ−(τ, χ) = χ−χb = 0 in the interior, and Φ+(t, r) = r−ψ(t) = 0 in the exterior.
Note that χb > 0 in the flat case while 0 < χb < π/2 in the closed case. On Σ
we can consider τ = f(t). We choose the coordinates {t, θ, φ} to parameterize the
hypersurface. The metrices on Σ are then given by

ds2+
∣

∣

Σ
=−

(

1− 2M

ψ
− ψ̇2

1− 2M
ψ

)

dt2 + ψ2dΩ2, (5)

ds2−
∣

∣

Σ
=− ḟ 2dt+ a2h2(χb)dΩ

2 . (6)

Then, the first matching condition gives (see App. A):

ḟ 2 =

(

dτ

dt

)2

= 1− 2M

ψ
− ψ̇2

1− 2M
ψ

, (7)

ψ(t) = h(χb)a(τ(t)) , (8)

where with dot we denote partial differentiation with respect to the Schwarzschild
time t. We can eliminate ψ from (7) by using (8) to obtain

ḟ 2 =

(

1− 2M
h(χb)a

)2

1− 2M
h(χb)a

+ (h(χb)a′)2
, (9)

where the prime denotes differentiation with respect to τ .
The normal co-vectors n

± = n±
µ dxµ± on both sides read

n
+ = |ḟ |−1

(

dr − ψ̇ dt
)

, n
− = a dχ , (10)

where we made use of equation (7) for brevity. The nonvanishing components of the
second fundamental form and their traces on Σ are given by

K+
tt = − ḟ

2

ψ̇
∂t

[

1

|ḟ |

(

1− 2M

ψ

)]

,

K+
θθ = |ḟ |−1(ψ − 2M) , K+

φφ = |ḟ |−1(ψ − 2M) sin2 θ ,

K−
θθ = ah∂χh

∣

∣

χ=χb
, K−

φφ = a sin2(θ)h∂χh
∣

∣

χ=χb

K− =
2

ah
∂χh
∣

∣

χ=χb
.

(11)
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The matching condition
[Kθθ] = 0 = [Kφφ] (12)

then yields that

(a′)2 + k =
2M

h3(χb)a
, (13)

where we used the first matching condition, that is, (7) and (8). The remaining
matching condition K+

tt = 0 can be shown to be satisfied if the other matching
conditions (7), (8) and (12) are already imposed.

So far we have three equations that might be used to determine the unknown
functions a, ψ and f . What remains undetermined is the mass parameter M in the
exterior region. This can be fixed by imposing the Friedmann equation

(a′)2 + k =
8π

3
ǫa2 . (14)

Comparing this to equation (13) yields

M =
4π

3
h3(χb)ǫ0 . (15)

Let us now investigate the hyperbolic angle µ between surfaces τ = const. on one
side and surfaces t = const. on the other. The unit vector orthogonal to the surfaces
τ = const. on the OSD side is

mµ
− = {1, 0, 0, 0} , (16)

whereas the unit vector orthogonal to the surfaces t = const. on the Schwarzschild
side reads

mµ
+ =

{

1
√

1− 2M/r
, 0, 0, 0

}

. (17)

The hyperbolic angle µ is defined to be

|µ| := arcosh|gµνmµ
+m

ν
−| . (18)

Consider the normalized four velocity of the dust particles on the boundary Σ. In
the FLRW coordinates it is given by

u = ∂τ = mµ
−∂µ = m− , (19)

while in the Schwarzschild one’s it is given by

u =
∂t + ψ̇∂r

‖∂t + ψ̇∂r‖
. (20)
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Since m− = u it follows that

cosh µ = |〈u,n〉| =
1− 2M

ψ
√

(

1− 2M
ψ

)2

− ψ̇2

. (21)

Furthermore we will choose the sign of µ in such a way that it coincides with the
sign of ψ̇. One can then write

ψ̇ =

(

1− 2M

ψ

)

tanhµ . (22)

Using the above equation, the matching condition (12), which is simply the second
Friedmann equation, can then be written as

1− 2M

ψ
=

1− h2(χb)k

cosh2 µ
. (23)

B. Matching conditions for LTB

The above derivation can be extended in a straightforward way to the case of
inhomogeneous dust. Again we use co-moving coordinates {τ, ρ, θ, φ} on the LTB
side and Schwarzschild coordinates {t, r, θ, φ} on the Schwarzschild side.

The Schwarzschild metric is given by (4) while the LTB metric reads

ds2− = −dτ 2 +
(∂ρR)

2

1 + 2E
dρ2 +R2dΩ2 , (24)

where R = R(ρ, τ) is the aerial radius and E = E(ρ) is one arbitrary function re-
sulting from the integration of Einstein’s equations. Another function that is useful
to consider is the Misner-Sharp mass F (ρ) which defines the amount of matter con-
tained within the co-moving shell labelled by ρ [14]. F (ρ) is related to the dust
density by

4πǫ =
∂ρF

R2∂ρR
, (25)

from which it is easy to see that it represents the active gravitational mass. Notice
that for dust collapse F does not depend on τ , meaning that the amount of matter
contained within the co-moving radius ρ is conserved throughout collapse. Then
the system of Einstein’s equations is fully solved once one integrates the equation of
motion for R(τ, ρ) which can be given in the form

(∂τR)
2 =

2F

R
+ 2E . (26)
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Solutions to (26) read (in parametric form):

E < 0 , R = − F

2E
(1− cosα) , α− sinα =

(−2E)3/2

F
(τ − tB) ; (27)

E = 0 , R =

(

9

2
F (τ − tB)

2

)1/3

; (28)

E > 0 , R =
F

2E
(coshα− 1) , sinhα− α =

(2E)3/2

F
(τ − tB) , (29)

where α is an auxiliary angle and tB is another function of ρ, which in cosmology
is called the big bang time. Notice that in general, Schwarzschild exterior and LTB
interior may define one LTB spacetime as the Schwarzshild metric belongs to the
LTB family.

The matching hypersurface Σ has the topology of S2 × R. Similarly to the OSD
case, we parameterize this hypersurface in the following way: Φ−(τ, ρ) = ρ− ρb = 0
from the interior, and Φ+(t, r) = r − ψ(t) = 0 from the exterior. It follows that

dr = ψ̇ dt , (30)

and by choosing {t, θ, φ} with τ = f(t) as a coordinates on the hypersurface we get
the line elements as

ds+
∣

∣

Σ
= −

(

1− 2M

ψ
− ψ̇2

1− 2M
ψ

)

dt2 + ψ2dΩ2 ,

ds−
∣

∣

Σ
= −ḟ 2dt2 +R2

bdΩ
2 , Rb = R(ρb, t) . (31)

Again, we have the following conditions for continuity of the metric, i.e. the first
matching conditions:

ḟ 2 = 1− 2M

ψ
− ψ̇2

1− 2M
ψ

, (32)

ψ = Rb , ψ̇(t) =
∂τ

∂t
∂τRb = ḟ ∂τRb . (33)

In analogy with equation (9), combining the above equations gives

ḟ 2 =

(

1− 2M
Rb

)2

1− 2M
Rb

+ (∂τRb)
2 . (34)
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Normal vectors to the boundary hypersurface read

n
+ = |ḟ |−1

(

dr − ψ̇dt
)

, n
− =

∣

∣

∣
∂ρRb/

√

1 + 2Eb

∣

∣

∣
dρ . (35)

We can calculate the extrinsic curvature of the boundary surface as:

K+
tt = − ḟ

2

ψ̇
∂t

[

1

|ḟ |

(

1− 2M

ψ

)]

;

K+
θθ = |ḟ |−1 (ψ − 2M) , K−

θθ = Rb

√

1 + 2Eb ;

K+
φφ = K+

θθ sin
2(θ) , K−

φφ = K−
θθ sin

2(θ) . (36)

In addition, the trace of the extrinsic curvature reads

K− =
2
√
1 + 2Eb
Rb

. (37)

The second matching conditions then reduce to

K+
θθ = K−

θθ , |ḟ |−1 (ψ − 2M) = Rb

√

1 + 2Eb , (38)

and using (34) we obtain

(∂τRb)
2 =

2M

Rb

+ 2Eb , (39)

which is equivalent to (26) provided that M = Fb.
Finally, performing calculations analogously to (16)-(21), we can express the field

equation (26) in terms of hyperbolic angle (with no explicit time derivative) as follows

1− 2M

ψ
=

1 + 2Eb

cosh2 µ
. (40)

III. VARIATIONAL PRINCIPLE

Following [1] the full action for our model contains the following contributions

S =

∫

D−

Lgrav +

∫

D−

Ldust +

∫

Σ

Lgrav +

∫

D+

Lgrav +

∫

∂D

Lboundary (41)

The domains are sketched in figure 1. The matching between Friedmann or LTB
interior D− and Schwarzschild exterior D+ is implemented here by a boundary term
on the matching hypersurface Σ, given by the jump in the trace of the ADM mo-
mentum on Σ. The mass of the Schwarzschild exterior is taken to be dynamical,
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CRΣD−D+

K2

K1

time

Figure 1: Total domain of integration D, consisting of Friedmann (and LTB)
interior D− and Schwarzschild exterior D+, with Σ as the matching surface. As

boundaries we have a surface of constant Schwarzschild radius CR, where we take
R → ∞ at the end, and two surfaces of constant time K1/2. Note that K1/2 are not
smooth where they overlap Σ, since in the interior we use dust proper time, and in

the exterior Schwarzschild Killing time.

M = M(t). All the necessary Gibbons-Hawking-York (GHY) terms are included in
the boundary term

∫

∂D
Lboundary. In addition to the GHY terms on the surfaces of

constant time K1 and K2, we require edge terms on the intersection Σ ∩ K, where
K := K1∪K2. For a discussion of such terms see [15]. Lastly we require a GHY term
on the spacelike boundary of infinite curvature radius CR

∣

∣

R→∞
.

When we have the Lagrangian in place, the dynamical quantities to be varied will
be the degrees of freedom left open for the FLRW or LTB interior and Schwarzschild
exterior: the rescaled scale factor ψ(t) and the Schwarzschild mass M(t). As usual
when applying the variational principle these dynamical quantities are kept fixed at
the timelike boundaries K1/2.

We will further work in a gauge fixed picture where we choose the coordinate
frames in the interior and exterior as we have done in the last section. The final result
will thus be an actual physical Hamiltonian generating evolution in Schwarzschild
Killing time t, and not a constraint.
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A. Schwarzschild exterior

Let us first take care of all exterior terms in the action. We start with the boundary
terms in

∫

∂D
Lboundary, excluding the one for D+ ∩K1/2. The latter will be discussed

with the respective interiors. First we have the GHY term on CR. For this we need
the extrinsic curvature on that surface. The spacelike normal vector on CR is given
by

n =

√

1− 2M

R
∂r . (42)

The only non-vanishing component of nµ is nr = 1/
√

1− 2M/r. Therefore the
extrinsic curvature tensor is given by

Kij = −Γrijnr , where i, j = t, θ, φ . (43)

The non-vanishing components of the Christoffel symbols Γrij are

Γrtt =
(R− 2M)M

R3
, Γrθθ = −(R− 2M) , Γrφφ = −(R − 2M) sin2 θ . (44)

Finally we obtain the trace of the ADM momentum as defined in Appendix A,

Q = 2(3M − 2R) sin θ. (45)

This gives for the corresponding GHY boundary term

− 1

16π

∫

CR

d3y Q = R(t2 − t1)−
3

2

∫ t2

t1

dtM (46)

To obtain the final expression for
∫

CR
Lboundary we need take the term from above

and subtract the same surface term which we would obtain by embedding the surface
into flat spacetime, e.g. by using the metric

ds20 = −
(

1− 2M

R

)

dt2 + dr2 + r2dΩ2 (47)

and considering the surface r = R. The trace of the ADM-momentum for this surface
is given by

Q0 = −2(R−M) sin θ +O(1/R2) . (48)

Then
∫

CR

Lboundary = − 1

16π
lim
R→∞

∫

∂D

d3y(Q−Q0) = −1

2

∫ t2

t1

dtM . (49)
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Next we compute the GHY term on surfaces of constant t = t1/2 (i.e. D+ ∩K1/2).
The timelike normal vector on that surface reads

n = ± 1
√

1− 2M
r

∂t , (50)

where we take the upper sign for the surface with constant t2 and the lower sign for
the surface with constant t1. The only non-vanishing component of the co-vector nµ

is nt = ∓
√

1− 2M
r

. Therefore the extrinsic curvature on D+ ∩ K1/2 is given by

Kij = −Γtijnt , where i, j = r, θ, φ . (51)

The only non vanishing component of the connection is Γtrr = Ṁr2/(r − 2M)3 and
therfore the only non vanishing component of the extrinsic curvature is

Krr = ± Ṁr3/2

(r − 2M)5/2

∣

∣

∣

∣

∣

t=t1/2

. (52)

This gives

Q = ±2
Ṁr3

(r − 2M)2
sin θ . (53)

The corresponding boundary term is therefore

∫

D+∩K1

Lboundary +

∫

D+∩K2

Lboundary =
1

2

[

∫ R

ψ(t)

dr
Ṁr3

(r − 2M)2

]t2

t1

. (54)

There are joint terms on the intersections between Σ with K1 and K2. Following [15]
they are given by

∫

Σ∩K1/2

Lboundary =
1

8π

∫ √
γd2y arsinh(nµm

µ) , (55)

where n = 1/
√

1− 2M/ψdt is the normal covector to K1/2 on the Schwarzschild side

and m = −(1/ḟ)dx is the normal covector to Σ. We obtain that

∫

Σ∩K

Lboundary =
1

2

[

ψ2µ
]t2

t1
. (56)
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Next, we want to compute the Schwarzschild bulk term

∫

D+

Lgrav =
1

16π

∫

D+

d4x
√−g+ (4)R+ . (57)

The Ricci scalar for the Schwarzschild spacetime with a time dependent mass term
M =M(t) is given by

(4)R+ =
∂

∂t

2Ṁr

(r − 2M)2
. (58)

Using Leibniz’s integral rule we find that

∫

D+

d4x
√−g+ (4)R+ = 4π

∫ t2

t1

dt

∫ R

ψ(t)

dr r2 (4)R+

= 8π

[

∫ R

ψ(t)

dr
Ṁr3

(r − 2M)2

]t2

t1

+ 8π

∫ t2

t1

dt
ψ̇Ṁψ3

(ψ − 2M)2
.

(59)

Hence
∫

D+

Lgrav =
1

2

[

∫ R

ψ(t)

dr
Ṁr3

(r − 2M)2

]t2

t1

+
1

2

∫ t2

t1

dt
ψ̇Ṁψ3

(ψ − 2M)2
. (60)

The first term on the right hand side cancels with the GHY term on K ∩ D+ given
by equation (54).

B. FLRW interior

Next, we want to consider the gravitational and matter terms on the Friedmann
side, that is on D− including the GHY terms on D− ∩ K,

Sinterior =

∫

D−

Lgrav +

∫

D−

Ldust +

∫

D−∩K

Lboundary . (61)

The Gibbons-Hawking-York term SGHY provides a contribution on the spacelike
boundary at constant times on the Friedmann side. The Ricci scalar on the Fried-
mann side is given by

(4)R− =
6

a2
(

a′2 + aa′′ + k
)

, (62)

and the trace for the extrinsic curvature on D− ∩ K is K = 3a′/a.
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According to Kuchař and Brown [16] we can model the matter action by

Ldust = −1

2

√−g ǫ (gµνuµuν + 1) , (63)

with ǫ being the dust density and u = dT = T ′dτ being the four velocity co-vector
of the dust field. The variable T (τ) is the proper time of the dust particles. The
dust density ǫ is not dynamical and serves a Lagrange multiplier, which ensures the
normalization of u.

The full action now reads

Sinterior =
C

2

τ2
∫

τ1

dτ a3
[

−a
′2

a2
+

k

a2
+

4π

3
ǫ
(

T ′2 − 1
)

]

, (64)

where we defined the constant C := 3
∫ χb
0

dχ h2(χ).
For the sake of simplicity we first perform the Legendre transform in the matter

sector. The momentum conjugate to the dust proper time reads

pT =
4πCa3ǫ

3
T ′ . (65)

Variation with respect to ǫ yields the primary constraint pǫ = ∂L/∂ǫ′ = 0. The sec-
ondary constraint p′ǫ = 0 yields that ǫ = 3pT/(4πCa

3). We immediately implement
this constraint equation after performing the Legendre transform in T . The action
then becomes

Sinterior =
C

2

τ2
∫

τ1

dτ

[

a3
(

−a
′2

a2
+
k

a2
− 2pT
Ca3

)]

. (66)

Since pT is a constant of motion we can keep it in the action not as a dynamical
quantity but as an external parameter, controlling the dust density in the interior.
To this end we have dropped in the above the Liouville term pTT

′. Note that
matching exterior and interior as done in the last section leads to the identification
M = h3(χb)pT/C, but we will not implement this before variation.

We now switch to the variable ψ = a/h(χb) and to the Schwarzschild time t to
get

Sinterior =
1

2

t2
∫

t1

dt

√

√

√

√1− 2M

ψ
− ψ̇2

1− 2M
ψ



−2pT +
Ckψ

h(χb)
− Cψ

h3(χb)

ψ̇2

1− 2M
ψ

− ψ̇2

1− 2M
ψ





=
1

2

t2
∫

t1

dt

√

1− 2M

ψ

[

−2pT + C
h(χb)

kψ

cosh µ
− C

h3(χb)
(ψ − 2M)

sinh2 µ

cosh µ

]

.

(67)
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Next, we wish to compute the term on the matching surface Σ. We need to com-
pute the jump [Q] in the trace of the ADM momentum on the surface Σ. We already
have the extrinsic curvature on the Friedmann side. The result on the Schwarzschild
side in (11) changes due to the time dependence of M . For the computation we
switch to the coordinate x = r − ψ. The normal co-vector is then

n =
1

ḟ
dx . (68)

K+
θθ and K+

φφ stay the same as in (11), but

K+
tt = − ḟ

2

ψ̇
∂t

[

1

|ḟ |

(

1− 2M

ψ

)]

−
Ṁḟ

[

ψ2ψ̇2 + (ψ − 2M)2
]

ψψ̇(ψ − 2M)2
. (69)

From this we get

[Q] = 4 sin θ

[

ψ2

2ḟ
K+
tt − ψ + 2M + ∂χh(χb)ψḟ

]

. (70)

Finally
∫

Σ

Lgrav = − 1

16π

∫

Σ

[Q]d3y

=

∫ t2

t1

dt

(

−1

2

ψ̇Ṁψ3

(ψ − 2M)2
− 1

2
ψ2µ̇+

3M

2
− ψ + ∂χh(χb)ḟψ

)

, (71)

where we have used that

ψ2ψ̈

2ḟ 2
=

1

2
ψ2µ̇+

ψ̇ψ

ḟ 2
(

1− 2M
ψ

)

(

−Ṁ +
Mψ̇

ψ

)

. (72)

The first term cancels with the one from the Schwarzschild bulk (60), and the second
term can be partially integrated. The resulting boundary term on the t = const.
surfaces cancels with the edge (56).

Now, combining everything we see that what remains is the Friedmann term
(67) and the boundary term on CR and Σ apart from the first term. Finally the
Lagrangian is given by

Ltot = −
ψ
√

1− 2M
ψ

coshµ

[

C

2h3(χb)

(

1− 2M

ψ

)

sinh2 µ− C

2h(χb)
k +

pT
ψ

− ∂χh(χb)

]

+

+M − ψ + ψψ̇µ . (73)
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Since this Lagrangian does not depend on Ṁ , one can express the mass as a function
of ψ and ψ̇ by enforcing the equation of motion for M ,

∂Ltot

∂M
= 0 . (74)

Using
∂µ

∂M
=

2

ψ

sinhµ coshµ

1− 2M
ψ

(75)

we then find

−
√

1− 2M

ψ
coshµ+

C

2h3(χb)

(

1− 2M

ψ

)

sinh2 µ = − C

2h(χb)
k+

pT
ψ

−∂χh(χb) . (76)

This expression will now define M as a function of ψ and µ. We can then simplify
(73) and get

Ltot = − C

h3(χb)
ψ

(

1− 2M

ψ

)
3

2 sinh2 µ

cosh µ
−M + ψψ̇µ . (77)

C. LTB interior with E = const.

First we calculate the action for LTB interior and τ = const. boundaries. The
Ricci scalar built from LTB metric is

(4)R
√
−g =

∂ρ
(

R +R (∂ρR)
2 − (1 + 2E)R

)

√
1 + 2E

sin θ . (78)

To perform the integration along the ρ coordinate, we will impose the condition
E = const. which reduces the class of LTB models but still includes inhomogeneous
matter and curvature distribution cases. Thus, the gravitational part of LTB interior
and boundary action reads

SLTB =
1

4

∫ t2

t1

(

Rb (∂ρRb)
2 − 2ERb

)

√
1 + 2E

dτ − 1

2

∫ ρ0

0

R2∂ρR√
1 + 2E

(

∂τ∂ρR

∂ρR
+ 2

∂τRb

R

)

dρ .

(79)
The boundary term can be written as

Sboundary =
3

4

∫ t2

t1

dτ
Rb (∂ρRb)

2

√
1 + 2E

, (80)
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which leads to the total action

Sgrav = −1

2

∫ t2

t1

dτ

(

Rb (∂ρRb)
2 + ERb√

1 + 2E

)

. (81)

Changing variables to t and ψ gives

Sgrav = − 1

2
√
1 + 2E

∫ t2

t1

dt

√

√

√

√1− 2M

ψ
− ψ̇2

1− 2M
ψ





ψ̇2ψ

1− 2M
ψ

− ψ̇2

1− 2M
ψ

+ Eψ



 , (82)

which using the hyperbolic angle can be rewritten as

Sgrav =
1

2

∫ t2

t1

dt

√

1− 2M

ψ

( −Eψ
coshµ

√
1 + 2E

− (ψ − 2M)√
1 + 2E

sinh2 µ

coshµ

)

. (83)

The jump in the extrinsic curvature on the shell reads

[Q] = 4 sin θ

(

ψ2

2ḟ
K+
tt − ψ + 2M +

√
1 + 2Eψḟ

)

. (84)

Lastly we consider the matter. The Lagrangian density for dust is

Ldust = −1

2

√−gǫ (gµνuµuν + 1) . (85)

The action can be written as

Sdust = 2π

∫

dτ

∫

dρ
R2∂ρR√
1 + 2E

ǫ(ρ)(T ′2 − 1) . (86)

In the following, we will assume that the density has an integral form given by the
equation of motion (25) for LTB. When putting F (0) = 0 this allows us to write

Sdust =
1

2

∫

dτ
Fb√

1 + 2E

(

T ′2 − 1
)

. (87)

Comparing with (64) we see that in analogy to the FLRW case the momentum pT
is given by

pT =
Fb√

1 + 2E
T ′ , (88)
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and as a secondary constraint we get the identification

pT =
Fb√

1 + 2E
. (89)

Recall that matching interior and exterior is done by setting Fb =M . To implement
this here we will set M =

√
1 + 2E pT after variation.

In total this leads to the Lagrangian

Ltot = −
ψ
√

1− 2M
ψ

coshµ

[

1

2
√
1 + 2E

(

1− 2M

ψ

)

sinh2 µ+
E

2
√
1 + 2E

+
pT
ψ

−
√
1 + 2E

]

+M − ψ + ψψ̇µ . (90)

Note that this Lagrangian can be obtained from the Lagrangian for an FLRW interior
(73) using the following identifications:

h(χb)

C3
→

√
1 + 2E , h2(χb)k → −E , ∂χh(χb) →

√
1 + 2E . (91)

It follows that the reduction undertaken for FLRW leading to (77) can also be done
here. The result will be (77) with the replacement (91).

IV. HAMILTONIAN FORMULATION

We can now discuss the Hamiltonian formulation for both the FLRW and LTB
interior at the same time. We will work with the Lagrangian (77), keeping in mind
that all results apply to the LTB model when identifying the constants involved
according to (91). As a first step to find the corresponding Hamiltonian we want to

compute the momentum conjugate to ψ. As Ltot = Ltot(ψ̇, µ(ψ̇),M(µ)), we get

pψ =
dLtot

dψ̇
=
∂Ltot

∂ψ̇
+

(

∂Ltot

∂µ
+
∂Ltot

∂M

∂M

∂µ

)

∂µ

∂ψ̇
. (92)
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From (77) and (76) we find

∂Ltot

∂ψ̇
= ψµ , (93)

∂Ltot

∂µ
= −ψ

(

1− 2M

ψ

)

tanhµ

(

C

h3(χb)

√

1− 2M

ψ

cosh2 µ+ 1

cosh µ
− 1

)

, (94)

∂Ltot

∂M
=

3C

h3(χb)

√

1− 2M

ψ

sinh2 µ

coshµ
− 1 , (95)

∂M

∂µ
= ψ

(

1− 2M

ψ

)

sinh µ

C
h3(χb)

√

1− 2M
ψ

cosh µ− 1

C
h3(χb)

√

1− 2M
ψ

sinh2 µ− coshµ
, (96)

and from (22) we find

∂µ

∂ψ̇
=

cosh2 µ
(

1− 2M
ψ

)

− 2
ψ
∂M
∂µ

sinh µ coshµ
(97)

=
cosh2 µ

1− 2M
ψ

C
h3(χb)

√

1− 2M
ψ

sinh2 µ− coshµ

C
h3(χb)

√

1− 2M
ψ

sinh2 µ (1− 2 cosh2 µ)− coshµ (1− 2 sinh2 µ)
. (98)

The momentum is then given by

pψ = ψµ− C

h3(χb)
ψ

√

1− 2M

ψ
sinhµ . (99)

Finally, the Hamiltonian can be expressed as

H = pψψ̇ − Ltot =M , (100)

as was the case in [1].
We will now demonstrate that the Hamiltonian (100) really gives the correct

equations of motion for the Oppenheimer–Snyder model. We have to keep in mind
that M(µ, ψ) is given by (76) and µ(ψ, pψ) in turn is implicitly given by (99). This
gives us the equations of motion as

ψ̇ =
∂M

∂µ

∂µ

∂pψ
, (101)

ṗψ = −∂M
∂ψ

− ∂M

∂µ

∂µ

∂ψ
. (102)
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As it turns out, it is more useful to consider µ̇ instead of ṗψ, which is then given by

µ̇ = −∂M
∂ψ

∂µ

∂pψ
. (103)

From (76) we get (96) as well as

∂M

∂ψ
=
M

ψ
+
pT
ψ

√

1− 2M
ψ

C
h3(χb)

√

1− 2M
ψ

sinh2 µ− cosh µ
, (104)

and from (99)

∂µ

∂pψ
=

1

ψ

C
h3(χb)

√

1− 2M
ψ

sinh2 µ− coshµ

C
h3(χb)

√

1− 2M
ψ

cosh2 µ− cosh µ
, (105)

where we have used (96).
In total, this gives us the equations of motion as

ψ̇ =

(

1− 2M

ψ

)

tanhµ , (106)

µ̇ = −M
ψ2

C
h3(χb)

√

1− 2M
ψ

(

sinh2 µ+ h3(χb)pT
CM

)

− coshµ

C
h3(χb)

√

1− 2M
ψ

cosh2 µ− coshµ
. (107)

We can see that the first equation simply gives us back the definition of the hyperbolic
angle µ from the canonical formalism.

To bring the equation for µ̇ into a recognizable form, we have to do a bit more
work. We want to demonstrate that the above is equivalent to the second Friedmann
equation in the form (23). Recall that for dust the first Friedmann equation follows
directly from the second one, meaning that this is sufficient to demonstrate that our
Hamiltonian gives the correct dynamics.

To this end we solve (76) for coshµ,

coshµ =
1

√

1− 2M
ψ





h3(χb)

C
±

√

(

∂χh(χb)−
h3(χb)

C

)2

+
2

ψ

(

h3(χb)

C
pT −M

)



 .

(108)
In principle, the sign should be fixed such that coshµ is always positive, but since it
will not influence the result we will leave it open. Inserting this into the right hand
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side of (107) allows us to integrate the equation with regard to t, giving

coshµ =
A

√

1− 2M
ψ





h3(χb)

C
±

√

(

∂χh(χb)−
h3(χb)

C

)2

+
2

ψ

(

h3(χb)

C
pT −M

)



 ,

(109)
where A is a positive real constant of integration. Note that we used here that the
Hamiltonian M is a constant of motion. This expression is, aside from a constant,
identical to (108), demonstrating that (107) is simply the time derivative of (108)
and in turn (76).

Imposing pT = CM/h3(χb) we see that (108) gives us

cosh µ =
1

√

1− 2M
ψ

[

h3(χb)

C
±
∣

∣

∣

∣

∂χh(χb)−
h3(χb)

C

∣

∣

∣

∣

]

, (110)

where the sign has to be chosen such that cosh µ is positive. For k = 0 this does
not make a difference since there h′(χb) = h3(χb)/C = 1, giving (23), using that

h′(χb) =
√

1− h2(χb)k. For k = ±1 both signs give different positive results, in
addition to (23) also giving the solution

cosh µ =
2h

3(χb)
C

− ∂χh(χb)
√

1− 2M
ψ

. (111)

In summary, we see that the Hamilton equations of motion simply give us the
definition of µ (or alternatively express pψ in terms of ψ̇) and the time derivative of
the equation H = M = const., while this equation itself already gives the dynamics
of the Oppenheimer–Snyder model, provided we choose pT = CM/h3(χb).

It is for both k = ±1 possible to identify an effective curvature k̃ with 0 < ±k̃ < 1

as 2h3(χb)/C − ∂χh(χb) =
√

1− h2(χb)k̃. One can then rescale all other quantities

here, normalizing k̃, such that (111) can be seen as a rescaled Friedmann equation.
For an LTB interior with E = const. the situation is a bit more simple. Applying

(110) to the LTB case by using (91) only gives the single equation of motion (40).

V. CONCLUSIONS

In this article we have developed the Hamiltonian formulation of dust collapse
with the use of a quasi-local variational principle. The main result is that the global
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Hamiltonian H of the OSD or LTB gravitational system, for an observer at spatial
infinity, is positive definite. This is consistent with the theorem in general relativity
on positivity of the total energy of an isolated gravitational system with non-negative
local mass density (see, e.g. [17–19] and references therein). Furthermore, the Hamil-
tonian obtained is equal to the total mass of the system, H = M , as measured by
observers at infinity. This result, which resembles what is usually obtained in New-
tonian systems, albeit intuitive is not readily obtained from standard Hamiltonian
treatments in general relativity.

Our results are obtained by making use of the improved variational principle [9]
that was later applied to the dynamics of a gravitational dust shell [1]. Roughly
speaking, it consists in considering an extra boundary term added to the Hilbert
action, and assuming that M , treated as a dynamical variable, is a function of an
evolution parameter at the level of the variational procedure. Then, the fact that
M is a constant becomes a consequence of the equations of motion in Hamilton’s
dynamics. We can see that the variational principle used for the simple shell model
[1] extends to the more realistic cases of the OSD and LTB systems, and encourages
applying to still more realistic models of collapsing massive stars.

In the Schwarzschild black hole, M is just a parameter that determines the position
of the event horizon. In our case, like a true Hamiltonian, it has an additional
dynamical structure as it depends on configuration variables and matter fields, and
turns out to be constant only as a consequence of the equations of motion.

In this article we have restricted our analysis to a single outermost dust shell of
the LTB system and we consider only the case with E = const., which reduces the
original field theory LTB model to a mechanical system. This allows to reduce the
dynamics to a simple one dimensional system where the configuration variables are
position and velocity of the outermost shell. In the homogeneous OSD case all shells
obey the same dynamics as the outermost, while in the inhomogeneous LTB case
with E = const. the radial position of the inner shells can be treated as a parameter,
rather than a true degree of freedom. Due to this simplification both gravitational
systems, the LTB and OSD, can be described within one formalism. However, it
should be noted that the LTB case is particularly interesting as it may admit the
existence of naked singularities (see, e.g. [20, 21] and [22]), which are appealing both
from the observational and theoretical perspectives as they may provide the valuable
keys to the construction of a viable theory of quantum gravity. More specifically,
assuming that the dust density has radial dependence with a quadratic term, i.e.
ǫ(ρ) = ǫ0 + ǫ2ρ

2, it can be shown that there exist values for (ǫ2, E) for which the
co-moving time of formation of the singularity coincides with the co-moving time of
formation of trapped surfaces [23]. Then, for a set of values of the boundary radius of
the matter cloud, there exist null geodesics originating at the singularity that reach
far away observers [24]. This seemingly nonphysical result can be understood if one
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treats the singularity as the limit of a regime where quantum gravity effects dominate.
Then a naked singularity merely describes a system where quantum gravity effects
may be observable for far away observers.

Quantization of the interior of both the LTB and OSD black holes has already
been done in [25, 26]. Robustness of these results will be analyzed in the near future.
In fact, if a different quantization procedure for dust collapse were to provide the
same results this could be taken as an indication of the general validity of the results.
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Appendix A: Theory of matching

Consider two 4-dimensional manifolds M+ and M− separated by a 3-dimensional
time-like hypersurface Σ. In general we may express the line element on both sides
in terms of the coordinates {x0±, x1±, x2±, x3±} as

ds2± = g±µνdx
µ
±dx

ν
± (A1)

while the line-element on the hypersurface, in terms of the coordinates {y1, y2, y3} is

ds2Σ = γabdy
adyb (A2)

where a, b = 1, 2, 3. The hypersurface may be expressed in parametric form on either
side of the matching as

Φ±(xµ±(y
a)) = 0 (A3)

so that the line element on the surface in terms of the coordinates on M± is

γ±ab =
∂xµ±
∂ya

∂xν±
∂yb

g±µν . (A4)

The induced metric is the same on both sides if we can find a set of coordinates for
which

γ±ab = γab . (A5)
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Let’s now define the unit vector normal to Σ on both sides as

n±
µ =

1
√

|∂Φ±

∂xα
∂Φ±

∂xβ
gαβ± |

∂Φ±

∂xµ±
. (A6)

The second fundamental form (or extrinsic curvature) is defined by

K±
ab =

∂xµ±
∂ya

∂xν±
∂yb

∇µn
±
ν = (A7)

= −n±
σ

(

∂2xσ±
∂ya∂yb

+ Γσµν
∂xµ±
∂ya

∂xν±
∂yb

)

.

The boundary surface does not carry any energy-momentum tensor, and therefore
the matching is smooth, if

[γab] = 0 (A8)

[Kab] = 0 (A9)

where we have used the notation

[A] = A+ −A−

for a generic quantity A. The ADM momentum density of the hypersurface is given
by

Qab =
√

| det γcd| (γabK −Kab) (A10)

and its trace reads
Q = γabQab = −2

√

| det γcd|γabKab . (A11)

For more details see [13].
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