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ABSTRACT
The convection that takes place in the innermost shells of massive stars plays an important
role in the formation of core-collapse supernova explosions. Upon encountering the supernova
shock, additional turbulence is generated, amplifying the explosion. In this work, we study how
the convective perturbations evolve during the stellar collapse. Our main aim is to establish
their physical properties right before they reach the supernova shock. To this end, we solve the
linearized hydrodynamics equations perturbed on a stationary background flow. The latter is
approximated by the spherical transonic Bondi accretion, while the convective perturbations
are modelled as a combination of entropy and vorticity waves. We follow their evolution from
large radii, where convective shells are initially located, down to small radii, where they are
expected to encounter the accretion shock above the proto-neutron star. Considering typical
vorticity perturbations with a Mach number ∼0.1 and entropy perturbations with magnitude
∼0.05kb/baryon, we find that the advection of these perturbations down to the shock generates
acoustic waves with a relative amplitude δp/γ p � 10 per cent, in agreement with published
numerical simulations. The velocity perturbations consist of contributions from acoustic and
vorticity waves with values reaching ∼10 per cent of the sound speed ahead of the shock. The
perturbation amplitudes decrease with increasing � and initial radii of the convective shells.
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1 IN T RO D U C T I O N

The strong convection that massive stars develop in their innermost
nuclear-burning shells are expected to play an important role in their
explosions (e.g. Couch et al. 2015; Müller et al. 2017). Following the
collapse of the iron core, the convective perturbations descend from
their initial position at �1500 km towards the center of the star.
The supernova shock, launched at core bounce, encounters these
perturbations at a radius of ∼150 km within ∼200−300 ms after
formation (or within ∼400−500 ms after the start of the iron core
collapse) (e.g. Müller & Janka 2015; Müller 2016). The interaction
of the two amplifies the violent non-radial motion in the post-shock
region, generating an additional pressure behind the shock and thus
creating a more favorable condition for producing an explosion
(Couch & Ott 2013; Couch et al. 2015; Takahashi et al. 2016;
Müller et al. 2017; Nagakura, Takahashi & Yamamoto 2019). The
oxygen-burning and, to a lesser extent, the silicon-burning shells
are expected to have a particularly strong impact on the explosion
condition (Collins, Müller & Heger 2018).

During their accelerated infall towards the shock, the convective
perturbations undergo profound evolution, as revealed by multidi-
mensional numerical simulations (Buras et al. 2006; Couch et al.
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2015; Müller & Janka 2015; Müller et al. 2017) as well as semi-
analytical (Takahashi & Yamada 2014) and analytical calculations
(Kovalenko & Eremin 1998; Lai & Goldreich 2000). The density of
the collapsing shells increases as they descend towards the center.
The infall velocity gradually increases, becoming supersonic in
the inner part of the flow. The shrinking convective vortices spin-
up due to the conservation of angular momentum. In addition, the
convective eddies have to constantly adjust to new pressure balance,
a process that generates strong acoustic waves (e.g. Foglizzo
2001). When these perturbations arrive ahead of the supernova
shock, their physical properties affect the way they interact with
the shock (Abdikamalov et al. 2016; Abdikamalov et al. 2018;
Huete, Abdikamalov & Radice 2018; Radice et al. 2018; Huete &
Abdikamalov 2019)

The aim of our work is to shed some light on the physical
properties of the convective perturbations right before they reach
the supernova shock. We treat the convective perturbations as a
combination of vorticity and entropy waves co-moving with the
mean flow. We evolve the perturbations using an extension of the
linear hydrodynamics formalism of Foglizzo (2001). Our work
improves on previous studies in a number of ways. We follow the
evolution of the perturbations starting from their initial location
at �1.5 × 103 km down to regions with radii ∼150 km where
they are expected to encounter the supernova shock. Thus, we go
beyond the r → 0 asymptotic limit used in the previous works
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Figure 1. Transonic Bondi solution as a function of radius for γ = 4/3.
The thick black lines shows the Mach number of the flow, while the dashed
thick red line shows the advection velocity in units of c∞. The sound speed
is shown with dashed-dotted blue line. For reference, the thin vertical dotted
line shows the location of the sonic point r = rs, while the thin horizontal
dotted line shows the ordinate y = 1.

(Kovalenko & Eremin 1998; Lai & Goldreich 2000). In addition,
the simplicity of our method allows us to obtain an additional insight
into the physics of the process compared to three-dimensional (3D)
numerical simulations (Couch et al. 2015; Müller et al. 2017). In
particular, we establish the physical constituents of the perturbations
– the vorticity, entropy, and acoustic waves – and calculate their
properties.

The paper is organized as following. We present the method in
Section 2. The results are presented in Section 3. The conclusion is
provided in Section 4.

2 ME T H O D

We solve the linearized hydrodynamics equations for advected
convective perturbations on a stationary background flow. The
stellar matter is modelled using an ideal gas equation of state with
an adiabatic index γ = 4/3. In order to check the sensitivity of our
results to the value of γ , we perform additional calculations for
γ = 1.5 and we find qualitatively similar results. We assume that
the background flow is given by the stationary spherical transonic
Bondi solution (Bondi 1952). The radial profiles of velocity, speed
of sound, density, and Mach number are shown in Fig. 1. The mean
flow speed increases with decreasing r. While the Bondi solution
represents an approximation to the flow in realistic stars (e.g. it
assumes uniform composition and neglects the time-dependence
of the collapse), its simplicity allows us to obtain a unique and
deep insight into the physics of the advection of the perturba-
tions. The flow is subsonic (supersonic) above (below) the sonic
radius rs,

rs = 5 − 3γ

4
rB, (1)

where rB is the Bondi radius GM/c2
∞ and c∞ is the sound speed

at infinity, which is a free parameter in our model. Due to the
stationarity of the background flow, the mass of the accretor M is
assumed to be constant in our model. That said, all the results that
we present in this work are independent of the values of M and

c∞. At the sonic point rs, the flow velocity equals the local sound
speed,

cs =
(

2

5 − 3γ

)1/2

c∞. (2)

For γ = 4/3, the sound speed at the sonic point equals
√

2c∞.
Details of the Bondi solution are described in the Appendix A of
Foglizzo (2001).

We model convective perturbations as a combination of vorticity
and entropy waves. Since the convection in nuclear-burning shells is
subsonic (e.g. Kippenhahn, Weigert & Weiss 2013), the contribution
of acoustic waves is considered negligible before collapse (Lighthill
1952; Lighthill 1954; Goldreich & Kumar 1990). We also neglect
internal gravity waves in our model. While g-modes are expected to
play an important role in stellar evolution (e.g. Quataert & Shiode
2012; Fuller 2017) and may affect the final spin of the stellar core
(Fuller et al. 2015), their impact on the explosion condition of
core-collapse supernovae (CCSNe) are expected to be rather minor
(Müller et al. 2017).

We decompose the velocity field of hydrodynamic perturbations
into vector spherical harmonics (e.g. Kovalenko & Eremin 1998;
Chatzopoulos, Graziani & Couch 2014)

δυ(r, t, θ, φ) = {
δυr (r)Y�m r̂ + δυ⊥(r)L−1∇̂⊥Y�m

+ δυrot(r)L−1∇̂⊥Y�m × r̂
}

e−iωt , (3)

where ω is the angular frequency, r̂ , θ̂ , and φ̂ are unit vectors and

∇̂⊥ = θ̂
∂

∂θ
+ φ̂

1

sin θ
. (4)

The normalization factor L = (� (� + 1) )1/2 is introduced to
account for the asymptotic amplitude of the angular derivative of the
spherical harmonic Y�m. We show in Appendix D that the horizontal
component δυ rot(r) fully accounts for the vertical component of
vorticity. In the linear approximation, δυ rot(r) decouples from the
rest of the flow and scales as ∝r−1, as dictated by the conservation of
angular momentum. The radial and transverse components δυr(r)
and δυ⊥(r) are responsible for the horizontal components of the
vorticity vector as well as acoustic waves.

For adiabatic flows, the entropy variations are conserved and
‘frozen into’ the mean flow. The amplitude of vorticity perturbations
δω ≡ ∇ × δυ is affected by advection and by entropy perturbations
in such a way that the quantity δK defined in Foglizzo (2001) is
linearly conserved and acts as a source for the generation of sound
waves (cf. Appendix D):

δK ≡ r2υ · (∇ × δω) + L2c2 δS

γ
, (5)

where δS is the dimensionless entropy, the value of which equals
the entropy per baryon in the units of Boltzmann constant kb,
as shown in Appendix E. Following Foglizzo (2001), we model
both perturbations as sinusoidal waves with frequency ω that are
advected with the mean flow. Thus, the incoming perturbations are
characterized by only four quantities: the amplitudes |δK| and |δS|
associated with the frequency ω and the angular wavenumber �.

We formulate the linear hydrodynamics equations in a compact
form using the function δf̃ , which is related to the perturbations of
the Bernoulli constant of the flow (cf. Appendix A)

∂2δf̃

∂X2
+ Wδf̃ = AδSR + B δKR, (6)
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where the variable X is related to r via equation (A23), while
the functions W, A, and B are related to the properties of the
background flow as well as the frequency ω and wavenumber � of
the perturbations (cf. equations A24–A25). The quantities δSR and
δKR are set by the amplitudes of entropy and horizontal vorticity
perturbations at the radius R. Thus, the solution of the equation
is linearly proportional to the amplitude of the source terms δSR

and δKR. The homogeneous part of equation (6) describes freely
propagating acoustic waves. The general solution of equation (6) is
obtained in Appendices A–C using Green functions and the regular-
ity condition at the sonic point. A second-order Frobenius expansion
is necessary to smoothly connect the solutions in the subsonic
and supersonic regions. Far from the accretor, the identification of
ingoing and outgoing waves using the Wentzel–Kramers–Brillouin
(WKB) approximation allows us to define the outer boundary
condition as the absence of incoming acoustic waves from infinity.
We set the outer boundary at 40rs, which is sufficiently far away
for the WKB approximation to be valid (cf. Appendix B). An
additional condition follows from the requirement of the regularity
of the solution at the sonic point. The numerical solutions of the
homogeneous equation are obtained using an implicit Runge–Kutte
method.

The angular wavenumber of the dominant mode is largely deter-
mined by the size of the shell relative to its radius (Chandrasekhar
1961; Foglizzo, Scheck & Janka 2006):

� ∼ π

2

r+ + r−
r+ − r−

, (7)

where r+ and r− are the outer and inner boundaries of the convective
shell. Modes with � ranging from 1 to ∼100 have been observed
in numerical simulations (Collins et al. 2018), but the impact of
large-� modes on the explosion condition of CCSNe are expected
to be rather limited (Müller et al. 2016; Kazeroni & Abdikamalov
2019). Assuming that the dominant mode with wavenumber � spans
the entire radial extent of the convective zone, the radial size �R =
r+ − r− is related to � using equation (7)

�R = π

�

r+ + r−
2

= π

�
Rshell, (8)

where Rshell is interpreted as the radius of the convective vortices
before collapse. The value of Rshell is different for different stellar
models (e.g. Collins et al. 2018). For this reason, we treat Rshell as a
free parameter. In our model, this correponds to a radius at which the
vortex has a circular shape. For the Bondi flow, this condition can be
expressed as Rshell = Lυ(Rshell)/ω, where υ(Rshell) is the advection
velocity at r = Rshell. In our study, we consider 4 values of Rshell

ranging from rs to 4rs, keeping in mind that rs ∼ 2000−3000 km
within ∼100−300 ms after bounce, a time span within each CCSN
shock is expected to encounter the convective perturbations. As we
will see below, these values of Rshell cover the parameter space of
the perturbations that are likely to have the strongest impact on the
explosion condition of CCSNe.

Numerical simulations predict convective Mach numbers � 0.1
in the innermost shells (Müller et al. 2016; Collins et al. 2018;
Yadav et al. 2019; Yoshida et al. 2019), while the associated
entropy fluctuations are � 0.05 kb/nucleon (e.g. Meakin & Arnett
2007). In our calculations, we normalize entropy perturbations to
0.05kb/baryon. For horizontal vorticity perturbations, we choose the
normalization factor, i.e. |δK|, to yield a convective Mach number of
0.1 at the pre-collapse locations of the convective vortices. Since the
shell convection in massive stars is driven by buoyancy, the vertical
vorticity is expected to be smaller than the horizontal component.

This is supported by the study of Chatzopoulos et al. (2014), who
performed the decomposition of convective velocities in massive
stars into vector spherical harmonics. At peak �, their parameter β,
which measures the horizontal circulation, is smaller by a factor of
a few than their measure of vertical circulation γ (cf. Fig. 13 of
Chatzopoulos et al. 2014). In our study, we conservatively assume
that the Mach number of the horizontal circulation is δυ rot =
10−2, i.e. an order of magnitude smaller than that of the vertical
circulation. We point out that, while the precise values of δυ rot,
δK, and δS are likely to depend on the properties of specific stellar
models (e.g. Collins et al. 2018), our formalism is linear with respect
to δυ rot, δK, and δS. Hence, our results can simply be scaled linearly
to other values of these parameters. This allows us to capture any
value of the convective Mach numbers and entropy fluctuations.

In summary, the values of |δK| and |δS| as well as � and the
initial radius Rshell of convective vortices fully specify the physical
properties of the convective perturbations which couple to the
pressure field in our model.

3 R ESULTS

3.1 Qualitative picture

The production of pressure perturbations from the advection of
horizontal vorticity perturbations can be understood by considering
a vorticity perturbation δω with a characteristic size δr in a
collapsing star. As it moves together with the converging mean
flow, this perturbation distorts the iso-density surfaces of the flow
and induces a density change (Foglizzo 2001; Müller & Janka 2015).
This density change is associated with pressure perturbation δp/γ p
∼ δρ/ρ. To an order of magnitude,

δp

γ p
∼ δρ

ρ
∼ ∂ ln ρ

∂ ln r

δr

r
, (9)

where ρ is the mean density and p is the mean density of the
background flow. The displacement δr is related to the radial
velocity perturbations via δr ∼ 2πδυr/ω, where ω is the angular
frequency of the perturbation. The radial velocity perturbation δυr

is related to the perturbed vorticity δω via δω ∼ imδυr/r, where m is
the angular order of the perturbation. Combining these, we obtain

δp

γ p
∼ ∂ ln ρ

∂ ln r

2πδω

imω
. (10)

The pressure perturbation δp/γ p is thus expected to be largest for
small m, i.e. for large-scale perturbations (Foglizzo 2009; Müller &
Janka 2015). In the limit of a uniform flow (∂ln ρ/∂ln r = 0), the
advection of vorticity perturbations does not emit acoustic waves
as expected (Kovasznay 1953). Note that the emission of sound by
advected horizontal vorticity can also be explained using the shallow
water analogy (Foglizzo et al. 2015). The vertical component of
vorticity does not couple to the pressure field.

The production of pressure perturbations from the advection of
entropy perturbations can be understood by considering a fluid
element of mass m with a perturbed entropy δs. The expansion
of a gas element under an adiabatic change of pressure depends
on its entropy. The corresponding change of volume induces the
emission of acoustic waves. When the fluid element is advected
from a region with mean specific enthalpy h1 to another region with
mean specific enthalpy h2, the energy of the emitted acoustic waves
is deduced from energy conservation (Foglizzo & Tagger 2000)

δE = (h2 − h1) δm, (11)
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Figure 2. Approximate schematic depiction of horizontal vorticity and entropy waves in convective shells of a collapsing star. During the collapse, these
perturbations are advected towards the center together with the flow. The contraction of the waves generates pressure perturbations that travel as acoustic
waves. The contracting entropy waves generate additional vorticity via the baroclinic effect. At large radii, the infall velocity is small, but as the collapse
progresses down to small radii, the infall speed accelerates (cf. Fig. 1) and becomes supersonic. The sonic surface is shown with the dashed semicircle. The
entropy and vorticity perturbations are radially stretched by the acceleration. Note that both vorticity and entropy waves couple to pressure perturbations even
while traveling in the subsonic region, but their amplitude is much smaller and hence it is not depicted here for the clarity of the illustration.

where

δm = m
δρ

ρ
= m

δs

γ cv
(12)

is the the variation of the mass m of the fluid element with same
volume and perturbed entropy δs and cv is the specific heat at
constant volume. From this, we can obtain the total specific energy
of emitted acoustic waves (Foglizzo & Tagger 2000)

δE ∼ (h2 − h1)
δs

γ cv
. (13)

Thus, the energy of sound waves is proportional to the entropy
change δs and to the variation h2 − h1, of the enthalpy. No acoustic
waves are emitted if the flow is uniform (h2 = h1). A schematic
depiction of the process is presented in Fig. 2.

In addition, if the entropy perturbations have a transverse struc-
ture, the surfaces of constant pressure do not coincide with those
of constant density. The net pressure force on a fluid element does
not pass through its center of mass. This baroclinic effect creates a
net torque on the fluid element, generating additional vorticity (e.g.
Thorne & Blandford 2017) as illustrated by equations (D6, D7) in
Appendix D.

3.2 Evolution of vorticity

We now discuss how vorticity perturbations evolve during their
advection towards the center. This includes not only the vorticity
perturbations originating in convective shells, but also the vorticity
generated by the advected entropy perturbations due to the baro-
clinic effect. After establishing the behaviour of the vorticity pertur-
bations, we will discuss the acoustic waves emitted by the advected
horizontal vorticity and entropy perturbations (Section 3.3).

As mentioned above, the velocity perturbation associated with
the vertical component of vorticity evolves as ∝r−1 (Kovalenko

& Eremin 1998). It is linearly decoupled from the rest of the
perturbations and it does not depend on �. Depending on the initial
radius, δυrot may amplify of by a factor of � 10 when they reach r
∼ 0.1rs, which is approximately the radius where the stalled CCSN
shock is expected to encounter these perturbations. The dashed lines
on the left panel of Fig. 3 shows δυ rot/c as a function of r for different
values of the initial radius Rshell. The Mach number of horizontal
motions associated with the vertical vorticity scales as δυ rot/c ∼
0.06(Rshell/rs)0.9. For most values of Rshell, δυ rot becomes ∼10−1 in
the inner regions of the flow.

The evolution of the horizontal vorticity is drastically different
from that of the vertical component. The total velocity δυ associated
with the horizontal vorticity, defined as (δυ2

r + δυ2
⊥)0.5 and shown

on the left-hand panel of Fig. 3, decreases with radius starting
from r = Rshell. This decrease is caused by the stretching of vortex
sheets in the radial direction by the accelerated mean flow. As the
perturbation advects towards the center, its innermost point travels
a longer distance than its outermost point. For this reason, the radial
stretching increases more as the perturbation advects further down to
smaller radii. The circulation of the vortex lines, defined as integral
of velocity over a closed curve,

� =
∮

υds, (14)

is a conserved quantity when the entropy is uniform (e.g. Landau
& Lifshitz 1959). As the length of the closed curve increases due to
the stretching of vortex sheets, the velocity along this curve has to
decrease as observed in our calculations. Note that this effect is less
pronounced for modes with small Rshell, which we can see from the
fact that velocities are larger for smaller Rshell at r � rs (cf. left-hand
panel of Fig. 3). This is not surprising as the modes with small Rshell

have smaller radial sizes and thus are less stretched by the flow in the
radial direction. Due to the radial stretching, the radial component
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Figure 3. Left-hand panel: Mach number δυ/c of the advected horizontal vorticity waves as a function of radial coordinate r for different values of the initial
radii Rshell of the convective vortices. δυ is defined as (δυ2

r + δυ2
⊥)0.5. Right-hand panel: Mach number of the transverse (think lines) and radial (thin lines)

components of the velocity field of the advected horizontal vorticity waves as a function of r for different values of Rshell. The velocities are deduced from
equations (F9) and (F10). The normalization factor for horizontal vorticity waves is chosen in such a way as to yield convective Mach number of 0.1 at the
pre-collapse location of the convective vortices Rshell. The component δυrot/c, responsible for the vertical vorticity, is assumed to be 10−2 at r = Rshell.

of velocity becomes larger than the tangential component, as we
can see on the left-hand panel of Fig. 3. On the other hand, at
large radii, the vortices are squeezed in the radial direction, and
the tangential velocities dominate. Note that the velocities of the
advected horizontal vorticity waves, once normalized to yield a
Mach number of 0.1 at r = Rshell, do not depend on �.

An asymptotic analysis reveals that δυr∝r1/2 and δυ⊥∝r2 in
the limit r → 0 (cf. Appendix F). Thus, the horizontal vorticity
perturbations are expected to have a small velocity in this limit,
while the vertical vorticity is expected to dominate due to the
δυ rot∝1/r scaling. This result is in disagreement with Kovalenko &
Eremin (1998), who find that δυr/c∝r(3 − 3γ )/4 and δυ⊥/c∝r(3γ − 7)/4

in the same limit, which results in δυr∝r−1/2 and δυ⊥∝r−1 for
γ = 4/3. Their scaling appears to be valid for acoustic waves
emitted by vorticity waves, not for the vorticity waves themselves (I.
Kovalenko, private communication). This conclusion is supported
by the fact that a similar scaling was obtained for acoustic waves
for r → 0 by Lai & Goldreich (2000).

The advected entropy waves generate horizontal vorticity due to
the baroclinic effect, as mentioned above in Section 3.1. Fig. 4 shows
the radial profile of δυ⊥/c and δυr/c associated with the horizontal
vorticity for different values of Rshell. As with the advected vorticity
waves, these velocities do no depend on �. Since the vortices
are generated in radially accelerated flow, the radial component
dominates the transverse component, especially at small radii. An
asymptotic analysis reveals that the tangential velocity decreases as
δυ⊥∝r3/2 while the radial component approaches a constant value,
δυr ∼ 10−2 in the limit r → 0 (cf. Appendix F). Thus, unlike
the horizontal vorticity waves coming from convective shells, the
vorticity generated by advected entropy waves has non-zero radial
velocity even at r → 0. This is due to the fact that advected entropy
waves continue to produce vorticity, through the baroclinic effect,
even in the limit of small r.

3.3 Acoustic perturbations

As the entropy and horizontal vorticity perturbations are advected
towards the center, they generate acoustic waves due to the loss of

Figure 4. Mach number δυ/c of the transverse (thick lines) and radial com-
ponents (thin lines) of the velocity field of horizontal vorticity perturbations
generated by advected entropy fluctuations with δS = 0.05 for different
values of Rshell. The velocities are deduced from equations (F11) and (F12).

pressure equilibrium with their surrounding. While in Section 3.1,
we derived basic qualitative estimates, below we provide more quan-
titative results obtained by numerical integration of the differential
system of perturbed equations (Appendix C).

Fig. 5 shows the radial profiles of |δp/γ p| generated by advected
horizontal vorticity (black line) and entropy waves (blue line) with
� = 2 for two different value of Rshell: rs (left-hand panel) and 2rs

(right-hand panel). Due to its smaller size, the model with Rshell

= rs undergoes less radial stretching than the model with Rshell

= 2rs. As a result, the former model reaches stronger pressure
perturbations of ∼0.1 in the inner regions of the flow, while the
latter remains below ∼4 × 10−2. For both models, the contributions
of the advected entropy waves (blue lines) is about an order of
magnitude smaller than that of advected horizontal vorticity waves.
We find that this is common for perturbations with low � = 1 and
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Acoustic waves in collapsing stars 3501

Figure 5. Pressure perturbations for incoming horizontal vorticity (thick black lines) and entropy (thick blue lines) waves with � = 2 and Rshell = rs (left-hand
panel) and Rshell = 2rs (right-hand panel), deduced from equation (A13). The dashed (dotted) lines show the amplitude of the radial velocity fluctuations
|δυr/c| (tangential velocity fluctuations |δυ⊥/c|) for incoming horizontal vorticity and entropy waves. The vertical dashed line shows the location of the sonic
point, while the dotted red line shows the ∝r−1 slope for reference.

Figure 6. Left-hand panel: Pressure (solid lines) and velocity (dashed lines) perturbations at r = 0.1rs generated by advected horizontal vorticity and horizontal
vorticity as a function of angular wavenumber � for different values of Rshell. The pressure perturbations are deduced from equation (A13), while velocity
perturbations are dediced from equations (A14) and (A10). Right-hand panel: Transverse and radial velocity perturbations δυ⊥/c (solid lines) and δυr/c (dashed
lines) generated by advected horizontal vorticity waves as a function of � for different values of Rshell at r = 0.1rs.

� = 2, while for larger � the contributions of both perturbations
become comparable. The pressure perturbations experience little
growth from Rshell to 0.1rs. This is different from the power-law
dependence on radius obtained by Kovalenko & Eremin (1998) and
Lai & Goldreich (2000) in the r → 0 limit. Instead, it resembles
a wave-like pattern observed in Takahashi & Yamada (2014) (cf.
their Fig. 5). We hypothesize that this behaviour is caused by the
interference between ingoing and outgoing acoustic waves, forming
a pattern similar to standing waves. However, we cannot verify this
rigorously because the decomposition into out-going and in-going
acoustic waves is not possible for non-uniform flow. In principle,
this can be done using the WKB approximation (cf. Appendix F),
but this approximation is accurate only in the outer region where
the characteristic scale of the flow becomes larger than the size of
the perturbations.

At large radii (r > Rshell), both models exhibit out-going acoustic
waves due to the refraction of in-going radiation (Foglizzo 2001).
The outgoing acoustic waves exhibit the ∝r−1 scaling shown by the
dotted red line, which is a simple consequence of the conservation
of energy. The perturbation with Rshell = 2rs exhibits significantly
stronger out-going radiation than the model with Rshell = rs. This
is an expected behaviour as waves with larger wavelength undergo
stronger refraction Foglizzo (2001).

It is interesting to contrast the behaviour of the pressure pertur-
bations with that of velocity perturbations. The dashed and dotted
lines in Fig. 5 show δυr/c and δυ⊥/c. In the supersonic region
(r < rs), both quantities are comparable to the value of δp/γ p
as expected for sound waves (e.g. Landau & Lifshitz 1959). This
suggests that the velocity field at small radius is mostly due to
acoustic waves. At large radius (r � rs), the situation depends
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on the perturbation parameters. For the perturbation with Rshell

= 2rs, as discussed above, there is significant amount of out-
going acoustic waves. In this case, we have δυr/c ∼ δp/γ p, as
expected for acoustic waves. However, the transverse component is
larger than the radial component by about an order of magnitude
because, at large radii, the vertical vortices become squeezed in
the radial direction and thus develop strong non-radial velocities.
For perturbation with Rshell = rs, both δυr/c and δυ⊥/c become
significantly larger than δp/γ p. The reason for this behaviour is that
the velocity field at large radius is dominated by the contribution
of vorticity waves only, while the contribution of acoustic waves is
negligible. This weak advective-acoustic coupling at large radius is
a consequence of the uniform character of the flow within distances
comparable to the size of the perturbations. As in the case of pressure
perturbations, the contribution of the advected entropy waves to
δυr/c and δυ⊥/c, shown with blue dashed and dotted lines in Fig. 5,
is a factor ∼10 smaller than the contribution of advected vorticity
perturbations.

Next we analyse the behaviour of δp/γ p at 0.1rs generated the
advected entropy and vertical vorticity perturbations,1 which is
shown on the left-hand panel of Fig. 6 for different values of
� and Rshell. For small values of � = 1 and � = 2 or for r =
Rshell, we find that |δp/γ p| ∼ 0.1, in agreement with the results
of 3D numerical simulations (Müller et al. 2017). The pressure
perturbations decreases with increasing �, in agreement with the
qualitative estimate (10). It also decreases with increasing Rshell,
becoming� 10−3 for Rshell = 4rs and �� 4. This is caused by the fact
that the large-Rshell waves have larger size and thus are more prone
to radial stretching due to the acceleration of the flow. This results
in weaker velocity and pressure perturbations in the inner regions of
the flow. The velocity perturbations δυ/c are comparable to δp/γ p
for � ≤ 3, as shown on the left-hand panel of Fig. 6. For larger �,
velocity perturbations δυ/c are much larger than pressure variations
δp/γ p. This is because, for larger �, the generation of acoustic
waves is not as efficient, so the velocity field is dominated by the
contribution of the advected horizontal vorticity waves. The radial
and tangential components of the velocity perturbations, shown on
the left panel of Fig. 6, are comparable to each other for � � 3,
but for larger �, the radial component tends to dominate for most
values of Rshell, which is expected for radially stretched vorticity
waves. For reference, we provide the values of the amplitudes of
the pressure and velocity perturbations at r = 0.1rs generated by
advected entropy and horizontal vorticity waves in Table 1 for all
of our perturbation parameters.

The radial profiles of the pressure and velocity perturbations
generated by the advected entropy and horizontal vorticity pertur-
bations are analyzed for different values of � and Rshell in Fig. 7.
The top three panels show the radial profile of |δp/γ p| for Rshell =
rs, Rshell = 2rs, and Rshell = 3rs. The solid lines with different colors
correspond to different values of � ranging from 1 till 4. Similarly to
the perturbations with � = 2 discussed above (cf. Fig. 5), inside the
sonic radius, |δp/γ p| does not grow much with decreasing r. Instead,
it exhibits a wave-like pattern with pressure perturbations varying
by factor of ∼2. In the supersonic region, the overall value of |δp/γ p|
is consistent with the behaviour at radius 0.1rs that we saw in Fig. 6.
At large radii r > rs, |δp/γ p| is stronger for perturbations with large
Rshell (e.g. Rshell � 2rs). This is caused by the fact that, at large
Rshell, perturbations have a large radial size, for which a significant

1We superpose the pressure contributions of entropy δpe and vorticity waves
δpk as δp = (δp2

e + δp2
k)0.5.

Table 1. The amplitudes of pressure and velocity perturbations generated
by advected entropy and horizontal vorticity waves at radius 0.1rs, a radius
where CCSN shock is expected to encounter the pre-collapse perturbations.
The horizontal vorticity are normalized to yield a Mach number of 0.1 at the
initial radius Rshell, while entropy fluctuations are assumed to have amplitude
of 0.05 kB/baryon. The vertical component of vorticity scale as δυrot/c ∼
0.06(Rshell/rs)0.9.

� Rshell
δp(v)

γ p
δυ

(v)
r
c

δυ
(v)
⊥
c

δp(e)

γ p
δυ

(e)
r
c

δυ
(e)
⊥
c

(rs) (10−2) (10−2) (10−2) (10−2) (10−2) (10−2)

1 1 17.3 4.54 5.74 0.92 0.85 2.01
1 2 10.8 4.17 15.4 0.49 0.68 0.84
1 3 9.64 3.45 8.22 0.59 1.06 1.89
1 4 8.34 2.91 5.48 1.20 1.28 2.33
2 1 7.19 2.47 17.5 1.32 0.62 0.70
2 2 3.39 1.86 2.53 0.45 0.97 0.77
2 3 1.87 1.01 1.90 0.53 1.04 0.64
2 4 1.08 0.59 1.51 0.57 1.08 0.53
3 1 10.9 4.83 8.73 0.67 0.54 0.76
3 2 1.12 1.01 0.94 0.21 0.90 0.33
3 3 0.34 0.45 0.56 0.23 0.95 0.25
3 4 0.16 0.27 0.31 0.21 0.96 0.22
4 1 6.41 3.67 4.48 0.44 0.77 0.78
4 2 0.16 0.74 0.39 0.15 0.88 0.20
4 3 0.02 0.44 0.08 0.12 0.91 0.17
4 4 0.02 0.31 0.05 0.11 0.93 0.13
5 1 2.80 1.90 3.89 0.43 0.87 0.48
5 2 0.06 0.77 0.04 0.08 0.86 0.13
5 3 0.10 0.48 0.03 0.04 0.89 0.14
5 4 0.19 0.36 0.08 0.08 0.88 0.18
6 1 2.01 1.12 2.08 0.31 0.81 0.19
6 2 0.21 0.84 0.11 0.03 0.83 0.14
6 3 0.11 0.48 0.09 0.03 0.88 0.19
6 4 0.05 0.31 0.08 0.06 0.91 0.20
7 1 1.33 1.68 0.97 0.24 0.70 0.12
7 2 0.19 0.81 0.24 0.06 0.84 0.23
7 3 0.04 0.45 0.12 0.06 0.89 0.19
7 4 0.09 0.31 0.15 0.10 0.91 0.26
8 1 1.00 2.01 0.82 0.22 0.68 0.33
8 2 0.08 0.75 0.25 0.09 0.86 0.22
8 3 0.04 0.45 0.07 0.05 0.89 0.15
8 4 0.10 0.33 0.12 0.07 0.89 0.21

Notes. (v)Generated by advected vorticity waves.
(e)Generated by advected entropy waves.

fraction of incoming acoustic waves gets refracted back (Foglizzo
2001). These outgoing waves are identified owing to their ∝r−1

scaling, which is a consequence of the conservation of energy. Since
the amount of refraction decreases with the radial size, relatively
little acoustic waves are present for, e.g. Rshell = rs at r � rs.

The radial profiles of δυr/c and δυ⊥/c are shown in the bottom
six panels of Fig. 7 for the same three values of Rshell. At large
radii outside of the sonic point, both components of the velocity
increase gradually with decreasing radius. However, this increase
saturates around the sonic point and almost no growth takes place
in the supersonic region. This is again caused by the stretching of
the vortex sheets due to the acceleration of the flow in the radial
direction. We again see significantly more refracted acoustic waves
at large radii for perturbations with larger Rshell. For outgoing waves,
we observe the ∝r−1 scaling which is again a consequence of the
conservation of energy.

It is interesting to compare the total velocity perturbations (i.e.
including the contributions of both acoustic and horizontal vorticity
perturbations) to the velocity field of only horizontal vorticity waves
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Acoustic waves in collapsing stars 3503

Figure 7. The top panels show the radial profile of the amplitude of δp/γ p for acoustic waves generated by advected perturbations for different values of
angular wavenumber � and the initial radius of convective vortices Rshell, deduced from equation (A13). The amplitude δp/γ p differs drastically at large radii
for large Rshell, which is caused by the refraction of acoustic waves. Middle panels: Radial profile of δυr/c generated by advected horizontal vorticity waves
for different values of � and Rshell, deduced from equation (A10). Bottom panels: Radial profile of δυ⊥/c generated by advected horizontal vorticity waves
for different values of � and Rshell, deduced from equation (A14). The dashed lines in the bottom six panel show the contribution of the advected horizontal
vorticity waves only (i.e. the contribution of the acoustic waves are excluded), while the solid lines contain the contribution of both acoustic waves and advected
horizontal vorticity waves. The straight red dotted lines in all panels show the ∝r−1 slope for reference, while the dotted vertical line shows the location of the
sonic point.

(i.e. without including the contribution of acoustic waves) in the
inner regions of the flow (r � Rshell). The former is shown with
solid lines while the latter is shown with thin dashed lines in the
six bottom panels of Fig. 7. The radial velocity acoustic waves
is larger than that of horizontal vorticity waves by a factor of a
few. However, for δυ⊥/c, the contribution of acoustic waves exceed
that of horizontal vorticity waves by a factor of ∼102 for most
perturbation parameters. Thus, the non-radial velocity perturbations
ahead of the supernova shock is expected to be dominated by the
contribution of acoustic waves. On the other hand, as discussed
above, the velocity of the vertical vorticity δυ rot, shown with thick
dashed lines in the bottom panels, grows as ∝1/r. If it has an
amplitude of 10−2 at the initial radius Rshell, which is 10 times
smaller than that of the horizontal component, the contribution of
the latter becomes significant. For Rshell ≥ 3rs, δυ rot becomes the
dominant component of the velocity perturbations ahead of the
CCSN shock.

4 C O N C L U S I O N

In this work, we have studied the hydrodynamic evolution of
convective perturbations in the nuclear-burning shells of massive
stars during stellar collapse. The main aim was to investigate the
physical properties of the perturbations when they reach the radius
of ∼150 km, where they are expected to encounter the supernova
shock launched at core bounce. The properties of these perturbations
affects the way they interact with the shock and thus influence the
explosion dynamics. We modelled convection as a combination
of vorticity and entropy waves and studied their evolution using
linear hydrodynamics equations. Using the transonic Bondi solution
to model the collapsing star, we followed the evolution of the
hydrodynamic perturbations from large radii at a few ∼103 km
where they originate, down to small radii of ∼150 km, where the
flow is supersonic.

As the star collapses, vorticity and entropy perturbations move
towards the center together with the stellar matter. Due to the
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converging geometry of the flow, the horizontal motions contract
in the lateral direction, resulting in ∝r−1 scaling of the velocity
perturbations associated with the vertical vorticity. On the other
hand, the velocities associated with the horizontal vorticity decrease
with radius. This is caused by the acceleration of the collapse,
which stretches the vortex sheets in the radial direction. In order to
conserve the circulation, the velocity of vortex sheets has to decrease
(cf. Section 3.2). The perturbations with large size are more prone
to the radial stretching, leading to smaller velocity perturbations.
As a result, ahead of the shock, the Mach number of vorticity waves
do not exceed ∼0.1 for most of the perturbation parameters.

Both entropy and horizontal vorticity perturbations, when ad-
vected with the flow, generate acoustic waves (cf. Section 3.3). This
happens because, in converging flows, the advected perturbations
do not remain in pressure equilibrium. The resulting pressure
perturbations propagate as acoustic waves. We find that for models
with � = 1 ad � = 2, the pressure perturbations reach the relative
amplitude of δp/γ p ∼ 0.1 before encountering the supernova
shock. This is in agreement with the results of 3D numerical
simulations (Müller et al. 2017). The pressure perturbations are
smaller for modes with larger �. Due to the larger radial stretching
by accelerated advection, convective vortices with large initial radii
generate weak perturbations with a relative amplitude of ∼10−2 or
smaller. We find that most of the radial velocity perturbations ahead
of the CCSN shock consists of contributions from acoustic and, to
a lesser extent, horizontal vorticity perturbations. The non-radial
motion is dominated by the contributions from the acoustic waves
as well as vertical vorticity perturbations.

Our present work sheds light on the physical properties of the
perturbations ahead of the supernova shock. The interaction of
vorticity, entropy, and acoustic waves with the shock can now
be studied in more detail using, e.g. linear theory similar to
that of Abdikamalov et al. (2018) with parameters appropriate
for core-collapse supernovae. This will allow us to assess the
relative importance of pre-shock acoustic, entropy, and vorticity
perturbations on the post-shock dynamics. This will be the subject
of a future work.

Finally, we point out that our work suffers from a number of
limitations due to the simplifying assumptions that we employ in our
model. In particular, we use the stationary transonic Bondi solution
to model the collapsing star. While this solution nicely captures the
presence of subsonic and supersonic regions of accretion, in realistic
stars, the dynamical collapse proceeds in a non-stationary fashion.
Moreover, the real stars contain regions with different compositions
and entropies. While these effects are incorporated in recent 3D
simulations (e.g. Müller et al. 2017), the Bondi solution does not
include them. In addition, the nuclear burning and neutrino cooling
may still be taking place during the collapse phase. The adiabatic
approximation that we use does not capture these effects. While
these simplifications allowed us to obtain a unique insight into the
evolution of the perturbations during collapse, the impact of these
approximations needs to be carefully evaluated in future works.
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APPENDI X A : LI NEARI ZED EQUATI ONS FO R
P E RTU R BAT I O N S

We start with the Euler equation,

∂υ

∂t
+ ω × υ + ∇

(
υ2

2
+ c2

γ − 1
− GM

r

)
= c2∇ S

γ
, (A1)
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where ω ≡ ∇ × υ is the vorticity vector. The dimensionless entropy
S is related to entropy per nucleon via equation dS = dsb/kb, where
kb is the Boltzmann constant (see Appendix E for the derivation).
The equation for vorticity ω can be obtained by combining the curl
of equation (A1) with the continuity equation:

∂

∂t

ω

ρ
+ (υ · ∇)

ω

ρ
=

(
ω

ρ
· ∇

)
υ + 1

ρ
∇c2 × ∇ S

γ
(A2)

The projection of the Euler equation along the direction of the flow
yields an equation for the Bernoulli constant:(

∂

∂t
+ υ · ∇

)(
υ2

2
+ c2

γ − 1
− GM

r

)
= 1

ρ

∂p

∂t
. (A3)

In the following, we separate the time dependence using the Fourier
transform in time. We use the spherical coordinates (r, θ , and φ) to
describe the spatial dependence. The conservation of entropy during
advection implies that

δS = δSReiω
∫ r

R
dr
υ , (A4)

while the conservation of δK yields

δK = δKReiω
∫ r

R
dr
υ , (A5)

where R is a coordinate where perturbations have zero phase and ω is
the angular frequency. For clarity, we shall use a prime to distinguish
the reference radius R

′
of the phase of advected perturbation in the

supersonic region: R > rs and R
′
< rs. The conservation laws of δK

and δS across the sonic radius relate the solution defined for R > rs

and the solution defined for R
′
< rs

δKR′ = δKReiω
∫ R′

R
dr
υ , (A6)

δSR′ = δSReiω
∫ R′

R
dr
υ . (A7)

Following Foglizzo (2001), we reformulate the linearized Euler
equation using functions δf and δg:

δf ≡ υ δυr + 2

γ − 1
c δc, (A8)

δg ≡ δυr

υ
+ 2

γ − 1

δc

c
. (A9)

The perturbations of the hydrodynamics quantities such as δυr, δc,
δρ, and δp corresponding to δf and δg can be obtained by simply
inverting relations (A8)–(A9) (Foglizzo et al. 2007)

δυr

υ
= 1

1 − M2

(
δg − δf

c2

)
, (A10)

δc2

c2
= γ − 1

1 − M2

(
δf

c2
− M2δg

)
, (A11)

δρ

ρ
= 1

1 − M2

(
−M2δg − (1 − M2)δS + δf

c2

)
, (A12)

δp

γp
= 1

1 − M2

(
−M2δg − (1 − M2)

δS

γ
+ δf

c2

)
. (A13)

The transverse velocity component can be expressed in terms of δf
and δK (cf. Appendix D)

δυ⊥ = 1

iωr

(
δf − δK

L2

)
. (A14)

We can obtain a system of differential equations for δf and δg by
combining the continuity equation with the radial projection of the
Euler equation

υ
∂δf

∂r
+ iωM2δf

1 − M2
= iωυ2δg

1 − M2
+ iωc2 δSR

γ
eiω

∫ r
R

dr
υ , (A15)

υ
∂δg

∂r
+ iωM2δg

1 − M2
= iωδf

c2(1 − M2)
+ i

ω
�θ,ϕδf + iδKR

r2ω
eiω

∫ r
R

dr
υ ,

(A16)

where �θ , ϕ is the angular part of the Laplacian. The homogeneous
system associated with this system describes propagation of free
acoustic waves. In the presence of inhomogeneous terms δK and
δS, which model advected vorticity and entropy perturbations, the
solution of this system has multiple components: the vorticity and
entropy perturbations themselves as well as the acoustic waves that
these two perturbations generate. The contribution of acoustic waves
as well as vorticity and entropy waves to the values of δf and δg can
be separated using the decomposition of Foglizzo et al. (2007), as
described in Appendix F. Using the spherical harmonics Ym

l (θ, ϕ)
decomposition, we obtain

υ
∂δf

∂r
+ iωM2δf

1 − M2
= iωυ2δg

1 − M2
+ iωc2 δSR

γ
eiω

∫ r
R

dr
υ , (A17)

υ
∂δg

∂r
+ iωM2δg

1 − M2
= iωδf

c2(1 − M2)
− iL2

ωr2
δf + iδKR

r2ω
eiω

∫ r
R

dr
υ .

(A18)

In either region r > rs or r < rs, we define quantities δf̃ and δg̃ as

δf̃ ≡ e
iω

∫ r
R

M2

1−M2
dr
υ δf , (A19)

δg̃ ≡ e
iω

∫ r
R

M2

1−M2
dr
υ δg. (A20)

where the lower bound R of the integral is chosen in the same region.
Despite the mathematical singularity at r = rs, the differential
system deduced from equations (A17)–(A18) in each half domain
r > rs or r < rs is formally simpler:

∂δf̃

∂r
= iωυδg̃

1 − M2
+ iω

c2

υ

δSR

γ
e
iω

∫ r
R

dr

υ(1−M2) , (A21)

∂δg̃

∂r
= iδf̃

ωυ

[
ω2

c2(1 − M2)
− L2

r2

]
+ iδKR

r2ωυ
e
iω

∫ r
R

dr

υ(1−M2) . (A22)

Using the new variable X, which is related to r via equation

dX

dr
≡ υ

1 − M2
, (A23)

system (A21)-(A22) can be combined into a more compact form:

∂2δf̃

∂X2
+ Wf̃ = −1 − M2

υ
eiω

∫ r
R

dX

υ2

×
{

ω

M2

δSR

γ

(
ω

υ
+ i

∂ logM2

∂r

)
+ δKR

υr2

}
,

(A24)

where

W ≡ 1

υ2c2
(ω2 − ω2

l ). (A25)

and

ω2
l ≡ l(l + 1)

c2 − υ2

r2
. (A26)
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3506 E. Abdikamalov and T. Foglizzo

Figure B1. Ratio |∂√
W/∂X|/W , which measures the degree of the validity

of the WKB approximation, as a function of initial radius of the vortices for
different values of � at radius r = 40rs.

APP ENDIX B: A PPROX IMATE SOLUTIONS OF
T H E H O M O G E N E O U S EQUAT I O N

B1 WKB approximation at large radii

The general solution of the homogeneous equation,

∂2δf̃

∂X2
+ Wδf̃ = 0, (B1)

associated with equation (A24) is a linear combination of outgoing
(δf−) and ingoing (δf+) acoustic waves. At the outer boundary, we
obtain these two using the WKB approximation (Foglizzo 2001)

δf̃ ± ∼ A±
ω

1
2

W
1
4

e
iω

∫ ∞
R

M2

1−M2
dr
υ exp

(
±i

∫ r υW
1
2

1 − M2
dr

)
, (B2)

δf ± ∼ A±
ω

1
2

W
1
4

exp

(
iω

∫ ∞

r

M2

1 − M2

dr

υ
± i

∫ r υW
1
2

1 − M2
dr

)
,

(B3)

where A± is a complex amplitude such that |A−| = |A+| is
homogeneous to a velocity. The WKB approximation is satisfied
at large radii from the center or for high-frequency perturbations.
These two conditions are consistent with the requirement that∣∣∣∣∣∂

√
W

∂X

∣∣∣∣∣ � W, (B4)

Fig. B1 shows the ratio |∂√
W/∂X|/W , which measures the degree

of the validity of the WKB approximation, as a function of initial
radius of the vortices Rshell for different values of � at the outer
boundary of our computational domain. The latter is chosen to be at
r = 40rs for our setup. As we can see the ratio is below 1 for Rshell

< 5rs. For this reason, we consider initial radii ranging from rs to
4rs, where WKB is expected to yield accurate result.

The Wronskien W of δf̃ + and δf̃ − (or the pair of solutions δf̃0

and δf̃ −), on either side of the sonic point, is

W ≡ f̃ + ∂f̃ −

∂r
− f̃ − ∂f̃ +

∂r
= − 2iωυ

1 − M2
AR, (B5)

AR ≡ A+A−e
2iω

∫ ∞
R

M2

1−M2
dr
υ . (B6)

The Wronskien of (δf0, δf−) or (δf+, δf−) is independent of the
boundary R

δf0
∂δf −

∂r
− δf − ∂δf0

∂r
= − 2iωυ

1 − M2
A+A−e

−2iω
∫ r

∞
M2

1−M2
dr
υ .

(B7)

We note that δf̃0 is singular at the sonic point. On either side of the
sonic radius,

δf̃ −δg̃0 − δf̃0δg̃
− = 2AR, (B8)

δf −δg0 − δf0δg
− = 2A+A−e

−2iω
∫ r

∞
M2

1−M2
dr
υ . (B9)

B2 Approximation in the supersonic region

At high Mach number the velocity approaches free fall and the
sound speed is deduced from mass conservation of the isentropic
gas:

υ ∝ r− 1
2 , (B10)

c ∝
(

1

υr2

) γ−1
2

∼ r− 3
4 (γ−1), (B11)

M ∝ r
3
4 (γ−1)− 1

2 (B12)

The phase relation between δf and δf̃ is thus a converging function
when r → 0. According to the differential system (A24),

∂2δf

∂r2
∝ δf

r2c2
∝ δf r− 3

2 (B13)

It implies that the homogeneous solution δf is bounded when r →
0.

δf ∝ er
1
2 (B14)

APPENDI X C : SOLUTI ONS WI TH ENTRO PY
A N D VO RT I C I T Y P E RTU R BAT I O N S

C1 Solution for vorticity perturbations

The solution of equation (A24) for the case with δK �= 0 and δS
= 0 can be obtained using the method of variation of parameters.
The two free parameters of the method are fixed by (1) imposing
the regularity at r = rs and (2) assuming that no sound waves come
from infinity, which leads to the solution (Foglizzo 2001)

δf (r > rs) = − iδKR

2ωAR

{
δf −

∫ r

rs

e
iω

∫ r
R

1+M2

1−M2
dr
υ

δf0

r2υ
dr

− δf0

∫ r

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ

δf −

r2υ
dr

}
, (C1)

where R > rs, δf0 is the regular homogeneous solution. δf−

corresponds to outgoing acoustic waves when r � rs, normalized
according to equation (B2). The function δf− is singular at the sonic
radius. The Wronskien associated with the pair (δf0, δf−) satisfies
equation (B5).
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Acoustic waves in collapsing stars 3507

As in Foglizzo (2001), an integration by part is used to accelerate
the convergence as r−5 at infinity

δf (r > rs) = δKR

2ω2AR

×
{

δf −
∫ r

rs

e
iω

∫ r
R

1+M2

1−M2
dr
υ

[
∂

∂r

(
1 − M2

r2

)
δf0 + iωυ

r2
δg0

]
dr

−δf0

∫ r

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ

[
∂

∂r

(
1 − M2

r2

)
δf − + iωυ

r2
g−

]
dr

}
,

(C2)

We use the regular solution δf0 and the technique of variation of
constants to define a second solution δfsup of the homogeneous
equation in the supersonic region

δfsup(r < rs) ≡ −2iωARδf0

∫ r

R′
e
−2iω

∫ r
R′ M2

1−M2
dr
υ

υ

δf 2
0

dr

1 − M2
,

(C3)

It is singular at the sonic point. The singularity of the integral is
isolated using an integration by parts

δfsup(r) = ARδf0

{[
e
−2iω

∫ r
R′ M2

1−M2
dr
υ

c2

δf 2
0

]r

R′

−
∫ r

R′
e
−2iω

∫ r
R′ M2

1−M2
dr
υ

∂

∂r

(
c2

δf 2
0

)
dr

}
,

= ARδf0

{[
e
−2iω

∫ r
R′ M2

1−M2
dr
υ

c2

δf 2
0

]r

R′

−
∫ r

R′
e
−2iω

∫ r
R′ M2

1−M2
dr
υ

1

δf 3
0

(
δf0

∂c2

∂r
− 2c2 ∂δf0

∂r

)
dr

}
(C4)

The singular phase is also calculated using an integration by parts∫ r

R′

1 + M2

1 − M2

dr

υ
=

[
1 + M2

υ

r − rs

1 − M2
log |r − rs|

]r

R′

−
∫ r

R′
log |r − rs| ∂

∂r

(
1 + M2

υ

r − rs

1 − M2

)
dr,

(C5)

or∫ r

R′

1 + M2

1 − M2

dr

υ
= −

[
1 + M2

υ

(
∂M2

∂r

)−1

log |1 − M2|
]r

R′

+
∫ r

R′
log |1 − M2| ∂

∂r

[
1 + M2

υ

(
∂M2

∂r

)−1
]

dr. (C6)

In derivation of the last equations, we have used the radial derivated
of the Mach number

∂M2

∂r
= 2(γ − 1)

M2

r
− γ + 1

1 − M2

(
2 − 1

rc2

) M2

r
, (C7)

and

∂2M2

∂r2
= −2(γ − 1)

M2

r2
+ 2

γ − 1

r

∂M2

∂r

− γ + 1

(1 − M2)2

(
2

r
− 1

r2c2

)
∂M2

∂r

+ γ + 1

r2

2M2

1 − M2

[
1 − 1

c2

(
1

r
+ ∂ log c

∂r

)]
. (C8)

The definition of the function δgsup follows from equation (A22)

δgsup(r < rs) ≡ 1

δf0

(
δg0δfsup − 2ARe

−2iω
∫ r

R′ M2

1−M2
dr
υ

)
. (C9)

The normalization factor (−2iωAR) in equation (C3) has been
chosen so that the Wronskien of (δf0, δfsup) is the same as (δf0,
δf−) as defined by equation (B5). We define a general solution in
the supersonic part of the flow which is regular at the sonic point
and matches the subsonic solution given by equation (C1) at r =
rs:

δf (r < rs) = − iδKR′

2ωAR

{
δfsup

∫ r

rs

δf0

r2υ
e
iω

∫ r
R′ 1+M2

1−M2
dr
υ dr

− δf0

∫ r

rs

δfsup

r2υ
e
iω

∫ r
R′ 1+M2

1−M2
dr
υ dr

− δf0eiω
∫ R

R′ dr
υ

∫ rs

∞

δf −

r2υ
e
iω

∫ r
R

1+M2

1−M2
dr
υ dr

}
. (C10)

A faster convergence near the origin is obtained by using an
integration by parts∫ r

rs

e
iω

∫ r
R′ 1+M2

1−M2
dr
υ

δf0

r2υ
dr =

∫ r

rs

e
iω

∫ r
R′ 1

1−M2
dr
υ

iω

L2 + ω2r2

υ2−c2

∂δg̃0

∂r
dr

=
[

e
iω

∫ r
R′ 1

1−M2
dr
υ

iω

L2 + ω2r2

υ2−c2

δg̃0

]r

rs

−
∫ r

rs

δg̃0
∂

∂r

×
(

e
iω

∫ r
R′ 1

1−M2
dr
υ

iω

L2 + ω2r2

υ2−c2

)
dr.

(C11)

In consequence, each integral is now convergent when r → 0:

δfsup

∫ r

rs

δf̃0

r2υ
e
iω

∫ r
R′ dr

υ(1−M2) dr

− δf0

∫ r

rs

δf̃sup

r2υ
e
iω

∫ r
R′ dr

υ(1−M2) dr = eiω
∫ r

R′ dr
υ

2iωAR

L2 + ω2r2

υ2−c2

− δfsup

∫ r

rs

δg̃0
∂

∂r

(
e
iω

∫ r
R′ 1

1−M2
dr
υ

iω

L2 + ω2r2

υ2−c2

)
dr

+ δf0

∫ r

rs

δg̃sup
∂

∂r

(
e
iω

∫ r
R′ 1

1−M2
dr
υ

iω

L2 + ω2r2

υ2−c2

)
dr. (C12)

Note that, in deriving the last equation, we used the relation
δf̃supδg̃0 − δf̃0δg̃sup = 2AR . Using equation (A21), we can rewrite
this relation as

δfsup

∫ r

rs

δf̃0

r2υ
e
iω

∫ r
R′ dr

υ(1−M2) dr

− δf0

∫ r

rs

δf̃sup

r2υ
e
iω

∫ r
R′ dr

υ(1−M2) dr = eiω
∫ r

R′ dr
υ

2iωAR

L2 + ω2r2

υ2−c2

− δfsup

∫ r

rs

1 − M2

υ

∂δf̃0

∂r

∂

∂r

⎛
⎝ e

iω
∫ r

R′ 1
1−M2

dr
υ

L2 + ω2r2

υ2−c2

⎞
⎠ dr

+ δf0

∫ r

rs

1 − M2

υ

∂δf̃sup

∂r

∂

∂r

⎛
⎝ e

iω
∫ r

R′ 1
1−M2

dr
υ

L2 + ω2r2

υ2−c2

⎞
⎠ dr,
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thus

δfsup

∫ r

rs

δf̃0

r2υ
e
iω

∫ r
R′ dr

υ(1−M2) dr

− δf0

∫ r

rs

δf̃sup

r2υ
e
iω

∫ r
R′ dr

υ(1−M2) dr = eiω
∫ r

R′ dr
υ

2iωAR

L2 + ω2r2

υ2−c2

+ δfsup

∫ r

rs

δf̃0
∂

∂r

⎡
⎣1 − M2

υ

∂

∂r

⎛
⎝ e

iω
∫ r

R′ 1
1−M2

dr
υ

L2 + ω2r2

υ2−c2

⎞
⎠
⎤
⎦ dr

− δf0

∫ r

rs

δf̃sup
∂

∂r

⎡
⎣1 − M2

υ

∂

∂r

⎛
⎝ e

iω
∫ r

R′ 1
1−M2

dr
υ

L2 + ω2r2

υ2−c2

⎞
⎠
⎤
⎦ dr. (C13)

C2 Acoustic field of entropy perturbations

The general solution for the advected entropy waves can be obtained
by linearly superposing the solution for δK = L2δS/γ , which
accounts for the contribution of the vorticity generated by the
advected entropy waves, with the solution for δS �= 0 and δK =
0. The latter can be written as follows, provided that it is regular
at the sonic point and provided that there are no acoustic waves
coming from infinity Foglizzo (2001),

δf (r > rs) = − δSR

2γAR

×
{

δf −
∫ r

rs

δf̃0
∂

∂r

(
1 − M2

M2
e
iω

∫ r
R

dr

υ(1−M2)

)
dr

− δf0

∫ r

∞
δf̃ − ∂

∂r

(
1 − M2

M2
e
iω

∫ r
R

dr

υ(1−M2)

)
dr

}
,

(C14)

After an integration by parts the integrated terms cancel out

δf (r > rs) = δSR

2γAR

×
{

δf −
∫ r

rs

∂δf̃0

∂r

(
1 − M2

M2
e
iω

∫ r
R

dr

υ(1−M2)

)
dr

− δf0

∫ r

∞

∂δf̃ −

∂r

(
1 − M2

M2
e
iω

∫ r
R

dr

υ(1−M2)

)
dr

}
.

(C15)

After a second integration by parts, the integrals converge at infinity

δf (r > rs) = − δSR

2γ iωAR

×
{

− υ(1 − M2)2

M2

(
δf − ∂δf̃0

∂r
− δf0

∂δf̃ −

∂r

)
e
iω

∫ r
R

dr

υ(1−M2)

+ δf −
∫ r

rs

∂

∂r

[
υ(1 − M2)2

M2

∂δf̃0

∂r

]
e
iω

∫ r
R

dr

υ(1−M2) dr

− δf0

∫ r

∞

∂

∂r

[
υ(1 − M2)2

M2

∂δf̃ −

∂r

]
e
iω

∫ r
R

dr

υ(1−M2) dr

}
,

thus

δf (r > rs) = δSR

γ
(c2 − υ2)eiω

∫ r
R

dr
υ − δSR

2γ iωAR

×
{

δf −
∫ r

rs

∂

∂r

[
υ(1 − M2)2

M2

∂δf̃0

∂r

]
e
iω

∫ r
R

dr

υ(1−M2) dr

− δf0

∫ r

∞

∂

∂r

[
υ(1 − M2)2

M2

∂δf̃ −

∂r

]
e
iω

∫ r
R

dr

υ(1−M2) dr

}
,

or

δf (r > rs) = δSR

γ
(c2 − υ2)eiω

∫ r
R

dr
υ − δSR

2γAR

×
{

δf −
∫ r

rs

∂

∂r

[
(c2 − υ2)δg̃0

]
e
iω

∫ r
R

dr

υ(1−M2) dr

−δf0

∫ r

∞

∂

∂r

[
(c2 − υ2)δg̃−] e

iω
∫ r

R
dr

υ(1−M2) dr

}
,

(C16)

The functions Ak(r), Bk(r) are obtained by integrating by parts

δf (r > rs) = δSR

γ
Dkeiω

∫ r
R

dr
υ + δSR

2γAR

×
{

δf −
∫ r

rs

e
iω

∫ r
R

1+M2

1−M2
dr
υ (Akδf0 + Bkδg0)dr

− δf0

∫ r

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ (Akδf

− + Bkδg
−)dr

}
,

(C17)

with

A1 ≡ − iω

υ

(
1 − ω2

l

ω2

)
∝ r2, (C18)

B1 ≡ − ∂

∂r
(c2 − υ2) ∝ r−2, (C19)

D1 ≡ c2 − υ2 (C20)

After an integration by parts

δf (r > rs) = δSR

γ
eiω

∫ r
R

dr
υ

×
[
Dk + (1 − M2)

υ

iω

Bk

2
(δf̃ −δg̃0 − δf̃0δg̃

−)

]

− δSR

2γAR

{
δf −

∫ r

rs

e
iω

∫ r
R

1
1−M2

dr
υ

× ∂

∂r

[
(1 − M2)

υ

iω
(Akδf̃0 + Bkδg̃0)

]
dr

− δf0

∫ r

∞
e
iω

∫ r
R

1
1−M2

dr
υ

× ∂

∂r

[
(1 − M2)

υ

iω
(Akδf̃

− + Bkδg̃
−)
]
dr

}
(C21)

Thus

Ak+1 = − ∂

∂r

[
(1 − M2)

υ

iω
Ak

]
− Bk

c2

(
1 − ω2

L

ω2

)
, (C22)
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Bk+1 = − ∂

∂r

[
(1 − M2)

υ

iω
Bk

]
− υ2Ak, (C23)

Dk+1 = Dk + (1 − M2)
υ

iω
Bk (C24)

In consequence,

A2 = ∂

∂r

[
(1 − M2)

(
1 − ω2

L

ω2

)]
+ 1

c2

(
1 − ω2

L

ω2

)
∂

∂r
(c2 − υ2)

∝ r−2, (C25)

B2 = ∂

∂r

[
(1 − M2)

υ

iω

∂

∂r
(c2 − υ2)

]
+ iωυ

(
1 − ω2

L

ω2

)

∝ r−2, (C26)

D2 = c2 − υ2 − (1 − M2)
υ

iω

∂

∂r
(c2 − υ2) (C27)

Noting that Dk(rs) = 0, the limit of this solution at the sonic point
is

δf (rs) = − δSR

2γAR

δf0(rs)
∫ rs

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ (Akδf

− + Bkδg
−)dr.

(C28)

The energy density in the supersonic region is defined by an equation
similar to the subsonic region, using a reference radius R

′
< rs, the

singular function δfsup defined for r < rs and choosing the boundaries
of the integral to ensure the regularity and the continuity across the
sonic point

δf (r < rs) = − δSR′

2γAR

eiω
∫ R

R′ dr
υ δf0(r)

×
∫ rs

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ (Akδf

− + Bkδg
−)dr − δSR′

2γAR

×
{

δfsup

∫ r

rs

e
iω

∫ r
R′ 1+M2

1−M2
dr
υ δf0

(
∂

∂r

1

M2
+ iω

υM2

)
dr

− δf0

∫ r

rs

e
iω

∫ r
R′ 1+M2

1−M2
dr
υ δfsup

(
∂

∂r

1

M2
+ iω

υM2

)
dr

}
,

(C29)

The pressure perturbation is deduced from equation (A13)

δp(r < rs) = − δSR′

2γAR

eiω
∫ R

R′ dr
υ δp0(r)

×
∫ rs

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ (Akδf

− + Bkδg
−)dr − δSR′

2γAR

×
{

δpsup

∫ r

rs

e
iω

∫ r
R′ 1+M2

1−M2
dr
υ δf0

(
∂

∂r

1

M2
+ iω

υM2

)
dr

− δp0

∫ r

rs

e
iω

∫ r
R′ 1+M2

1−M2
dr
υ δfsup

(
∂

∂r

1

M2
+ iω

υM2

)
dr

}
,

(C30)

where δp0 and δpsup are pressure perturbations corresponding to the
homogeneous solution δf0 and δfsup, respectively. Note that when r
→ 0, M ∝ r−1/4, c∝r−1/4 and υ∝r−1/2 for γ = 4/3,

A1 ≡ − iω

υ

(
1 − ω2

l

ω2

)
∝ r− 5

2 , (C31)

B1 ≡ − ∂

∂r
(c2 − υ2) ∝ r−2, (C32)

D1 ≡ c2 − υ2 ∝ r−1. (C33)

C3 Continuity of the derivative of δf at the sonic point

Continuity of the derivative of δf at the sonic point can be established
in the following way. The function δf for advected vorticity
perturbations below and above the sonic point are

δf (r < rs) = − iδKR′

2ωAR

{
δfsup

∫ r

rs

δf0

r2υ
e
iω

∫ r
R′ 1+M2

1−M2
dr
υ dr

− δf0

∫ r

rs

δfsup

r2υ
e
iω

∫ r
R′ 1+M2

1−M2
dr
υ dr

− δf0eiω
∫ R

R′ dr
υ

∫ rs

∞

δf −

r2υ
e
iω

∫ r
R

1+M2

1−M2
dr
υ dr

}
. (C34)

δf (r > rs) = − iδKR

2ωAR

{
δf −

∫ r

rs

e
iω

∫ r
R

1+M2

1−M2
dr
υ

δf0

r2υ
dr

− δf0

∫ r

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ

δf −

r2υ
dr

}
, (C35)

The derivatives of these functions are

∂δf

∂r
(r < rs) = − iδKR′

2ωAR

{
∂δfsup

∂r

∫ r

rs

δf0

r2υ
e
iω

∫ r
R′ 1+M2

1−M2
dr
υ dr

− ∂δf0

∂r

∫ r

rs

δfsup

r2υ
e
iω

∫ r
R′ 1+M2

1−M2
dr
υ dr

− ∂δf0

∂r
eiω

∫ R
R′ dr

υ

∫ rs

∞

δf −

r2υ
e
iω

∫ r
R

1+M2

1−M2
dr
υ dr

}
.

(C36)

∂δf

∂r
(r > rs) = − iδKR

2ωAR

{
∂δf −

∂r

∫ r

rs

e
iω

∫ r
R

1+M2

1−M2
dr
υ

δf0

r2υ
dr

− ∂δf0

∂r

∫ r

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ

δf −

r2υ
dr

}
. (C37)

We note that the Wronskien of (δf0, δfsup) equals that of (δf0, δf−)
except for the boundary R or R

′
.

δf0
∂f −

∂r
− δf − ∂f0

∂r
= −2iωARυ

1 − M2
e
−2iω

∫ r
R

M2

1−M2
dr
υ , (C38)

δf0
∂δfsup

∂r
− δfsup

∂δf0

∂r
= −2iωARυ

1 − M2
e
−2iω

∫ r
R′ M2

1−M2
dr
υ . (C39)

Thus

∂δf −

∂r
= δf −

δf0

∂δf0

∂r
− 2iωARυ

1 − M2

1

δf0
e
−2iω

∫ r
R

M2

1−M2
dr
υ , (C40)

∂δfsup

∂r
= δfsup

δf0

∂δf0

∂r
− 2iωARυ

1 − M2

1

δf0
e
−2iω

∫ r
R′ M2

1−M2
dr
υ . (C41)

Using the Wronskien relation, the derivative is rewritten as
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∂δf

∂r
(r < rs) = − iδKR′

2ωAR

×
{(

δfsup

δf0

∂δf0

∂r
− 2iωARυ

1 − M2

1

δf0
e
−2iω

∫ r
R′ M2

1−M2
dr
υ

)

×
∫ r

rs

δf0

r2υ
e
iω

∫ r
R′ 1+M2

1−M2
dr
υ dr

− ∂δf0

∂r

∫ r

rs

δfsup

r2υ
e
iω

∫ r
R′ 1+M2

1−M2
dr
υ dr

− ∂δf0

∂r
eiω

∫ R
R′ dr

υ

∫ rs

∞

δf −

r2υ
e
iω

∫ r
R

1+M2

1−M2
dr
υ dr

}
. (C42)

∂δf

∂r
(r > rs) = − iδKR

2ωAR

{(
δf −

δf0

∂δf0

∂r

−2iωARυ

1 − M2

1

δf0
e
−2iω

∫ r
R

M2

1−M2
dr
υ

)

×
∫ r

rs

e
iω

∫ r
R

1+M2

1−M2
dr
υ

δf0

r2υ
dr

− ∂δf0

∂r

∫ r

∞
e
iω

∫ r
R

1+M2

1−M2
dr
υ

δf −

r2υ
dr

}
. (C43)

The limit of the derivative at the sonic point

∂δf

∂r
(r−

s ) = iδKR′

2ωAR

{
∂δf0

∂r
(rs)e

iω
∫ R

R′ dr
υ

∫ rs

∞

δf −

r2υ
e
iω

∫ r
R

1+M2

1−M2
dr
υ dr

+ 2iωARυ

δf0
limr→r−

s

e
−2iω

∫ r
R′ M2

1−M2
dr
υ

1 − M2

×
∫ r

rs

δf0eiω
∫ r′

R′ dr
υ

r2υ
e

2iω
∫ r′

R′ M2

1−M2
dr
υ dr ′

}
. (C44)

∂δf

∂r
(r+

s ) = iδKR

2ωAR

{
∂δf0

∂r
(rs)

∫ rs

∞

δf −

r2υ
e
iω

∫ r
R

1+M2

1−M2
dr
υ dr

+ 2iωARυ

f0
limr→r+

s

e
−2iω

∫ r
R

M2

1−M2
dr
υ

1 − M2

×
∫ r

rs

δf0eiω
∫ r′

R
dr
υ

r2υ
e

2iω
∫ r′

R
M2

1−M2
dr
υ dr ′

}
,

(C45)

or

∂δf

∂r
(r−

s ) = iδKR

2ωAR

{
∂δf0

∂r
(rs)

∫ rs

∞

δf −

r2υ
e
iω

∫ r
R

1+M2

1−M2
dr
υ dr

+ 2iωARυ

δf0
limr→r−

s

1

1 − M2

×
∫ r

rs

δf0eiω
∫ r′

R
dr
υ

r2υ
e

2iω
∫ r′

r
M2

1−M2
dr
υ dr ′

}
.

(C46)

∂δf

∂r
(r+

s ) = iδKR

2ωAR

{
∂δf0

∂r
(rs)

∫ rs

∞

δf −

r2υ
e
iω

∫ r
R

1+M2

1−M2
dr
υ dr

+2iωARυ

δf0
limr→r+

s

1

1 − M2

×
∫ r

rs

δf0eiω
∫ r′

R
dr
υ

r2υ
e

2iω
∫ r′

r
M2

1−M2
dr
υ dr ′

}
,

(C47)

We note that the right and left limit of the last term in the braces are
equal

limx→0−
1

x

∫ x

0
eiα log x′

x dx ′ = 1

x1+iα

[
1

iα + 1

(
x ′)iα+1

]x

0

,

= 1

iα + 1
,

= limx→0+
1

x

∫ x

0
eiα log x′

x dx ′ (C48)

Thus the derivative of δf is continuous across the sonic point. Using
a similar procedure, we can prove the continuity of δf for advected
entropy waves.

A P P E N D I X D : C A L C U L AT I O N O F VO RT I C I T Y
PA RAMETERS

We first establish how components δυ⊥ and δυ rot of veloccitiy
decomposition (3) are related to the θ and φ components of velocity.
For that, we substitute (4) into equation (3):

δυ = δυrY�m r̂ + δυ⊥

(
θ̂

∂Y�m

∂θ
+ φ̂

1

sin θ

∂Y�m

∂φ

)
L−1

− δυrot r̂ ×
(

θ̂
∂Y�m

∂θ
+ φ̂

1

sin θ

∂Y�m

∂φ

)
L−1 (D1)

= δυrY�m r̂

+L−1

[
δυ⊥

∂Y�m

∂θ
+ δυrot

1

sin θ

∂Y�m

∂φ

]
θ̂

L−1

[
δυ⊥

1

sin θ

∂Y�m

∂φ
− δυrot

∂Y�m

∂θ

]
φ̂,

where we used relations r̂ × θ̂ = φ̂ and r̂ × φ̂ = −θ̂ . Thus

δυθ = L−1

[
δυ⊥

∂Y�m

∂θ
+ δυrot

1

sin θ

∂Y�m

∂φ

]
, (D2)

δυφ = L−1

[
δυ⊥

1

sin θ

∂Y�m

∂φ
− δυrot

∂Y�m

∂θ

]
. (D3)

A system of differential equations for δυθ and δυφ can be obtained
by linearizing equation (A1)

δυθ

υ
= ωϕ

iω
+ 1

iωrυ

∂

∂θ
δf − c2

iωrυ

∂

∂θ

δS

γ
eiω

∫ r
R

dr
υ , (D4)

δυϕ

υ
= −ωθ

iω
+ 1

iωrυ sin θ

[
∂

∂ϕ
δf − c2 ∂

∂ϕ

δS

γ
eiω

∫ r
R

dr
υ

]
, (D5)

where ωθ and ωϕ are the θ and ϕ components of the vorticity
perturbation, which can be obtained from the linearized vorticity
equation (A2) (Kovalenko & Eremin 1998; Foglizzo 2001)
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ωθ = 1

rυ

[
RυR(ωθ )R − c2 − c2

R

sin θ

∂

∂ϕ

δSR

γ

]
eiω

∫ r
R

dr
υ , (D6)

ωϕ = 1

rυ

[
RυR(ωϕ)R + (c2 − c2

R)
∂

∂θ

δSR

γ

]
eiω

∫ r
R

dr
υ . (D7)

equations (D4) and (D5) can be combined into

r

sin θ

[
∂

∂θ
(sin θδυθ ) + ∂

∂φ
δυφ

]
= 1

iω

[
δK − L2δf

]
Y�m, (D8)

where L2 ≡ l(l + 1). Using formulas (D2)-(D3), we can obtain

r

sin θ

[
∂

∂θ
(sin θδυθ ) + ∂

∂φ
δυφ

]
= −Lrδυ⊥Y�m. (D9)

Combining the last two equations, we obtain an expression for δυ⊥

δυ⊥ = L

iωr

(
δf − δK

L2

)
. (D10)

Next, we decompose the vorticity vector into vector spherical
harmonics

δω = δωrY�m r̂ + δω⊥L−1∇̂⊥Y�m − δωrot L
−1 r̂ × ∇̂⊥Y�m (D11)

The vorticity perturbation can be calculated as (e.g. Lai & Goldreich
2000)

δω = ∇ × δυ = L

r
δυrotY�m r̂ + 1

r
∂r (rδυrot) L−1∇̂⊥Y�m

− Lδυr − ∂r (rδυ⊥)

r
L−1 r̂ × ∇̂⊥Y�m. (D12)

We now apply this formula to calculate the radial component of
∇ × δω

(∇ × δω)r = L

r
δωrotY�m (D13)

Thus, in the absence of entropy perturbations,

δK = r2υr (∇ × δω)r = LrυrδωrotY�m, (D14)

which is valid in linear order in the perturbation magnitude. The
component δωrot can be obtained by comparing equations (D11)
and (D12)

δωrot = Lδυr − ∂r (rδυ⊥)

r
, (D15)

which leads to the following expression for δK

δK = Lυ [Lδυr − ∂r (rδυ⊥)] Y�m. (D16)

APP ENDIX E: R ELATION BETWEEN THE
DIM ENSION LESS ENTRO PY AND THE
ENTROPY PER NUCLEON

In this section, we derive a relation between the dimensionless
entropy that we use and the entropy per nucleon that is usually used
in the literature on CCSNe. We use the thermodynamic relation

ds = γ cv

(
dp

γ p
− dρ

ρ

)
, (E1)

where ds is the specific entropy and cv is the specific heat at constant
volume. Using the relation

cv = 1

μ

R

γ − 1
, (E2)

where R is the universal gas constant and μ is the molar mass,
equation (E1) is re-written as

ds = γ

γ − 1

R

μ

(
dp

γ p
− dρ

ρ

)
. (E3)

The entropy is made dimensionless by setting R/μ = 1 without loss
of generality

dS = γ

γ − 1

(
dp

γ p
− dρ

ρ

)
, (E4)

where we used dS to denote the dimensionless entropy. The entropy
per nucleon, which we denote as dsb, is related to the specific entropy
ds via

ds = dsb

mb
. (E5)

Thus,

dS = dsbμ

Rmb
, (E6)

Since

μ

Rmb
= NA

R
= 1

kb
, (E7)

where kb is the Boltzmann constant, we obtain

dS = dsb

kb
, (E8)

which gives us a relation between the dimensionless entropy and
the entropy per nucleon.

APPENDI X F: D ECOMPOSI TI ON O F
H Y D RO DY NA M I C P E RT U R BAT I O N S I N TO
P H Y S I C A L C O M P O N E N T S

For uniform inviscid mean flow, the acoustic, entropy, and vorticity
perturbations evolve independently from each other in the linear
approximation (Kovasznay 1953). However, this is no longer the
case for non-uniform background flow. Nevertheless, we can sepa-
rate the vorticity waves using incompressibility condition, while the
in-going and out-going acoustic waves can be separated using the
WKB approximation (Foglizzo et al. 2007). In this approach, we
decompose perturbations at a given point assuming the perturbations
are allowed to evolve in a uniform flow at the same point:

δf = δf + + δf − + δf S + δf K, (F1)

δg = δg+ + δg− + δgS + δgK, (F2)

where δf+ and δf− are the contributions of ingoing and outgoing
acoustic waves, while δfS and δfK correspond to δS and δK, which
is given as2

δf K ≡ M2(1 − μ2)

1 − M2μ2

δK

L2
, (F3)

δgK ≡ δf K

υ2
+ δS, (F4)

δf S ≡ c2(1 − M2)

1 − μ2M2

δS

γ
, (F5)

2Foglizzo et al. (2007) uses function h, which related to our function δg
through the equation h ≡ δg − δS.
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δgS ≡ μ2

c2
δf S, (F6)

δf ± ≡ 1

2
δf ± Mc2

2μ
δg − 1 ± μM

2

(
δf S ± δf K

μM

)
, (F7)

where

μ2 ≡ 1 − L2c2

ω2r2

(
1 − M2

)
. (F8)

Note that the decomposition of acoustic waves into ingoing and out-
going waves is valid only in the WKB regime where the wavelength
of the perturbations is much smaller than the characteristic scale of
the background flow. The corresponding values of the perturbations
of velocity, density, and pressure are obtained from formulas (A10)–
(A13). For vorticity waves, δK �= 0 and δS = 0, which leads to

δυr

υ
= 1

υ2

M2(1 − μ2)

1 − μ2M2

δK

L2
, (F9)

δυ⊥
υ

= 1

iωrυ

M2 − 1

1 − μ2M2

δK

L
(F10)

The density and pressure change are zero for vorticity waves in a
uniform background flow. For entropy waves, we linearly superpose

two solutions with δK = c2
RL2δS/γ and δS �= 0, where R is the

initial radius of entropy perturbations. The velocity of the vorticity
waves generated by advected entropy perturbations are

δυr

υ
= 1 − μ2

1 − μ2M2

(
c2
R

c2
− 1

)
δS

γ
, (F11)

δυ⊥
υ

= iL

ωrυ

1 − M2

1 − μ2M2

(
c2
R − c2

) δS

γ
. (F12)

The associated pressure perturbations is zero because entropy
perturbations do not produce pressure variation in a uniform back-
ground flow. The associated density perturbations can be obtained
from the thermodynamic relation (E1).

In the limit r → 0, υ∝r−1/2 and c∝r−1/4 for γ = 4/3, which results
in M ∝ r−1/4 and μ2∝r−3. For the velocity field of vorticity waves
(F9)–(F10), this results in δυr∝r1/2 and δυ⊥∝r2. For the vorticity
waves generated by advected entropy waves (F11)–(F12), we obtain
δυ⊥∝r3/2 and δυr∝const.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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